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SUMMARY

Subject knowledge is often available in the form of data sets, obtained through experiments, with the possibility
of some measurement errors. Mathematical modeling of such data is convenient for the use in design. ANN
representation of subject knowledge is necessary for including it in the knowledge base of connectionist expert
systems which are convenient for decision making. A modeling method is developed which serves as a mathematical
as well as an ANN representation, combining the advantages of both. The comparison of the method is carried out
with conventional methods like polynomials of different degrees, Hermite cubics with a different number of break
points and cubic splines with a different number of knots. For the same error of approximation, the method is found
to require a smaller number of free parameters (degrees of freedom).
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1. INTRODUCTION

Expert systems are being designed for a wide
variety of applications to perform tasks, which are
normally in the domain of human experts. There is an
increasing trend to develop connectionist expert
systems, wherein the knowledge base is in the form of
artificial neural networks [1-3] since they possess the
advantages of system integration, parallel processing,
error tolerance etc. The scientific knowledge is
frequently available in the form of sets of measurement
data. The neural network representation of such
knowledge is necessary for including it in the
knowledge base of a connectionist expert system.

Several methods are available in the literature for
data approximation and for finding approximating
curves through given data points. More common
methods use polynomials, cubic splines, Hermite
cubics etc. These methods are described in several
texts [4-6]. Improvements in the conventional
techniques are being attempted constantly [7-10].
While the designers of connectionist expert systems
are constrained to use ANN representation, the others
can use any mathematical model which gives better
approximation, with a smaller number of free
parameters.
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In the present investigation a model is developed
which serves as a mathematical as well as an ANN
representation. The method is applied to sets of data
for which the results of data approximation, using
conventional methods, are already available in the
literature. The data approximation performance of the
present method are compared with those obtained by
other conventional techniques.

2. MODEL

We consider the case where the data set consists of
pairs of values (xp, yp) for p=1, 2,..., n. A simple
network, consisting of one input neuron, one output
neuron and a single hidden layer with s neurons, is used,
as shown in Figure 1. The ith neuron of the hidden layer
receives an input of ai times x, as the link connecting it
to input x has a weight ai. This neuron has a bias value
of bi and sigmoid activation function. The output of
the neuron would be hi=sigmoid (aix-bi). The link
connecting the ith neuron of the hidden layer to the
output neuron has weight ci. Through this link the
output neuron receives an input of ci times hi. The total
input received by the output neuron is [Σci hi], i=1 to
s. The output neuron has a bias value d and linear
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activation function. Thus, the final output of the
network is:
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This ANN modeling is, therefore, equivalent to
fitting the data in the mathematical form of Eq. (1).
The total number of unknown parameters in Eq. (1) is
3s+1 (ai, bi, ci for i=1 to s and d), which is smaller
than the number of data points (n). As such the curve
represented by Eq. (1), can not pass exactly through
all n data points. The parameters are chosen in such a
way that they are as close to the data as possible.

3. METHOD

A widely used method for the design of neural
networks is back-propagation learning. It is a powerful
method, capable of handling problems with several
output quantities depending on several input quantities.
However, the algorithm is very slow and can get caught
in local minima [11, 12]. Constant improvements are
taking place in ANN design for different applications
[13-16]. For a problem in which there is one output
quantity (ordinate y) depending on one input quantity
(abscissa x), a fast algorithm is developed, for finding
the parameters (ai, bi, ci for i=1 to s and d) appearing
in Eq. (1), which are also the weights and bias values
of the ANN shown in Figure 1.
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Fig. 1  ANN used for modeling. Hidden layer neurons have
Sigmoid activation function. Output neuron has linear

activation function.

3.1 Selecting value of s

A plot of the given data points, (xp, yp) for p=1,
2,..., n, arranged in increasing or decreasing order of
xp, is used to locate the turning points. Turning points

are those data points, near which the radius of
curvature (ρ) of the resulting curve would have a
minima. Such points are easily identified visually, as
bottoms of cups (kept erect, inverted or tilted). Turning
points where slope changes sign, are denoted as T-
points, while the other turning points are denoted as t-
points. Figure 2 illustrates an example with n=23 data
points, four of which are turning points, with serial
numbers f1=5 (T-point), f2=9 (t-point), f3=14 (t-point)
and f4=19 (T-point). The starting point is f0=1 and end
point is f5=n=23.
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Fig. 2  Example to illustrate visual location of turning points.
Serial numbers of turning points are: f1=5 (T-point),

f2=9 (t-point), f3=14 (t-point), f4=19 (T-point). Starting point
is f0=1 and end point is fs=f5=n=23, making s=5.

In Eq. (1), the curve is modeled as a sum of s
sigmoid functions (subjected to scaling and translation
transformations). Therefore, the value of s should
depend on the shape of the curve through the data
points and the shape of the sigmoid function curve
(Figure 3). The value of sigmoid (x), as defined in Eq.
(2), increases from 0 to 1 as x increases from -∞ to
+∞. It has no T-point, as its slope is always positive. It
has two t-points at x=-1.36 and x=1.36, with an equal
numerical value of ρ.

Fig. 3  Variation of sigmoid (x) with x

In general, the turning points on a curve will have
different values of ρ. A curve having no T-point but
zero or one t-point or two t-points with equal values
of ρ, is termed SPR (sigmoid portion resembling)
curve. Such a curve may be modeled by a single
portion of the sigmoid curve (subjected to the
transformation of scaling and translation), i.e. by
taking s=1 in Eq. (1). A curve having one T-point can
be modeled as a difference (algebraic sum) of two
sigmoid functions (s=2). Every additional T-point
will require an addition to the value of s. Thus, the
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value of s must be at least one more than the number
of T-points on the required curve. To remove the
constraint on the number of t-points it is better to take
a larger value of s, up to one more than the total
number of turning points. Thus:

(Number of T-points+1) ≤ s ≤ (Total number of turning points+1)

3.2 SPR case

Consider a case of n data points having coordinates
(xp, yp), 1≤p≤n, arranged in increasing or decreasing
order of abscissa. A portion of the sigmoid function,
defined in Eq. (2), from ξ=ξs to ξ=ξe, after a suitable
transformation (scaling and translation), is proposed
to be used for fitting the data points. The
transformation used is:

dcybxa −=−= ηξ , (3)

It is insisted that point (ξs, ηs) and point (ξe, ηe)
coincide with the starting point (x1, y1) and the end
point (xn, yn), respectively. Thus:

dcydcybxabxa ens1ne1s −=−=−=−= ηηξξ ,,,
(4)

Equations (4) together with Eq. (2) yield:
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Combination of Eqs. (2) and (3) yields:

d)bxa(sigmoidcy −−= (6)

The data points are fitted into the curve given by
Eq. (6), using Eq. (5) for obtaining the values of a, b, c
and d. It can be seen that the values of a, b, c and d
depend on two free parameters ξs and ξe. Whatever
values are chosen for ξs and ξe the curve of Eq. (6)
will pass through the first data point (x1, y1) and the
last data point (xn, yn). The actual values of ξs and ξe
must be chosen so that there is a very close fit at the
other data points (p=2, 3, ..., n-1). At x=xp the value of
y obtained from the approximating curve of Eq. (6)
will be {c sigmoid (axp-b) - d}, as against the given
value of yp. The sum of the squares of errors:

{ }[ ]∑
=

−−−=
n

1p

2
pp yd)bxa(sigmoidcE (7)

has to be minimized. Since the fit at the first and the
last points is exact the summation is taken from p=1
to n instead of from 2 to n-1. The minimization of E is
achieved as follows:

(a) Choose any initial values of ξs and ξe;
(b) Keeping the value of ξe fixed, change the value

of ξs in small steps ∆, till the error function E
gets minimized;

(c) Keeping the value of ξs fixed as obtained in step
(b), change the value of ξe in small steps ∆, till
the value of error function E is minimized;

(d) Repeat steps (b) and (c), till the change caused
in E is insignificant (less than a chosen tolerance
value).

The values of a, b, c and d are obtained from Eq.
(5) using these values of ξs and ξe.

3.3 General case

Consider the general case of n data points (xp, yp),
1≤p≤n, arranged in increasing or decreasing order of
abscissa. The visual observation of their plot will give
the serial numbers (f1, f2, ..., fs-1) of the data points,
which are turning points. The serial numbers of the
beginning and end points are f0=1 and fs=n,
respectively.

As the first step, an SPR curve is fitted through data
points f0 to f1 as explained in Section 3.2. The
corresponding values obtained for a, b, c and d, are
denoted as a1, b1, c1 and d1. The representative
equation of the curve will be similar to Eq. (6) i.e.:

11111 d)bxa(sigmoidc)x,A(F −−= (8.1)

The plot of this equation will be a good match for
the portion of the curve from points f0 to f1, but there
will be vast deviation beyond, as shown in Figure 4.

As the second step consider the points whose
coordinates are [xp, yp-F(A1, xp)]. An SPR curve is
passed through points f0 to f2 of this curve. The
corresponding values obtained for a, b, c and d, are
denoted as a2, b2, c2 and d2. The representative
equation of the curve will be similar to Eq. (6) i.e.:

22222 d)bxa(sigmoidc)x,A(F −−= (8.2)

The plot of [F(A1, x)+F(A2, x)] will be a good
match for the portion of curve from points f0 to f2,
but there will be vast deviation beyond, as shown in
Figure 4.

As the third step we consider the points whose
coordinates are [xp, yp-F(A1, xp)-F(A2, xp)], to get:

33333 d)bxa(sigmoidc)x,A(F −−= (8.3)

The plot of [F(A1, x)+F(A2, x)+F(A3, x)] will be a
good match for the portion of curve from points f0 to f3.
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Fig. 4(a)  Plot of F(Ai,x) for different values of i, obtained for
the data points of the illustrative example shown in Figure 2
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The process is repeated s times to get a match for
the entire curve from points f0 to fs (points 1 to n),
through the expression:

[ ] [ ] )sto1i(,d)bxa(sigmoidc)x,A(F)x(Y iii1i =−−== ∑∑
(8.4)

)(, sto1idd i == ∑ (8.5)

The general procedure is given below:

* Input the values of xp, yp (p=1, 2, ..., n) and
serial numbers of turning points fi (i=1, 2, ...,
s-1). The beginning and the end points are f0=1
and fs=n.

* Initialize vectors v and Z, vp←yp and Zp←0,
(p=1, 2, ..., n).

* For i=1, 2, ..., s, do

* Compute the new vector v as vp←vp-Zp,
(p=fi-1, 2, ..., n) and vp←0, (p<fi-1).

* Fit an SPR curve through points having
coordinates (xp, vp) for (p=1,2,......,fi), using
the method described in Section 3.2 and
denote the values obtained for a, b, c and d
as ai, bi, ci and di, respectively.

* Compute the new vector Z,
Zp← ci sig (aixp-bi)-di for (p=1, 2, ..., n).

* End for

* Compute d=Σdi, (i=1, 2, ..., s)

It is to be noted that vectors v and Z are local to
this procedure. In step i, the fit is attempted for points
(xp, vp) and Zp is the value of [F(Ai,xp)].

3.4 Second run

The given data set (xp, yp), 1≤p≤n, gets represented
by (xp, Yp) by the application of Eq. (1) with ai, bi, ci

and d determined by the procedure outlined in Section
3.3, causing a small error ep=yp-Yp at x=xp. If the same
procedure is run a second time, starting with the
imaginary coordinates for data points as [xp, yp+ep]
i.e. [xp, 2yp-Yp], the resulting output would be nearer
to (xp, yp). The output of the second run is compared
with the original coordinates of the data points (xp, yp)
to determine the errors.

4. RESULTS

Rice [6] has considered the following data sets to
compare the approximation capabilities of five
conventional methods.

The data set A consists of 24 points as given
below,

abscissa values
14.00, 13.00, 12.50, 12.44, 12.36,12.28, 12.20, 12.16,
12.12, 12.08, 12.04, 12.00, 11.96, 11.89, 11.80, 11.60,
11.40, 11.20, 11.00, 10.80, 10.60, 10.40, 10.20, 10.00.

ordinate values
4.64, 4.64, 4.64, 4.62, 4.53, 4.27, 3.83, 3.40, 2.89, 2.35,
1.87, 1.52, 1.29, 0.91, 0.74, 0.65, 0.61, 0.58, 0.55, 0.53,
0.52, 0.51, 0.48, 0.42.

The plot of these points is shown in Figure 5. There
is no T-point, but there are two t-points (point numbers
5 and 15). The results of the present method are given
in Table 1, for s=1 and s=2.

Values of s 
and fi 

i ai bi ci d 

RMS 
error 
First 
run 

RMS 
error 

Second 
run 

1 2 3 4 5 6 7 8 
Data set A       

s=2, f0=1, 
f1=15, f2=24 

1 
2 

-12.6356 
-2.1812 

-152.873 
-22.6425 

-3.99733 
-0.31994 

-4.64011 0.03042 0.02868 

s=1, f0=1, 
f1=24 1 -10.9114 -131.885 -4.22000 -4.64000 0.10426 0.10061 

Data set B       
s=3, f0=1, 
f1=31, f2=37, 
f3=49 

1 
2 
3 

0.07398 
0.11565 
0.19106 

64.81545 
104.6302 
181.7535 

2.61032 
-2.57604 
-0.07027 

-0.64400 0.05253 0.03519 

s=2, f0=1, 
f1=31, f2=49 

1 
2 

0.07462 
0.10763 

64.95343 
97.41068 

2.69610 
-2.73210 -0.64400 0.06085 0.03772 
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Fig. 4(b)  Illustration of the method for data set having n=23,
s=5, f0=1, f1=5, f2=9, f3=14, f4=19, f5=23

A - ΣF(Ai,x), (i=1 to 1) to provide match from points f0 to f1
B - ΣF(Ai,x), (i=1 to 2) to provide match from points f0 to f2
C - ΣF(Ai,x), (i=1 to 3) to provide match from points f0 to f3
D - ΣF(Ai,x), (i=1 to 4) to provide match from points f0 to f4

E - Y(x)=ΣF(Ai,x), (i=1 to s) to provide match from points f0 to fs

Table 1. Values of parameters ai, bi, ci and d obtained for
different data sets and rms error during the first and
second run

Fig. 5  Results of present method for data set A
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The data set B consists of 49 points having abscissa
values xp=575+10p, 1≤p≤49. Corresponding ordinates
yp are given below,

0.644, 0.622, 0.638, 0.649, 0.652, 0.639, 0.646, 0.657,
0.652, 0.655, 0.644, 0.663, 0.663, 0.668, 0.676, 0.676,
0.686, 0.679, 0.678, 0.683, 0.694, 0.699, 0.710, 0.730,
0.763, 0.812, 0.907, 1.044, 1.336, 1.881, 2.169, 2.075,
1.598, 1.211, 0.916, 0.746, 0.672, 0.627, 0.615, 0.607,
0.606, 0.609, 0.603, 0.601, 0.603, 0.601, 0.611, 0.601,
0.608.

The plot of the data points is given in Figure 6.
There are three turning points at serial number 24 (t-
point), 31 (T-point) and 37 (t-point). The results of the
present method are given in Table 1, for s=2 and s=3.

5. COMPARISON OF METHODS

The data points (xp, yp) get approximated as (xp,
Yp) for (p=1, 2, ..., n). The maximum error of
approximation is, Emax=max yp-Yp , for (p=1, 2, ...,
n). Rice [6] has applied the following five models to
these data sets and computed the maximum error
(Emax):

1. Polynomials of degrees 6, 8 and 11 (7, 9 and 12
parameters);

2. Cubic splines with 5, 7 and 10 equidistant knots
(7, 9 and 12 parameters);

3. Cubic splines with 5, 7 and 10 data dependent
knots (7, 9 and 12 parameters);

4. Hermite cubics with 5, 7 and 10 equidistant
break points (10, 14 and 20 parameters);

5. Hermite cubics with 5, 7 and 10 data dependent
break points (10, 14 and 20 parameters).

These methods are referred to as conventional
methods 1, 2, 3, 4 and 5, respectively.

A realistic comparison of different models must
consider not only the maximum error but also the
number of free parameters (degrees of freedom)
involved. The results of comparison are given in
Table 2 and plotted in Figures 7 and 8, with the
maximum error as the ordinate and the number of
parameters as the abscissa, for data sets A and B,
respectively. A better method should give points
nearer to the abscissa axis (less error of
approximation), as well as nearer to the ordinate axis
(smaller number of free parameters). It can be seen

Table 2. Comparison of results obtained by the present method
with those obtained by five other models by Rice

Data set B

0
0.5

1
1.5

2
2.5

585 685 785 885 985
x

y

Data points
Present method

1 24

31

37
49

Representation Model Number of
Parameters

Max. error
in data set A

Max. error
in data set B

(1) (2) (3) (4)
1. Polynomial

degree=6 7 0.82 0.87
degree=8 9 0.64 0.73
degree=11 12 0.53 0.52

2. Cubic Splines with equidistant knots
knots=5 7 1.03 0.89
knots=7 9 0.80 0.58
knots=10 12 0.30 0.46

3. Cubic Splines with data dependent knots
knots=5 7 0.59 0.44
knots=7 9 0.072 0.30
knots=10 12 0.053 0.10

4. Hermite cubics with equidistant break points
break points=5 10 0.43 0.61
break points=7 14 0.26 0.14
break points=10 20 0.14 0.076

5. Hermite cubics with data dependent break points
break points=5 10 0.12 0.099
break points=7 14 0.034 0.077
break points=10 20 0.016 0.0091

6. Present Method
s=1 4 0.200 -
s=2 7 0.065 0.094
s=3 10 - 0.081

Fig. 6  Results of present method for data set B

that the results of the present method are better than
the conventional methods, for the same number of
degrees of freedom, in respect of both data sets.

The first data set has been described in [6], as
typical of real world behavior, with inadequate data
between x=12.5 and x=14, difficult to model
mathematically. Referring to Figure 7, if the tolerance
in the maximum error of approximation is taken as 0.2,
the present method requires 4 free parameters, as
compared to 9, 20 and 10 free parameters required for
conventional methods 3, 4 and 5, respectively. The
conventional methods 1 and 2 are not able to achieve
this tolerance limit, even with 12 parameters. Thus, the
present method has given remarkably better results as
compared with the other five methods.

Rice [6] has described the second data set as
titanium data, which is well known as a physical data
set, containing moderate uncertainty and difficult to
represent with a mathematical model. Referring to
Figure 8, for tolerance of 0.1 in maximum error of
approximation, the conventional methods 3, 4 and 5
require 12, 20 and 10 free parameters, respectively.
Conventional methods 1 and 2 are nowhere near this
tolerance limit, with 12 free parameters. Better results
are obtained by the present method, as this tolerance
limit is achieved with 7 free parameters.

The conventional methods 2 and 3 employ cubic
splines with several knots. In between two successive
knots, the modeling is by piecewise polynomials. Same
is the case with conventional methods 4 and 5, which
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employ Hermite cubics with several break points. In
conventional method 1, the polynomial expression is
valid over the entire region. In the present method, the
data set is approximated by Eq. (1), which is valid over
the entire range.
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 The Hermite cubics used in conventional methods
4 and 5, yield first derivative continuity at break points.
The cubic splines, used in conventional methods 2 and
3, ensure the continuity of the first two derivatives at
knots. The present modeling Eq. (1) is valid from the
beginning to the end of the region and has an infinite
number of continuous derivatives.

6. CONCLUSIONS

The study carried out indicates that the present
method gives better data approximation than the other
conventional methods, especially when the data
contain moderate measurement errors. For the same
maximum error of approximation, the present
technique requires a smaller number of parameters.
The Hermite cubics yield the first derivative continuity
at break points. The cubic splines ensure continuity of
the first two derivatives at knots. The present modeling
Eq. (1) is valid from the beginning to the end of the
region and has an infinite number of continuous
derivatives. The algorithm used for the determination
of parameters in Eq. (1), is very fast, as compared to
other learning algorithms such as back-propagation.
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ANN CUM MATEMATI^KO MODELIRANJE PODATAKA MJERENJA

SA@ETAK

Znanje o nekom predmetu istra`ivanja ~esto je dostupno u obliku skupa podataka koji se dobivaju
eksperimentima, pri }emu postoji mogu}nost pojave nekih gre{aka pri mjerenjima. Matemati~ko modeliranje ovih
podataka mo`e se korisno primijeniti u projektiranju. ANN prikaz znanja o predmetu istra`ivanja je potreban kako
bi se to znanje uklju~ilo u bazu znanja veznih ekspertnih sustava koji su prikladni za donošenje odluka. Razvijena
metoda modeliranja slu`i i kao matemati~ki prikaz i kao ANN prikaz, time što kombinira prednosti oba prikaza. Ova
metoda uspore|uje se s klasi~nim metodama kao što su polinomi razli~itih stupnjeva, Hermite-ove kubne jednad`be
s razli~itim brojem to~aka prekida i kubi~ni spline-ovi s razli~itim brojem ~vorova. Za istu grešku aproksimacije
dokazano je da razvijena metoda zahtijeva manji broj parametara (stupnjeva slobode).

Klju~ne rije~i: ANN prikaz, matemati~ko modeliranje, baza znanja, ekspertni sustavi, podaci mjerenja.


