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Abstract
In drilling operations, by choosing the proper tools and also incorporating more accurate and reliable parameters, this 
operation can be performed in less time and cost manner. Among drilling parameters, Rate of Penetration (ROP) is 
viewed as the main parameter in drilling operation evaluation. Field data investigations can be considered the most fruit-
ful approaches to evaluate drilling performance, or ROP, as well as development of predictive models although labora-
tory tests and experimental formulas are vastly used to identify the drilling problems. In this research, intelligent mod-
eling was used to predict the penetration rate of drilling operations through analyses of an established comprehensive 
data base from drilling operations in one of Iranian oilfields, Shadegan oilfield, in which novel artificial intelligence 
techniques such as Grey Wolf Optimization (GWO), Particle Swarm Optimization (PSO), and Grasshopper Optimiza-
tion Algorithm (GOA) were applied. Since the database includes 400 data, these techniques were utilized due to their 
effectiveness on a large set of data. In this research, using drilling data compiled from Shadegan oilfield, a precise model 
was developed to predict the ROP. Results showed that determination coefficient (R2) and Root mean squared error 
(RMSE) parameters for Particle Swarm Optimization (PSO) are found to be as R2=0.977 and RMSE=0.036, for Grey Wolf 
Optimization (GWO) R2=0.996 and RMSE=0.014, for Grasshopper Optimization Algorithm (GOA) R2=0.999 and 
RMSE=0.003, respectively. Ultimately, it can be concluded that all predictive models lead to acceptable results but GOA 
yields more precise and realistic outcome.
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1. Introduction

Drilling operation plays a crucial role in petroleum 
industry to reduce unnecessary expenses and therefore 
to enhance profitability of the operation. Rate of penetra-
tion (ROP) relies upon on different issues consisting of 
formation characteristics, depth of wellbore, drilling 
fluid attributes, weight on bit, rotational speed of drill 
string, mud loss conditions, bit type and project hydrau-
lics, bit consumption and cleaning. These elements have 
various impacts on rate of penetration. With this respect, 
drilling performance prediction can be viewed as an es-
sential factor to decrease drilling costs. Some research-
ers investigated the effect of various factors on ROP. 
Maurer (1962) suggested a model to evaluate the rate of 
penetration for roller-cone bits. Galle and Woods (1963) 
proposed an analytical approach to evaluate ROP based 
on parameters such as Revolution per Minute (RPM), 

Weight on Bit (WOB), formation properties and bit 
metallurgical characteristics. Mechem and Fullerton 
(1965) presented a model using drilling fluid pressure, 
RPM, bit weight, hydraulics and formation attributes. 
Bourgoyne and Young (1973) proposed a model for 
predicting ROP using statistical approach. Using avail-
able drilling data, Bourgoyne and Young (1974) pre-
sented an approach to appropriate selection of input pa-
rameters affecting ROP prediction. Tanseu (1975) opti-
mized some drilling data like cost, bit life and ROP and 
some equations were developed to predict the ROP and 
bit life. It was tried to minimize costs considering pre-
dicted ROP and bit life. Al-Betairi et al. (1988) investi-
gated the effect of several factors on rate of penetration 
utilizing multiple regression analysis. They applied sen-
sitivity analysis to choose major parameters affecting 
ROP and then proposed optimum values of these param-
eters under controllable and uncontrollable conditions. 
Maidla and Ohara (1991) presented a software pro-
gramming in order to optimum selection of drilling bits 
with the special emphasis of reducing cost per foot. 
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Table 1: Drilling rate of penetration models

Maurer (1962)

R=K(N(W-W0)2 /60D2S2) For w<w0
R=K(NW2/60D2S2)
Where R: rate of penetration in m/h; D: bit diameter in mm; k: a constant for drillability; N: rotational 
speed in rpm; W0: weight on bit threshold prior to initiation of cratering in kN; W: weight on bit in kN; 
and S: rock strength in MPa.

Bauer and Calder 
(1967)

R= [61-28log10 (s)] W/D. N/300
Where N: rotational speed in rpm; W: weight on bit in lbf; D: bit diameter in inch; S: rock strength  
in psi; and R: rate of penetration in ft/h.

Cunningham 
(1978)

DR=NWa/0.424σd
1.5+√NWa (∆P)0.75

Where N: rotational speed in rpm; W: weight on bit in 1,000 lb/in of diameter; ∆P: the differential 
pressure between pore pressure and drilling fluid pressure at the bit in 1,000 psi; σd: drilling strength  
in 1,000 lb/in.2; a: constants (achieved from tests); DR: drilling rate in ft/hr.

Warren (1981)
R=(aS2D3/Nbw2+C/ND)-1

Where R: penetration rate in ft/hr (m/h); a, b, and c: bit constants; D: bit diameter in cm; N: rotational 
speed in rev/s; S: drilling strength in psi (kPa); and W: weight on bit in N.

Bourgoyne and 
Young (1984)

ROP=f1×f2×f3×f4×f5×f6×f7×f8
where ROP: rate of penetration; f1: effect of drillability of rock formation; f2: effect of compaction;  
f3: under-compaction due to differential pressure; f4: effect of differential pressure; f5: effect of rate  
of penetration due to any change in weight on bit; f6: effect of rotational speed on rate of penetration;  
f7: effect of bit wear on rate of penetration; and f8: effect of bit hydraulics on rate of penetration. 

Walker et al. (1986)

R=14+54W-56p+31φ-10g-16σc+46p-31pW
Where W: weight on bit in lbs; p: bore hole pressure in psi; φ: porosity in percentage;  
g: average grain size in inch;
σc: in-situ compressive strength in psi; and R: rate of penetration in ft/hr .

Bourdon et al. 
(1989)

R=KWf(v)
Where R: penetration rate in ft/hr (m/h); W: weight on bit in N; f: function of rotary speed;  
K: drilling-model coefficient; and υ: rotary speed in rpm.

Wijk (1991)
B= B̄ n Sc

1/4 [F/DσRD]3/2

Where B: rate of penetration; B̄: a non-dimensional constant; n: rotary speed; Sc: button density;  
F: weight on bit; D: hole diameter; and σRD: stamp test strength index.

Autio and 
Kirkkomäki (1996)

R=AWB

Where R: rate of penetration or net advance rate in m/h; W: weight on bit; A and B: adjustment 
coefficients.

Kahraman (1999)
PR=1.05 (W0.824RPM1.69/D2.321σc

0.610)
Where PR: penetration rate in m/min; W: weight on bit in kg; RPM: rotational speed in rpm;  
D: bit diameter in cm; and σc: uniaxial compressive strength in MPa.

Shirkavand et al. 
(2009)

R=Wf (14.14W.Nb.cosα/S.DB .tanθ)
Where R: rate of penetration; Wf: wear constant that varies between 1 (for new drill bit) and 0  
(for cutters totally worn); S: confined compressive strength; W: weight on bit; N: rotational speed;  
α and θ: cutter rake angles; and DB: bit diameter.

Kowakwi et al. 
(2012)

R=(0.082σ2 D3/N0.6 W2+5.034/ND)-1.f(x).fc(Pe).Wf
Where σ: rock strength in kPa; N: rotational speed in rev/s; R: rate of penetration in ft/h; (x): hydraulic 
energy function; fc(Pe): effect of chip hold down; and Wf: effect of bit wear; D: bit diameter in cm;  
and W: weight on bit in N.

Chen et al. (2014)

R= 13.33μbN/DB(CCS/EmWe-μγb -1/AB)
Where R: rate of penetration in ft/h; µb: friction coefficient of bit; N: rotational speed in rpm;  
DB: bit diameter in inch; CCS: confined compressive strength in psi; Em: mechanical efficiency  
of a new bit, W: weight on bit in lbf; μ: friction coefficient of drill string; γb: bottom hole inclination  
in rad; and AB: bit area in square inch.

Deng et al. (2015)
ν=2πnM/¼πD2a-P
Where υ: rate of penetration; n: rotational speed; M: torque; D: bit diameter; a: specific energy,  
and P: weight on bit.

Ataei et al. (2015)
R=2.31(W0.094N0.95RDi0.099/ P0.075D3.04)
Where R: rate of penetration in m/min; W: weight on bit in kg; N: rotational speed in rpm; RDi: rock 
mass drillability index; P: air pressure for flushing the blast hole in psi; and D: bit diameter in mm. 

He et al. (2016)
R=Wf G(WaNb/SDb)
Where W: weight on bit; Wf: bit wear function; R: rate of penetration; N: rotational speed;  
S: confined rock compressive strength; G, a and b: constants; and Db: drill bit diameter.
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Hemphill and Clark (1994) evaluated the effect of 
drilling fluid chemistry on rate of penetration through 
full scale drilling tests using nine types of muds and two 
PDC bits. Fear (1999) developed an approach to choose 
key elements affecting on ROP via analyses of several 
bit runs. The study involved bit properties, geological 
data and mud logging. Motahhari et al. (2009) investi-
gated the relationship between ROP and optimum weight 
on bit. Ritto et al. (2010) optimized ROP considering 
rotational speed at the top, initial reaction force of bit as 
well as fatigue, stress and vibration limit of the dynami-
cal system. Alum and Egbon (2011) presented some 
models to predict ROP through developing equations. 
Ping et al. (2014) suggested an evolutionary algorithm 
for optimizing the drilling parameters in an effective 
manner. This optimization process consisted of flow 
rate, weight on bit and rotation of bit. Hankins et al. 
(2015) proposed a procedure for predicting operational 
factors and equipment through simulation of operational 
drilling data of nearby wells in Louisiana field. They 
demonstrated that optimum criteria can be achieved via 
applying variation in combinations of bit characteristics, 
hydraulics, rotary speed of bit and weight on bit to eval-
uate the economic and operational merits for drilling 
projects. Shishavan et al. (2015) studied several drilling 
case studies and found out the combination of bottom 
hole pressure control and rate of penetration could con-
tribute to a decrease in project’s risks as well as operator 
and drilling costs. Wang and Salehi (2015) used artifi-
cial neural network (ANN) technique for prediction of 
optimum drilling fluid hydraulics.Elkatatny et al. 
(2017) proposed an ANN model to predict ROP based 
on mud properties and drilling parameters. Soares and 
Gray (2019) used machine learning (ML) techniques 
using real-time optimization of drilling parameters in or-
der to predict ROP. Elkatatny (2021) used ANN ap-
proach to predict real-time ROP in complex lithologies. 
Kazemi et al. (2023) presented a prediction of blast-in-
duced air overpressure using a hybrid machine learning 
model and gene expression programming. Kazemi et al. 
(2023) investigated the Application of XGB-based me-
taheuristic techniques for prediction time to failure of 
mining machinery. Nabavi et al. (2023) proposed A Hy-
brid Model for Back-Break Prediction using XGBoost 
Machine learning and Metaheuristic Algorithms in 
Chadormalu Iron Mine. Kazemi et al. (2024) proposed 
A novel Hybrid XGBoost Methodology in Predicting 
Penetration Rate of Rotary Based on Rock-Mass and 
Material Properties. Nabavi et al. (2024) used Reliable 
novel hybrid extreme gradient boosting for forecasting 
copper prices using meta-heuristic algorithms. As cited 
before, several models have been proposed for predict-
ing ROP. Table 1 listed some of these models.

The technology revolution in conjunction with the 
deep learning algorithms provide the capability for re-
searchers to appropriately analyze the gathered informa-
tion and conclude significant results. Predictive data 

analysis is begun by statistical analyses, intelligent ap-
proaches and ultimately hybrid methods. Many research 
works have been carried out to measure the precision 
these techniques. The findings represented that hybrid 
methods are considered the best, then intelligent ap-
proaches are better than statistical analyses (Acharjya 
and Anitha, 2017). In current study, in order to enhance 
the accuracy of results of statistical analysis, a novel 
method for ROP prediction is introduced in which the 
artificial intelligent (AI) techniques are utilized. The aim 
of this paper is to develop new models to predict drilling 
rate of penetration in one of Iranian oilfields, Shadegan 
oilfield, using some new AI techniques such as Particle 
Swarm Optimization (PSO), Grasshopper Optimization 
Algorithm (GOA) and Grey Wolf Optimization (GWO) 
approaches. The reason for using optimization algo-
rithms in this research is to find a solution according to 
the constraints applied and the need of a problem. The 
number of solutions to the problem may be large, but 
optimization algorithms try to find the most optimal 
solution.

2. Materials and Methods

Meta-heuristic algorithms are new methods in solving 
petroleum engineering problems that can be used to 
solve complex problems that conventional methods are 
not able to solve accurately (Sobhi et al.,2022). In these 
methods, all effective parameters can be considered 
without any restrictions, while in other methods, this is 
not possible and they are always accompanied by as-
sumptions and limitations. These methods are easy to 
use, and the results can be used before or during drilling 
(Brenjkar et al., 2021). In conventional computational 
methods, the computational steps are predetermined and 
have logical sequences; in comparison with meta-heu-
ristic algorithms, they are neither sequenced nor neces-
sarily predetermined (Riazi et al., 2022). Because the 
estimation of the penetration rate depends on many dif-
ferent parameters, their calculation is always faced with 
uncertainty. The information obtained from most of the 
above methods cannot be used during drilling and is in 
fact considered dead information. No method has been 
proposed for in-situ measurement (Khosravanian and 
Aadnøy, 2022). Although laboratory tests are the best 
way to estimate, they only measure at a few discrete 
points; Experimental relationships that have the neces-
sary continuity are not accurate enough and should also 
be presented according to the conditions and character-
istics of the reservoir of these relationships. Mathemati-
cal models designed due to limitations and incorrect hy-
potheses often have problems in describing and express-
ing the effects of these factors. One way that is 
fundamentally different from past mathematical meth-
ods is to use an artificial grid to model the behavior of 
the material directly from the data obtained from experi-
ments and operations (Alsaihati et al., 2021). Neural 
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network technology can be used to model the behavior 
of materials due to its ability to learn and find relation-
ships between different parameters. Optimization is very 
important in many branches of science. Optimization 
algorithms inspired by nature have exhibited remarkable 
outcomes as intelligent optimization approaches in par-
allel with conventional methods. Methods such as Parti-
cle Swarm Optimization (PSO), Grasshopper Optimiza-
tion Algorithm (GOA) and Grey Wolf Optimization 
(GWO) can be of these techniques. These methods have 
been utilized to solve numerous optimization processes 
in different issues such as determining the optimal path 
of automated agents, optimal controller design for in-
dustrial processes, solving major problems in improving 
the effective parameters in the drilling industry (Saremi 
et al., 2017).

2.1 Particle Swarm Optimization (PSO)

The particle swarm optimization algorithm is regard-
ed as one of the newest evolutionary optimization meth-
ods. This algorithm is an algorithm that imitates the be-
haviors of animal communities in the processing of soci-
ety knowledge and is rooted in two areas, first artificial 
life (such as birds, fish) and second evolutionary calcula-
tions. The principle of the PSO algorithm is that the 
achieved results from optimization process are viewed 
to be birds without volume and qualitative attributes, re-
ferred to as particles, these birds fly in a next N space 
and their path in space (Kennedy and Eberhart, 1995). 
They change the search in accordance with their previ-
ous experiences and those of their neighbors. In groups 
comprising N components, the position of the i compo-
nent is influenced by a dimensional N spatial vector 
which is summarized in the following equation (Joćko 
et al., 2022):
	 � (1)

Where S is the search space.
The best previous position obtained for component i 

is represented using Equation 1.

	 � (2)

	 � (3)

Ultimately, the new position of the category compo-
nents is achieved via Equations 2 and 3.

	 � (4)

	 � (5)

The velocity of each particle has a maximum value 
determined by the user. This factor controls the speed of 
the handle and prevents the handle from exploding. Al-
though the PSO algorithm is able to find the optimal re-
sponse region very quickly, but when it reaches this re-

gion, its convergence speed is greatly reduced. To solve 
this problem, relations are corrected as follows:

	

	 � (6)

	 � (7)

In the above equations: g denotes the index used for 
the particle that has the best position and t is the number 
of repetitions. r1 and r2 are random numbers between 0 
and 1. ω is the weight coefficient of inertia. C1 is a posi-
tive parameter called the cognitive parameter and c2 is a 
positive parameter called the social parameter, which ac-
celerates the motion of the particle towards the optimal 
value. Equation 4 shows that the new velocities for each 
particle are updated in accordance with their prior veloc-
ity Vi (t), the best local particle position Pi (t) and the 
foremost global position of Pg (t). The particle velocity 
in each dimension is maintained at a maximum speed of 
Vmax, and the maximum velocity Vmax is set for a specific 
fraction of the search space range in any dimension. 
Equation 5 represents how the position of each particle 
Xi (t) is updated during the search in the solution space. 
To reach the end criterion. The use of the inertia weight 
parameter creates a compromise between the ability to 
explore the category nationally and locally. In fact, the 
lower the weight, the more accurate the search in areas 
that have been experienced in the past. Choosing the 
right size for ω ensures the desired balance between lo-
cal and global exploration capability and thus increases 
the algorithm efficiency. Experimental findings demon-
strate that the selection of large values for ω, at the be-
ginning of the search, causes the priority of global ex-
ploration to be higher than local exploration, and with a 
gradual decrease of ω, the search in local spaces is pur-
sued more seriously. As a result, the value of ω is se-
lected as 1 at the beginning of the search and gradually 
tends to zero (Joćko et al., 2022).

2.2. Grey Wolf Optimizer (GWO)

The grey wolf is a member of the Canid family. Grey 
wolves are viewed as predatory predators which means 
they are at the top of the food chain. Grey wolves are 
mostly willing to live in a herd. Each group includes 
nearly 5 to 12 wolves. These wolves have a seriously 
social hierarchy. Leaders are male or female and known 
as alpha. Alpha has mainly the responsibility for deci-
sion-making on sleeping location, hunting, waking time, 
etc (Mirjalili et al., 2014). Alpha intentions are given to 
the group. Nevertheless, some democratic behaviors 
have also been identified in which an alpha grey con-
forms the other wolves in the group. When all members 
are gathered, the whole group confirms alpha via hold-
ing their tail. Since the whole group must follow the in-
structions of the alpha wolf (male or female). Dominant 
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wolf is another expression for the alpha wolf. In the 
group, alpha wolf is only allowed to have mate. In an 
interesting manner, alpha is not definitely the most pow-
erful member, but is the foremost member for group 
management. It means the discipline and organization of 
a group is far more essential than its strength. The next 
category of the grey wolf hierarchical order are the beta 
wolves. Beta wolves are subject to alpha decision (Mir-
jalili et al., 2014). Beta wolves can also be male or fe-
male, and are the best candidates to replace alpha wolves 
that have been outgrown or aged. The wolf beta must 
show respect to alpha ones, but also command other 
low-level wolves. This type of wolf acts as a consultant 
for an alpha and a helper for the group. Beta boosts alpha 
commands. The lowest rating is for omega grey wolves. 
Omega serves as a protector. Omega wolves should al-
ways be sent with whole dominant wolves. They are the 
last wolves which have permission to eat. It may be per-
ceived that omega does not play a major role in the 
group, but it has been concluded that if omega is lost in 
the whole group, there will be problems. This is because 
of the decreased violence and frustration of whole 
wolves via omega. This helps to satisfy the whole group 
and maintain the hierarchical order. In a number of in-
stances, Omega also works as a babysitter in the pack-
age. If a wolf is not alpha, beta, or omega, it is called a 
function or (delta in some sources). Delta wolves must 
be sent to alpha and beta but dominate omega. Supervi-
sors, guards, the elderly, hunters and supervisors are 
members of this category. Supervisors have the respon-
sibility for observing the boundaries of the territory and 
warning the group in case of any danger. Guards provide 
the protection and safety of the group. Hunters help al-
pha and beta wolves when hunting and preparing food 
for the group. At last, caregivers have the responsibility 
for caring for injured, sick and weak wolves (Kalita et 
al., 2022).

2.2.1 Mathematical Models and Algorithms

In this section, mathematical forms of social hierarchy 
structure, attacking, siege, and tracking grey wolves are 
expressed. Then, the grey wolf algorithm is presented.

2.2.2 Social Hierarchical Structure

To describe mathematical design of social hierarchi-
cal structure in GWO, alpha (α) is supposed to be the 
solution. Thus, the other (second and third) solutions are 
considered as beta (β) and delta (δ), respectively. 
Through this algorithm, the hunt (optimization) is driven 
by α, β, δ. ω wolves follow these three wolves.

2.2.3 Siege of Prey

As cited above, grey wolves surround prey during 
hunting. The equations of the mathematical model of 
grey wolf siege behavior are proposed as below:

	 � (8)

	 � (9)

Where t denotes the current iteration,  and  repre-
sent the vector coefficients,  represents the hunting 
location vector and X shows the vector of grey wolf lo-
cation position. The vectors  and  are defined as 
Equations 10 and 11:

	 � (10)

	 � (11)

The component  decreases linearly from 2 to 0 dur-
ing the iterations, and  and  are random values be-
tween 0 and 1.

2.2.4 Hunt

Grey wolves are able to detect hunting grounds and 
surround them. Hunting is generally led by alpha wolves. 
Beta and delta wolves sometimes participate in hunting. 
However, there is no idea regarding the optimum posi-
tion (hunting) in an abstract search space. To simulate 
the hunting behavior of grey wolves from mathematical 
point of view, it is assumed that the alpha (best candidate 
solution), beta and delta have information on the poten-
tial hunting position. Hence, we store the first three best 
solutions ever obtained and need other search agents (in-
cluding omega) to update their position in accordance 
with the position of the best search agents as follows 
(Meidani et al., 2022):

	

	 � (12)

	

	 � (13)

	 � (14)

2.3 Grasshopper Optimization Algorithm (GOA)

Stochastic, optimization and evolutionary search ap-
proaches are emerging techniques utilized to achieve 
optimum global results. The randomness of such optimi-
zation methods prevents trapping in local optimization 
points. Access to global optimal solutions to practical 
optimization and engineering optimization problems is 
of paramount importance. Many of these optimization 
algorithms are nature-inspired. Grasshopper Optimiza-
tion Algorithm (GOA) also belongs to this group of op-
timization methods and has a high optimization speed. 
The proposed algorithm is modeled mathematically and 
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presented to mimic the natural behavior of Grasshoppers 
in order to solve optimization problems. Grasshopper is 
insect. They are considered a pest due to the harm they 
do to agricultural products (Saremi et al.,2017).

A mathematical model is used for simulating the 
group behavior of Grasshoppers, as below Equation 15:

	 � (15)

Where Xi denotes the position of the i Grasshopper, Si 
is social interaction, Gi is the gravitational force acting 
on the i Grasshopper, and Ai is the horizontal force of the 
wind. Where Xi defines the position of the i Grasshop-
per, Si is social interaction, Gi is the gravitational force 

acting on the i Grasshopper, and Ai is the horizontal 
force of the wind. It should be noted that in order to 
show random behavior, this equation can be rewritten as 

 where r1, r2 and r3 are random num-
bers between 0 and 1.

	 � (16)

Where dij shows the distance between Grasshopper i 
and j, which is calculated as , S is a function 

to represent the power of social forces, and is   

a single vector from Grasshopper i to Grasshopper j.  
The s function, represent social forces, is expressed as 
follow:

	 � (17)

Where f indicates the intensity of gravity and l is the 
measure of the length of gravity.

Table 6: Grasshopper optimization algorithm parameters

Parameters Value
Population size 400
Number of iterations 200
Random vectors r1, r2 and r3 0 and 1

Table 2: Input parameters and output parameter

Input parameters Weight on Bit (WOB), Revolution Per 
Minute (RPM), Mud Weight (MW)  
and Torque

Output parameter Rate of Penetration (ROP)

Table 3: Descriptive statistic of database for Shadegan oilfield

Min.Max.St. DevMedianAverageModeRangeUnitParameter
145.67.4610.813.48.6044.5klbfWOB

5620118.251611581691441/minRPM
65.07140.4612.6374.1079.2673.3575.39pcfMW
33191246315687072718368009144lbf.ftTorque
0.346.74.144.25.62.604.46m/hrROP

*SI unit : WOB(kN); RPM(rpm); MW(kg/m3); Torque(kN×m); ROP(m/hr)

Table 4: Particle swarm optimization parameters

Parameters Value
Population size 400
Number of iterations 200
Interia factor 0.5,0.05
Social rate 0.9

Table 5: Grey wolf optimizer parameters

Parameters Value
Population size 400
Number of iterations 200
Number of appliances 24
Random vectors r1 and r2 0.1

3. Description of study area

The Shadegan oilfield, the case study, is an Iranian 
oilfield located in Khuzestan province, in the south west 
of Ahvaz city. A database was compiled from drilling 
parameters in this field. The data were then analyzed 
through intelligent approaches introduced within this 
paper. The input and output parameters are listed in Ta-
ble 2. Table 3 shows descriptive statistics of the data-
base for Shadegan oilfield. Table 4 shows Particle 
Swarm Optimization (PSO) parameters. Table 5 shows 
Grey Wolf Optimizer (GWO) parameters. Table 6 shows 
Grasshopper Optimization Algorithm (GOA) parame-
ters. In this study, the accuracy and efficiency of the 
models were assessed using the coefficient of determina-
tion (R2) and root mean square error (RMSE) factors, as 
described by equations 18 and 19. A value of one indi-
cates the optimal performance for these criteria, while a 
value of zero represents the best outcome for RMSE. 
Furthermore, distribution diagrams and comparative 
graphs of observational-computational values were em-
ployed to facilitate a comprehensive analysis and com-
parison of the results, in addition to the aforementioned 
criteria.
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The Coefficient of Determination (R2) is also equal to 
the square of the correlation between x and y scores. R2 

is attained as:

	 � (18)

The Root Mean Square Error (RMSE) and the con-
necting factor between the guessed and measured 
amounts are considered as the efficiency amounts. The 
RMSE is attained as:

	 � (19)

Xi and Yi are the computational and observational 
values of the time step i, N is the number of time steps. 

 and  are the average of computational and observa-
tional values, respectively.

4. Results

4.1. �Penetration Rate Prediction in Shadegan 
Oilfield by PSO

PSO (Particle Swarm Optimization) is one of the me-
taheuristic methods. Despite its simplicity, it has high 
power. It is inherently a continuous algorithm and there-
fore more applicable to continuous domain optimization 
problems. Of course, with some precautions, it can also 
be used for discrete problems. It is in the branch of 
swarm intelligence or collective intelligence (crowd). It 
is sometimes classified as an evolutionary algorithm be-
cause the recovery mechanism is repeating itself, intro-
ducing a new model based on information sharing. 
While in crowd intelligence, information flow is one of 
the main prerequisites that leads to cooperation. The 
next point is that when we want to create purposeful co-
operation in a group, we need a concept called self-or-
ganization or self-organization and must control the 
style and rules of the population. In the discussion of 
crowd intelligence, we try to create the concept of self-
regulation using a series of simple rules that everyone is 
required to follow, and wherever there is a flow of infor-
mation and self-regulation, collective intelligence will 
emerge. Distribution diagram and matching diagram of 
the measured values of the penetration rate, or target and 
predicted values of the penetration rate, are represented 
by the predictive model, as illustrated in Figure 1 and 
Figure 2, respectively.

Figure 2: Matching diagram by particle swarm optimization

Figure 1: Distribution diagram by particle swarm 
optimization
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4.2. �Penetration Rate Prediction in Shadegan 
Oilfield by GWO

The grey wolves’ meta-heuristic algorithm is pro-
posed to solve optimization problems, as mentioned be-
fore. In the proposed algorithm, the weakest wolves are 
removed from the group. These wolves are replaced 
with other wolves from the primary population. The 
choice of placed wolves will be random or based on fit-
ness. Through this approach, the fit of the location of 
particle is checked in every iteration, and if the fit goes 
forward, the wolves proceed towards the target, other-
wise they remain in the previous appropriate position. 
This algorithm is presented in order to enhance the 
search performance in coping with different problems, 
improving the speed of convergence and impede getting 
stuck in the local optimization. The simulation in MAT-

LAB software is performed on 23 standard mathemati-
cal optimization functions. By examining the perfor-
mance and statistical comparison of the results obtained 
from the new algorithm with the basic Grey wolf algo-
rithm and several other algorithms, we conclude that by 
properly adjusting the parameters, the improvements 
have a significant impact on the performance of the algo-
rithm on various functions. Distribution diagram and 
matching diagram of the measured values of the penetra-
tion rate, or target and predicted values of the penetra-
tion rate, are represented by the predictive model, as 
shown in Figure 3 and Figure 4, respectively.

4.3. �Penetration Rate Prediction in Shadegan 
Oilfield by GOA

The Grasshopper optimization algorithm uses an 
equilibrium coefficient that the relationship between 
them changes linearly and causes a proper balance be-
tween the time to reach convergence and finding the 
global optimal, ie by choosing a large coefficient of early 
convergence occurs and The probability of getting stuck 
in the local optimization increases and if a small coeffi-
cient is selected, the convergence time will be long and 
in the limited time the global optimum will not be ob-
tained. In this paper, by using geometric coefficient ap-
propriate to time and new methods for calculating it, the 
balance between the two characteristics of exploration 
and exploitation to prevent early and late convergence 
on the one hand and achieve global optimization on the 
other hand is provided. Also, ten different fitting func-
tions have been investigated as fitting functions in the 
basic algorithm and the proposed scheme. The results of 
comparing different aspects including best, worst and 
average fit as well as their standard deviation and execu-
tion time in 50 different runs demonstrate that the perfor-
mance of the proposed approach is ten times better than 
the basic algorithm in all fitting functions. Due to the 

Figure 4: Matching diagram by grey wolf optimization

Figure 3: Distribution diagram by grey wolf optimization
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Figure 6: Matching diagram by grasshopper optimization algorithm

Figure 5: Distribution diagram by grasshopper optimization 
algorithm

Table 7: Comparison of models

Models PSO GWO GOA
R2 0.977 0.996 0.999
RMSE 0.036 0.014 0.003

Figure 7: Sensitivity analysis for input parameters

uniform number of repetitions in the implementation of 
optimizations, the convergence time is the same in all. 
Distribution diagram and matching diagram of the meas-
ured values of the penetration rate, or target and predict-
ed values of the penetration rate, are represented by the 
predictive model, as illustrated in Figure 5 and Figure 
6, respectively.

4.4. Sensitivity Analysis

Sensitivity Analysis shows how various values of an 
independent variable affect a dependent variable under 
some assumptions. On the other hand, sensitivity analy-
sis is an approach to examine and study how the impact 

of different sources (in absolute environment or uncer-
tainty) on a mathematical model (Afradi et al, 2024). 
This method is applied for domains that tackle one or 
more input variables and tend to measure the behavior of 
a function or relation according to them. Sensitivity 
analysis parameters are shown in Figure 7. As it can be 
seen, torque and WOB are more sensitive than other in-
put parameters, therefore need to be managed properly.

4.5. Comparison of models

In this section, the models used in this research were 
compared, which shows that GOA has relative superior-
ity over other models.
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5. Conclusions

Optimization algorithms are trained through opera-
tional and environmental data and report the simultane-
ous effect of all effective parameters. Accurate and more 
detailed studies on this information can be a good alter-
native to experience-based engineering judgments. Vari-
ous artificial intelligence (AI) techniques are considered 
powerful approaches to predict rate of penetration (ROP) 
in petroleum drilling industry. In this study, among AI 
techniques, Particle Swarm Optimization (PSO), for 
Grey Wolf Optimization (GWO) and Grasshopper Opti-
mization Algorithm (GOA) were used to predict ROP. 
Through the analyses, Weight on Bit (WOB), Revolu-
tion per Minute (RPM), Mud Weight and Torque com-
piled from drilling operations in Iranian Shadegan oil-
field were included as input parameters. The coefficients 
of determination of optimization algorithms are accept-
able after adding such sensitive drilling parameters and 
due to the low values of the obtained RMSE, the use of 
these algorithms is reliable. The mentioned methods ap-
plied to the database and R2 and RMSE for each ap-
proach were obtained. Results showed that these param-
eters for Particle Swarm Optimization (PSO) are found 
to be as R2 = 0.977 and RMSE = 0.036, for Grey Wolf 
Optimization (GWO) R2 = 0.996 and RMSE = 0.014, for 
Grasshopper Optimization Algorithm (GOA) R2 = 0.999 
and RMSE = 0.003, respectively, showing high accuracy 
of used approaches but GOA yielded more precise re-
sults than other methods. For future work, we suggest 
using other heuristic algorithms such as shark smell op-
timization and artificial bee colony algorithm to predic-
tion of rate of penetration (ROP) in petroleum drilling 
operations.
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SAŽETAK

Predviđanje mehaničke brzine bušenja u operacijama bušenja nafte  
korištenjem optimizacijskih algoritama
Odabirom odgovarajućih alata te primjenom precizno i pouzdano određenih parametara operacija bušenja može se 
izvesti brže i uz manje troškove. Mehanička brzina bušenja (engl. Rate of Peneration, ROP) smatra se glavnim parame-
trom u procjeni operacije bušenja. Iako se rezultati laboratorijskih istraživanja i eksperimentalno dobivene formule 
uvelike koriste za identifikaciju problema u operacijama bušenja, korištenje terenskih podataka smatra se najboljim 
pristupom za procjenu parametara bušenja ili ROP-a, kao i za razvoj modela predviđanja. U ovome je istraživanju primi-
jenjeno inteligentno modeliranje, u kojemu su korištene nove tehnike umjetne inteligencije kao što su optimizacija Gray 
Wolf (engl. Gray Wolf Optimization, GWO), optimizacija Particle Swarm (engl. Particle Swarm Optimization, 
PSO) i optimizacijski algoritam Grasshopper (engl. Grasshopper Optimization Algorithm, GOA) za predviđanje 
mehaničke brzine bušenja na temelju analize podataka iz sveobuhvatne baze podataka prikupljenih tijekom operacija 
bušenja na jednome od iranskih naftnih polja, naftnome polju Shadegan. S obzirom na to da navedena baza sadržava 400 
podataka, navedene tehnike umjetne inteligencije korištene su zbog učinkovitosti na velikome skupu podataka. U ovo-
me je radu korištenjem podataka bušenja prikupljenih s naftnoga polja Shadegan razvijen precizan model za predviđanje 
ROP-a. Rezultati provedenoga istraživanja pokazuju da su parametri koeficijenta determinacije (R2) i korijen srednje 
kvadratne pogreške (RMSE) za optimizaciju Particle Swarm (PSO) R2 = 0,977 i RMSE = 0,036, za optimizaciju Gray 
Wolf (GWO) R2 = 0,996 i RMSE = 0,014, a za algoritam Grasshopper (GOA) R2 = 0,999 odnosno RMSE = 0,003. U ko-
načnici se može zaključiti da svi prediktivni modeli daju prihvatljive rezultate, ali da GOA daje precizniji i realniji ishod.

Ključne riječi: 
operacije bušenja, mehanička brzina bušenja, Gray Wolf optimizacija, Particle Swarm optimizacija, optimizacijski algo-
ritam Grasshopper
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