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1 INTRODUCTION

The work in this paper is influenced by the work
done in the theory of weakly coupled systems. The
theory of weakly coupled control systems has at-
tracted a lot of attention in the control literature
[1, 2, 3, 4]. In [3] a transformation was introduced
for decomposition of the weakly coupled algebraic
Riccati equation, which is based on the closed-loop
decomposition technique. The algebraic equations
comprising the transformation have the form of
general nonsymmetric nonsquare Riccati equations.
These equations can be efficiently solved by itera-
tive methods (fixed point iterations, Newton
method) for a small value of coupling between sub-
systems [2]. For a larger value of coupling between
subsystems, iterative methods could diverge and
the desired transformation could not be found. In
[5], the transformation was used in order to decom-
pose corresponding algebraic Riccati equations of
the optimal regulator and Kalman filter of weakly
coupled linear discrete stochastic systems. The
eigenvector approach to the solution of optimal
control of continues-time singularly perturbed and
weakly coupled systems was introduced in [10],
[11]. This work extends previous ideas to the prob-
lem of optimal control and filtering of weakly cou-
pled linear discrete-time stochastic systems.

2 DECOMPOSITION OF THE
LINEAR-QUADRATIC CONTROL PROBLEMS

Consider a linear time-invariant discrete system

(1)

with the quadratic performance criterion

(2)

The weakly coupled structure of (1) and (2) im-
plies the following partitions
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Partitioning the state vector x, the corresponding
costate vector λ and interchanging second and third
rows, the Hamiltonian form can be written as [3]

(8)
or

(9)

with obvious meanings of vectors U(k), V(k) and
matrices T1r, T2r, T3r, T4r.

The system (9) can be block diagonalized by the
means of the following nonsingular similarity trans-
formation matrices [3]
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The solution to this equation exists under the
standard stabilizability-detectibility assumption im-
posed on the triple (A, B, Q).

The Hamiltonian form of the optimal control
problem is given by [9]

(6)
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The Hamiltonian form represents the closed-loop
solution to the optimal control problem, where
λ(k) = Pr x(k).
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where x1, x2 are vectors of subsystem state vari-
ables of appropriate dimensions (n1, n2), u1, u2 are
vectors of control inputs (m1, m2), and ε is a small
coupling parameter. A, B are system constant ma-
trices, Q and R are constant weighting matrices.
In addition, it is assumed that A1 and A4 are non-
singular.

The well known solution to the above optimal
control problem is given by

(4)

where λ(k) is a costate variable and Pr is the posi-
tive-semidefinite stabilizing solution of the discrete
Riccati equation given by
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and the relationship between old and new coordi-
nates is then given by
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The transformation leads to two completely de-

coupled subsystems
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and Lr and Hr satisfying

(15)

The first equation has a form of  the asymmet-
ric nonsquare Riccati equation, while the second is
a Sylvester type linear equation. The solution of
the above equations will be discussed later in the
paper.

The rearrangement of variables in (8) is done by
the means of a similarity transformation E of the
form
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The decupled subsystems (13) also represent the
closed-loop solution of the optimal control prob-
lem in the new coordinates. Based on this fact the
equations (13) can be written as

(19)

where

or

(20)

and Pa and Pb satisfy nonsymetric Riccati equa-
tions of the form

(21)

leading to
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which gives the solution of the global discrete
Riccati equation (5) in terms of reduced order con-
tinues time nonsymmetric Riccati equations (21)
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to realize the above presented decomposition pro-
cedure, it is necessary to solve continues-time non-
square and nonsymmetric Riccati equations (15)
and (21).
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3 DECOMPOSITION OF THE OPTIMAL
FILTERING PROBLEM

Let the linear discrete-time invariant stochastic
system be given by

(25)

with corresponding measurements

(26)

where xi are state vectors, wi and vi are independ-
ent zero-mean white Gaussian processes with in-
tensities W and V, and yi are system measurements.
Ai, Gi, Ci are constant system matrices (i =1, 2, 3,
4). The well known optimal Kalman filter is given
by
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Using the decomposition procedure given in the
previous section and the duality property between
the optimal regulator and optimal filter, will result
in the decomposition of the global filter to the
completely decupled reduced order subsystem fil-
ters both driven by system measurements.

By duality between the optimal filter and regu-
lator, the filter Riccati equation (31) can be solved
by using the same decomposition method present-
ed in the previous section with
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closed-loop form

Partitioning the state vector x, the corresponding
costate vector λ and interchanging second and third
rows, the Hamiltonian form can be written as

(35)

As it was shown in the previous section, this
system can be diagonalized by the means of the
similarity transformation given by

(36)

and Lf and Hf satisfy

U k
V k

I H L H
L I

k
k

T

f f f

f

f

( )
( )

⎡

⎣
⎢

⎤

⎦
⎥ =

− −⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

( )
( )

⎡

⎣
⎢

⎤

⎦
⎥ =

=

ε ε

ε

η

ξ

η

2

kk
k

( )
( )

⎡

⎣
⎢

⎤

⎦
⎥ξ

U k
V k

T T
T T

U k
V k

f f

f f

+( )
+( )

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

( )
( )

⎡

⎣
⎢

⎤

⎦
⎥

1
1

1 2

3 4

ε

ε

x k
k

x k
k

A S A S

Q

f f f f

1

1

2

2

1 1 2 2

1

1
1
1
1

+( )
+( )
+( )
+( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

=

λ

λ

ε ε

ff f
T

f f
T

f f f f

f f
T

f f
T

A Q A
A S A S

Q A Q A

11 2 21

3 3 4 4

3 12 4 22

ε ε

ε ε

ε ε

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥⎥
⎥
⎥
⎥
⎥

⋅

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x k
k

x k
k

1

1

2

2

( )
( )
( )
( )

λ

λ

A A Q GWG B C

BR B C V C

T T T

T T

→ → →

→− −

, , ,
1 1

G
G G
G G

W
W

W
=

⎡

⎣
⎢

⎤

⎦
⎥ =

⎡

⎣
⎢

⎤

⎦
⎥

1 2

3 4

1

2

0
0

ε

ε
,

138 AUTOMATIKA 49(2008) 3—4, 135—142

Optimal Control and Filtering of Weakly Coupled Linear Discrete-Time... N. Prljaca, Z. Gajic

(34)



(37)

The transformation leads to two decoupled sub
systems
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Since λ=Pf x, where Pf satisfies the discrete al-
gebraic Riccati equations (31), it follows

(43)

It follows from (43) and (39)

(44)

This equation can be solved for Pf giving

(45)

which gives the solution of the filter global dis-
crete Riccati equation (31).

Applying the transformation (43) to the Kalman
filter equation (28) leads to

(46)

or

(47)
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(53)

5 THE EIGENVECTOR SOLUTION TO
NONSYMETRIC ALGEBRAIC RICCATI
EQUATION

The eigenvector method for solving the algebra-
ic symmetric and square, nonsymmetric and  non-
square Riccati equations has received considerable
attention in the literature [8, 9]. Without loss of
generality, let us consider the algebraic square and
nonsymmetric Riccati equation (ARE) given by

(54)

where matrices A, B, C, D are of appropriate di-
mensions (n × n) and X is the sought solution of
dimension (n × n).

Let the matrix R be associated with the ARE

(55)

The matrix R can be diagonalized by the matrix
M consisting of eigenvectors of the matrix R as
follows. Calculate all 2n eigenvalus of R, λi=ai + jbi
and all corresponding eigenvectors vi = xi + jyi.
Arrange in the (2n × 2n) matrix M all real eigen-
vectors (xi) and for each complex-conjugate pair
use consecutively the real and imaginary parts of
one eigenvector only (xi, yi). There are many ways
to form matrix M.

Then, it follows that

(56)

where M1 contains the first n columns and M2 con-
tains the remaining n columns of M. Λ1 and Λ2 are
diagonal or block diagonal matrices.

The equation (56) may be rewritten as

(57)

By partitioning M1 as
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AX XB C XDX+ + + = 0

which completely decomposes the global Kalman
filter into two reduced order subfilters, that can be
implemented independently. Again, as it was the
case in the previous section, in order to realize the
above presented decomposition procedure it is nec-
essary to solve continues-time nonsquare and non-
symetric Riccati equations (37) and (40).

4 LQG CONTROL PROBLEM

The well known linear quadratic Gaussian con-
trol problem is defined as follows. Given the lin-
ear discrete-time stochastic system

(48)

with performance criterion

(49)

Find the control low which minimizes the crite-
rion. The optimal control law is given by [8]

(50)

where F is found according to the section II with
the optimal filter

(51)

which is decomposed into reduced order filters ac-
cording to the section III as

(52)
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we get from (57)

(59)

Rearranging the last two equations and using
the substitution

(60)

leads to
(61)

which proves that X is a solution to (54). Since the
matrix M can be formed in many ways it follows
that all solutions to (54) have the form

(62)

Let the spectrum of R be S={λ1,…λ2n} or 
S=S1US2, where S1={λ1,…λn} and S2={λn+1,…,
λ2n}. If corresponding eigenvalues of eigenvectors
used to form M1 are S1={λ1,…λn} and to form M2
are S2={λn+1,…, λ2n}, then eigenvalues of (B + DX)
are S1 and eigenvalues of —(A + DX) are S2 [9]. This
is easily justified by transforming the matrix R as
follows

(63)

Further, the matrix R can be put in the block di-
agonal form by using another transformation ma-
trix

(64)

where Y satisfies the Sylvester equation

(65)

6 EXAMPLE

Consider the system with problem matrices
given by (ε = 1)
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The obtained solutions for LQG problem accord-
ing to the presented methodology (note that itera-
tive methods in this case do not converge) are sum-
marized as follows

7 CONCLUSION

In this paper the algebraic Riccati equation de-
composition and eigenvector method have been

A =
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− −
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used in order to solve the optimal control and fil-
tering of the discrete linear weakly coupled sto-
chastic system. This approach can be used in case
of higher level of coupling between the subsys-
tems. Beside providing reduction and parallelism
in on-line computation of control and filtering
tasks, it gives new insights into the optimal con-
trol and filtering of weakly coupled systems.

REFERENCES

[1] Z. Gajic and X. Shen, Decoupling transformation
for weakly coupled linear systems, International
Journal of Control, Vol. 50, 1517—1523, 1989.

[2] Z. Gajic and X. Shen, Parallel Algorithms for Opti-
mal Control of Large Scale Linear Systems,
Springer Verlag, London, 1993.

[3] W. Su and Z. Gajic, Decomposition method for solv-
ing weakly coupled algebraic Riccati equation,
AIAA Journal of Guidance, Dynamics and Control,
Vol. 15, 496—501, 1992.

[4] X. Shen and Z. Gajic, Optimal reduced-order solu-
tion of the weakly coupled discrete Riccati equa-

tion, IEEE Transaction on Automatic Control, AC-35,
1160—1162, 1990.

[5] Z. Aganovic, Z. Gajic and  X. Shen, New method for
optimal control and filtering of weakly coupled lin-
ear discrete stochastic systems, Automatica, Vol. 32,
No.1, 83—88, 1996.

[6] H. Kwakernaak and R. Sivan, Linear Optimal
Control Systems, Wiley, 1972.

[7] F. Lewis, Optimal Control, Wiley, 1986.

[8] P. Van Dooren, A generalized eigenvalue approach
for solving Riccati equations, SIAM J. Sci. Stat.
Comput., Vol. 2, 121—135, 1981.

[9] J. Medanic, Geometric Properties and invariant
manifolds of the Riccati equation, IEEE Transaction
on Automatic Control, AC-27, 670—677, 1982.

[10] V. Kecman, S. Bingulac and  Z. Gajic, Eigen vector
approach for order reduction of singularly per-
turbed linear-quadratic optimal control problems,
Automatica, Vol. 35, 151—158, 1999.

[11] V. Kecman, Eigenvector approach for reduced-
-order optimal control problems of weakly coupled
systems, to appear in Dynamics of Continuous,
Discrete and Impulsive Systems

142 AUTOMATIKA 49(2008) 3—4, 135—142

Optimal Control and Filtering of Weakly Coupled Linear Discrete-Time... N. Prljaca, Z. Gajic

Primjena svojstvenih vektora pri optimalnom upravljanju i filtriranju slabo spregnutih linearnih
stohastičkih sustava. U ~lanku je opisan postupak rje{avanja regulatorskih i filtriraju}ih Riccatijevih jednad`bi
koje se dobiju prilikom definiranja ravnote`nog rje{enja problema optimalnog upravljanja i filtriranja slabo
spregnutih linearnih diskretnih stohasti~kih sustava. Postupak je zasnovan na primjeni svojstvenih vektora u
rje{avanju podproblema ni`eg reda. Takav postupak pokazuje bolje zna~ajke u odnosu na iterativne postupke
(iteracije u fiksnoj aritmetici, Newtonovi postupci) u rje{avanju podproblema ni`eg reda u slu~aju kada su
podsustavi ja~e spregnuti.

Klju~ne rije~i: optimalno upravljanje i filtriranje, slabo spregnuti sustavi, blokovsko dijagonaliziranje, raspre-
zanje
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