Optimal Control and Filtering of Weakly Coupled Linear Discrete-Time Stochastic Systems by the Eigenvector Approach

Abstract

In this paper the regulator and filter algebraic Riccati equations, corresponding to the steady state optimal control and filtering of weakly coupled linear discrete stochastic systems, are solved in terms of reduced--order sub problems by using the eigenvector approach. The eigenvector method outperforms iterative methods (fixed point iterations, Newton method) of solutions to reduced-order sub problems in case of higher level of coupling between subsystems.

Key words: optimal control and filtering, weakly coupled discrete-time systems, block diagonalization, decoupling

1 INTRODUCTION

The work in this paper is influenced by the work done in the theory of weakly coupled systems. The theory of weakly coupled control systems has attracted a lot of attention in the control literature [1, 2, 3, 4]. In [3] a transformation was introduced for decomposition of the weakly coupled algebraic Riccati equation, which is based on the closed-loop decomposition technique. The algebraic equations comprising the transformation have the form of general nonsymmetric nonsquare Riccati equations. These equations can be efficiently solved by iterative methods (fixed point iterations, Newton method) for a small value of coupling between subsystems [2]. For a larger value of coupling between subsystems, iterative methods could diverge and the desired transformation could not be found. In [5], the transformation was used in order to decompose corresponding algebraic Riccati equations of the optimal regulator and Kalman filter of weakly coupled linear discrete stochastic systems. The eigenvector approach to the solution of optimal control of continues-time singularly perturbed and weakly coupled systems was introduced in [10], [11]. This work extends previous ideas to the problem of optimal control and filtering of weakly coupled linear discrete-time stochastic systems.

2 DECOMPOSITION OF THE

LINEAR-QUADRATIC CONTROL PROBLEMS
Consider a linear time-invariant discrete system

$$
\begin{equation*}
x(k+1)=A x(x)+B u(k) \tag{1}
\end{equation*}
$$

with the quadratic performance criterion

$$
\begin{equation*}
J=\frac{1}{2} \sum_{k=0}^{\infty}\left[x(k)^{T} Q x(k)+u(k)^{T} R u(k)\right] \tag{2}
\end{equation*}
$$

The weakly coupled structure of (1) and (2) implies the following partitions

$$
\begin{align*}
& x(k)=\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right], u(k)=\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right] \\
& A=\left[\begin{array}{cc}
A_{1} & \varepsilon A_{2} \\
\varepsilon A_{3} & A_{4}
\end{array}\right], B=\left[\begin{array}{cc}
B_{1} & \varepsilon B_{2} \\
\varepsilon B_{3} & B_{4}
\end{array}\right] \\
& Q=\left[\begin{array}{cc}
Q_{1} & \varepsilon Q_{2} \\
\varepsilon Q_{2}^{T} & Q_{3}
\end{array}\right], R=\left[\begin{array}{cc}
R_{1} & 0 \\
0 & R_{2}
\end{array}\right] \\
& S=B R^{-1} B^{T}=\left[\begin{array}{cc}
S_{1} & \varepsilon S_{2} \\
\varepsilon S_{2}^{T} & S_{3}
\end{array}\right] \tag{3}
\end{align*}
$$

where x_{1}, x_{2} are vectors of subsystem state variables of appropriate dimensions $\left(n_{1}, n_{2}\right), u_{1}, u_{2}$ are vectors of control inputs (m_{1}, m_{2}), and ε is a small coupling parameter. A, B are system constant matrices, Q and R are constant weighting matrices. In addition, it is assumed that A_{1} and A_{4} are nonsingular.

The well known solution to the above optimal control problem is given by

$$
\begin{align*}
u(k) & =-R^{-1} B^{T} \lambda(k+1)= \\
& =-\left(R+B^{T} P_{r} B\right)^{-1} B^{T} P_{r} A x(k) \tag{4}\\
u(k) & =-F x(k)
\end{align*}
$$

where $\lambda(k)$ is a costate variable and P_{r} is the posi-tive-semidefinite stabilizing solution of the discrete Riccati equation given by

$$
\begin{equation*}
P_{r}=Q+A^{T} P_{r} A-A^{T} P_{r} B\left(R+B^{T} P_{r} B\right)^{-1} B^{T} P_{r} A \tag{5}
\end{equation*}
$$

Partitioning the state vector x, the corresponding costate vector λ and interchanging second and third rows, the Hamiltonian form can be written as [3]

$$
\left[\begin{array}{c}
x_{1}(k+1) \tag{8}\\
\lambda_{1}(k+1) \\
x_{2}(k+1) \\
\lambda_{2}(k+1)
\end{array}\right]=\left[\begin{array}{cccc}
\bar{A}_{1 r} & \bar{S}_{1 r} & \varepsilon \bar{A}_{2 r} & \varepsilon \bar{S}_{2 r} \\
\bar{Q}_{1 r} & \bar{A}_{11 r}^{T} & \varepsilon \bar{Q}_{2 r} & \varepsilon \bar{A}_{21 r}^{T} \\
\varepsilon \bar{A}_{3 r} & \varepsilon \bar{S}_{3 r} & \bar{A}_{4 r} & \bar{S}_{4 r} \\
\varepsilon \bar{Q}_{3 r} & \varepsilon \bar{A}_{12 r}^{T} & \bar{Q}_{4 r} & \bar{A}_{22 r}^{T}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
\lambda_{1}(k) \\
x_{2}(k) \\
\lambda_{2}(k)
\end{array}\right]
$$

or

$$
\left[\begin{array}{l}
U(k+1) \tag{9}\\
V(k+1)
\end{array}\right]=\left[\begin{array}{cc}
T_{1 r} & \varepsilon T_{2 r} \\
\varepsilon T_{3 r} & T_{4 r}
\end{array}\right]\left[\begin{array}{c}
U(k) \\
V(k)
\end{array}\right]
$$

with obvious meanings of vectors $U(k), V(k)$ and matrices $T_{1 r}, T_{2 r}, T_{3 r}, T_{4 r}$.

The system (9) can be block diagonalized by the means of the following nonsingular similarity transformation matrices [3]

$$
\begin{gather*}
{\left[\begin{array}{l}
\eta(k+1) \\
\zeta(k+1)
\end{array}\right]=\left[\begin{array}{cc}
I & -\varepsilon H \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
\varepsilon L & I
\end{array}\right]\left[\begin{array}{cc}
T_{1 r} & \varepsilon T_{2 r} \\
\varepsilon T_{3 r} & T_{4 r}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
-\varepsilon L & I
\end{array}\right]\left[\begin{array}{cc}
I & \varepsilon H \\
0 & I
\end{array}\right]\left[\begin{array}{l}
\eta(k) \\
\xi(k)
\end{array}\right]} \tag{10}\\
\text { or } \\
{\left[\begin{array}{c}
\eta(k+1) \\
\xi(k+1)
\end{array}\right]=\left[\begin{array}{cc}
I-\varepsilon^{2} H_{r} L_{r} & -\varepsilon H_{r} \\
\varepsilon L_{r} & I
\end{array}\right]\left[\begin{array}{cc}
T_{1 r} & \varepsilon T_{2 r} \\
\varepsilon T_{3 r} & T 4 r
\end{array}\right]\left[\begin{array}{cc}
I & \varepsilon H_{r} \\
-\varepsilon L_{r} & I-\varepsilon^{2} L_{r} H_{r}
\end{array}\right]\left[\begin{array}{l}
\eta(k) \\
\xi(k)
\end{array}\right]} \tag{11}
\end{gather*}
$$

The solution to this equation exists under the standard stabilizability-detectibility assumption imposed on the triple (A, B, Q).

The Hamiltonian form of the optimal control problem is given by [9]

$$
\left[\begin{array}{l}
x(k+1) \tag{6}\\
\lambda(k+1)
\end{array}\right]=H\left[\begin{array}{l}
x(k) \\
\lambda(k)
\end{array}\right]
$$

where

$$
H=\left[\begin{array}{cc}
A+B R^{-1} B^{T} A^{-T} Q & -B R^{-1} B^{T} A^{-T} \tag{7}\\
-A^{-T} Q & A^{-T}
\end{array}\right]
$$

The Hamiltonian form represents the closed-loop solution to the optimal control problem, where $\lambda(k)=P_{r} x(k)$.
and the relationship between old and new coordinates is then given by

$$
\left[\begin{array}{c}
U(k) \tag{12}\\
V(k)
\end{array}\right]=\left[\begin{array}{cc}
I-\varepsilon^{2} H_{r} L_{r} & -\varepsilon H_{r} \\
\varepsilon L_{r} & I
\end{array}\right]\left[\begin{array}{l}
\eta(k) \\
\xi(k)
\end{array}\right]=T_{r}\left[\begin{array}{l}
\eta(k) \\
\xi(k)
\end{array}\right]
$$

The transformation leads to two completely decoupled subsystems

$$
\begin{align*}
& \eta(k+1)=\left(T_{1 r}-\varepsilon^{2} T_{2 r} L_{r}\right) \eta(k) \tag{13}\\
& \xi(k+1)=\left(T_{4 r}+\varepsilon^{2} L_{r} T_{2 r}\right) \xi(k)
\end{align*}
$$

where

$$
\eta(k)=\left[\begin{array}{l}
\eta_{1}(k) \tag{14}\\
\eta_{2}(k)
\end{array}\right], \quad \xi(k)=\left[\begin{array}{l}
\xi_{1}(k) \\
\xi_{2}(k)
\end{array}\right]
$$

and L_{r} and H_{r} satisfying

$$
\begin{align*}
& L_{r} T_{1 r}-T_{4 r} L_{r}+T_{3 r}-\varepsilon^{2} L_{r} T_{2 r} L_{r}=0 \\
& H_{r}\left(T_{4 r}+\varepsilon^{2} L_{r} T_{2 r}\right)- \tag{15}\\
& -\left(T_{1 r}-\varepsilon^{2} T_{2 r} L_{r}\right) H_{r}-T_{2 r}=0
\end{align*}
$$

The first equation has a form of the asymmetric nonsquare Riccati equation, while the second is a Sylvester type linear equation. The solution of the above equations will be discussed later in the paper.

The rearrangement of variables in (8) is done by the means of a similarity transformation E of the form

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1}(k) \\
\lambda_{1}(k) \\
x_{2}(k) \\
\lambda_{2}(k)
\end{array}\right] } & =\left[\begin{array}{cccc}
I_{n 1} & 0 & 0 & 0 \\
0 & 0 & I_{n 1} & 0 \\
0 & I_{n 2} & 0 & 0 \\
0 & 0 & 0 & I_{n 2}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right]= \\
& =E\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right] \tag{16}
\end{align*}
$$

The relationship between original and new coordinates is given by

$$
\begin{align*}
{\left[\begin{array}{l}
\eta_{1} \\
\xi_{1} \\
\eta_{2} \\
\xi_{2}
\end{array}\right] } & =E^{T} T_{r} E\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right]=\Pi_{r}\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right]= \\
& =\left[\begin{array}{ll}
\Pi_{1 r} & \Pi_{2 r} \\
\Pi_{3 r} & \Pi_{4 r}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right] \tag{17}
\end{align*}
$$

Since $\lambda=P_{r} x$, where P_{r} satisfies the discrete algebraic Riccati equations (5), it follows

$$
\begin{align*}
& {\left[\begin{array}{l}
\eta_{1}(k+1) \\
\xi_{1}(k+1)
\end{array}\right]=\left(\Pi_{1 r}+\Pi_{2 r} P_{r}\right)\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]} \\
& {\left[\begin{array}{l}
\eta_{2}(k+1) \\
\zeta_{2}(k+1)
\end{array}\right]=\left(\Pi_{3 r} P_{r}+\Pi_{4 r}\right)\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]} \tag{18}
\end{align*}
$$

The decupled subsystems (13) also represent the closed-loop solution of the optimal control problem in the new coordinates. Based on this fact the equations (13) can be written as

$$
\begin{align*}
& {\left[\begin{array}{l}
\eta_{1}(k+1) \\
\eta_{2}(k+1)
\end{array}\right]=\left[\begin{array}{ll}
a_{1 r} & a_{2 r} \\
a_{3 r} & a_{4 r}
\end{array}\right]\left[\begin{array}{l}
\eta_{1}(k) \\
\eta_{2}(k)
\end{array}\right]} \\
& {\left[\begin{array}{l}
\xi_{1}(k+1) \\
\xi_{2}(k+1)
\end{array}\right]=\left[\begin{array}{ll}
b_{1 r} & b_{2 r} \\
b_{3 r} & b_{4 r}
\end{array}\right]\left[\begin{array}{l}
\xi_{1}(k) \\
\xi_{2}(k)
\end{array}\right]} \tag{19}
\end{align*}
$$

where

$$
\eta_{2}(k)=P_{r a} \eta_{1}(k), \xi_{2}(k)=P_{r b} \xi_{1}(k)
$$

or

$$
\left[\begin{array}{l}
\eta_{2}(k) \tag{20}\\
\xi_{2}(k)
\end{array}\right]=\left[\begin{array}{cc}
P_{r a} & 0 \\
0 & P_{r b}
\end{array}\right]\left[\begin{array}{l}
\eta_{1}(k) \\
\xi_{1}(k)
\end{array}\right]
$$

and P_{a} and P_{b} satisfy nonsymetric Riccati equations of the form

$$
\begin{align*}
& P_{r a} a_{1}-a_{4} P_{r a}-a_{3}+P_{r a} a_{2} P_{r a}=0 \tag{21}\\
& P_{r b} b_{1}-b_{4} P_{r b}-b_{3}+P_{r b} b_{2} P_{r b}=0
\end{align*}
$$

leading to

$$
\begin{align*}
& \eta_{1}(k+1)=\left(a_{1}+a_{2} P_{r a}\right) \eta_{1}(k) \\
& \xi_{1}(k+1)=\left(b_{1}+b_{2} P_{r b}\right) \xi_{1}(k) \tag{22}
\end{align*}
$$

It follows from (18) and (20)

$$
\left[\begin{array}{cc}
P_{r a} & 0 \tag{23}\\
0 & P_{r b}
\end{array}\right]=\left(\Pi_{3}+\Pi_{4} P_{r}\right)\left(\Pi_{1}+\Pi_{2} P_{r}\right)^{-1}
$$

This equation can be solved for P_{r} giving

$$
\begin{align*}
P_{r}= & \left(\left[\begin{array}{cc}
P_{r a} & 0 \\
0 & P_{r b}
\end{array}\right] \Pi_{2}-\Pi_{4}\right)^{-1} . \\
& \cdot\left(\Pi_{3}-\left[\begin{array}{cc}
P_{r a} & 0 \\
0 & P_{r b}
\end{array}\right] \Pi_{1}\right) \tag{24}
\end{align*}
$$

which gives the solution of the global discrete Riccati equation (5) in terms of reduced order continues time nonsymmetric Riccati equations (21) and decupling transformation matrix (12). In order to realize the above presented decomposition procedure, it is necessary to solve continues-time nonsquare and nonsymmetric Riccati equations (15) and (21).

3 DECOMPOSITION OF THE OPTIMAL FILTERING PROBLEM

Let the linear discrete-time invariant stochastic system be given by

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right]=} & {\left[\begin{array}{cc}
A_{1} & \varepsilon A_{2} \\
\varepsilon A_{3} & A_{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+} \\
& +\left[\begin{array}{rr}
G_{1} & \varepsilon G_{2} \\
\varepsilon G_{3} & G_{4}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right] \tag{25}
\end{align*}
$$

with corresponding measurements

$$
\left[\begin{array}{l}
y_{1}(k) \tag{26}\\
y_{2}(k)
\end{array}\right]=\left[\begin{array}{cc}
C_{1} & \varepsilon C_{2} \\
\varepsilon C_{3} & C_{4}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+\left[\begin{array}{c}
v_{1}(k) \\
v_{2}(k)
\end{array}\right]
$$

where x_{i} are state vectors, w_{i} and v_{i} are independent zero-mean white Gaussian processes with intensities W and V, and y_{i} are system measurements. A_{i}, G_{i}, C_{i} are constant system matrices $(i=1,2,3$, 4). The well known optimal Kalman filter is given by

$$
\begin{equation*}
\hat{x}(k+1)=A \hat{x}(k)+K(y(k)-C \hat{x}(k)) \tag{27}
\end{equation*}
$$

or in the closed-loop form as

$$
\begin{equation*}
\hat{x}(k+1)=(A-K C) \hat{x}(k)+K y(k) \tag{28}
\end{equation*}
$$

where

$$
\begin{align*}
A & =\left[\begin{array}{cc}
A_{1} & \varepsilon A_{2} \\
\varepsilon A_{3} & A_{4}
\end{array}\right], C=\left[\begin{array}{cc}
C_{1} & \varepsilon C_{2} \\
\varepsilon C_{3} & C_{4}
\end{array}\right], \\
K & =\left[\begin{array}{cc}
K_{1} & \varepsilon K_{2} \\
\varepsilon K_{3} & K_{4}
\end{array}\right] \tag{29}
\end{align*}
$$

The Kalman gain is given by

$$
K=A P_{f} C^{T}\left(V+C P_{f} C^{T}\right)^{-1}, V=\left[\begin{array}{cc}
V_{1} & 0 \tag{30}\\
0 & V_{2}
\end{array}\right]
$$

where P_{f} is the positive-semidefinite stabilizing solution of the discrete-time algebraic Riccati equation given by

$$
\begin{align*}
P_{f} & =A P_{f} A^{T}- \\
& -A P_{f} C^{T}\left(V+C P_{f} C^{T}\right)^{-1} C P_{f} A^{T}+G W G^{T} \tag{31}
\end{align*}
$$

with

$$
G=\left[\begin{array}{cc}
G_{1} & \varepsilon G_{2} \tag{32}\\
\varepsilon G_{3} & G_{4}
\end{array}\right], W=\left[\begin{array}{cc}
W_{1} & 0 \\
0 & W_{2}
\end{array}\right]
$$

Using the decomposition procedure given in the previous section and the duality property between the optimal regulator and optimal filter, will result in the decomposition of the global filter to the completely decupled reduced order subsystem filters both driven by system measurements.

By duality between the optimal filter and regulator, the filter Riccati equation (31) can be solved by using the same decomposition method presented in the previous section with

$$
\begin{align*}
& A \rightarrow A^{T}, Q \rightarrow G W G^{T}, B \rightarrow C^{T} \tag{33}\\
& B R^{-1} B^{T} \rightarrow C^{T} V^{-1} C
\end{align*}
$$

which leads to the Hamiltonian state-costate filter closed-loop form

$$
\begin{align*}
& {\left[\begin{array}{l}
x_{1}(k+1) \\
\lambda_{1}(k+1) \\
x_{2}(k+1) \\
\lambda_{2}(k+1)
\end{array}\right]=} \\
& =\left[\begin{array}{cccc}
\bar{A}_{1 f} & \bar{S}_{1 f} & \varepsilon \bar{A}_{2 f} & \varepsilon \bar{S}_{2 f} \\
\bar{Q}_{1 f} & \bar{A}_{11 f}^{T} & \varepsilon \bar{Q}_{2 f} & \varepsilon \bar{A}_{21 f}^{T} \\
\varepsilon \bar{A}_{3 f} & \varepsilon \bar{S}_{3 f} & \bar{A}_{4 f} & \bar{S}_{4 f} \\
\varepsilon \bar{Q}_{3 f} & \varepsilon \bar{A}_{12 f}^{T} & \bar{Q}_{4 f} & \bar{A}_{22 f}^{T}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1}(k) \\
\lambda_{1}(k) \\
x_{2}(k) \\
\lambda_{2}(k)
\end{array}\right] \tag{34}
\end{align*}
$$

Partitioning the state vector x, the corresponding costate vector λ and interchanging second and third rows, the Hamiltonian form can be written as

$$
\left[\begin{array}{c}
U(k+1) \tag{35}\\
V(k+1)
\end{array}\right]=\left[\begin{array}{cc}
T_{1 f} & \varepsilon T_{2 f} \\
\varepsilon T_{3 f} & T_{4 f}
\end{array}\right]\left[\begin{array}{l}
U(k) \\
V(k)
\end{array}\right]
$$

As it was shown in the previous section, this system can be diagonalized by the means of the similarity transformation given by

$$
\begin{align*}
{\left[\begin{array}{l}
U(k) \\
V(k)
\end{array}\right] } & =\left[\begin{array}{cc}
I-\varepsilon^{2} H_{f} L_{f} & -\varepsilon H_{f} \\
\varepsilon L_{f} & I
\end{array}\right]\left[\begin{array}{l}
\eta(k) \\
\xi(k)
\end{array}\right]= \\
& =T_{f}\left[\begin{array}{l}
\eta(k) \\
\xi(k)
\end{array}\right] \tag{36}
\end{align*}
$$

and L_{f} and H_{f} satisfy

$$
\begin{align*}
& L_{f} T_{1 f}-T_{4 f} L_{f}+T_{3 f}-\varepsilon^{2} L_{f} T_{2 f} L_{f}=0 \\
& H_{f}\left(T_{4 f}+\varepsilon^{2} L_{f} T_{2 f}\right)- \tag{37}\\
& -\left(T_{1 f}-\varepsilon^{2} T_{2 f} L_{f}\right) H_{f}-T_{2 f}=0
\end{align*}
$$

The transformation leads to two decoupled sub systems

$$
\begin{align*}
\eta(k+1) & =\left[\begin{array}{l}
\eta_{1}(k+1) \\
\eta_{2}(k+1)
\end{array}\right]=\left(T_{1 f}-\varepsilon^{2} T_{2 f} L_{f}\right)= \\
& =\left[\begin{array}{ll}
a_{1 f} & a_{2 f} \\
a_{3 f} & a_{4 f}
\end{array}\right]\left[\begin{array}{l}
\eta_{1}(k) \\
\eta_{2}(k)
\end{array}\right] \\
\xi(k+1) & =\left[\begin{array}{l}
\xi_{1}(k+1) \\
\xi_{2}(k+1)
\end{array}\right]=\left(T_{4 f}+\varepsilon^{2} L_{f} T_{2 f}\right)= \\
& =\left[\begin{array}{ll}
b_{1 f} & b_{2 f} \\
b_{3 f} & b_{4 f}
\end{array}\right]\left[\begin{array}{l}
\xi_{1}(k) \\
\xi_{2}(k)
\end{array}\right] \tag{38}
\end{align*}
$$

where

$$
\eta_{2}(k)=P_{f a} \eta_{1}(k), \xi_{2}(k)=P_{f b} \xi_{1}(k)
$$

or

$$
\left[\begin{array}{l}
\eta_{2}(k) \tag{39}\\
\xi_{2}(k)
\end{array}\right]=\left[\begin{array}{cc}
P_{f a} & 0 \\
0 & P_{f b}
\end{array}\right]\left[\begin{array}{l}
\eta_{1}(k) \\
\xi_{1}(k)
\end{array}\right]
$$

and $P_{f a}$ and $P_{f b}$ satisfy nonsymetric Riccati equations of the form

$$
\begin{align*}
& P_{f a} a_{1 f}-a_{4 f} P_{f a}-a_{3 f}+P_{f a} a_{2 f} P_{f a}=0 \\
& P_{f b} b_{1 f}-b_{4 f} P_{f b}-b_{3 f}+P_{f b} b_{2 f} P_{f b}=0 \tag{40}
\end{align*}
$$

leading to

$$
\begin{align*}
& \eta_{1}(k+1)=\left(a_{1 f}+a_{2 f} P_{f a}\right) \eta_{1}(k) \\
& \xi_{1}(k+1)=\left(b_{1 f}+b_{2 f} P_{f b}\right) \xi_{1}(k) \tag{41}
\end{align*}
$$

The overall transformation between the new and original coordinates is given by

Since $\lambda=P_{f} x$, where P_{f} satisfies the discrete algebraic Riccati equations (31), it follows

$$
\begin{align*}
& {\left[\begin{array}{l}
\eta_{1}(k+1) \\
\zeta_{1}(k+1)
\end{array}\right]=\left(\Pi_{1 f}+\Pi_{2 f} P_{f}\right)\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]=\Omega\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]} \\
& {\left[\begin{array}{l}
\eta_{2}(k+1) \\
\zeta_{2}(k+1)
\end{array}\right]=\left(\Pi_{3 f} P_{f}+\Pi_{4 f}\right)\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]} \tag{43}
\end{align*}
$$

It follows from (43) and (39)

$$
\left[\begin{array}{cc}
P_{f a} & 0 \tag{44}\\
0 & P_{f b}
\end{array}\right]=\left(\Pi_{3 f}+\Pi_{4 f} P_{f}\right)\left(\Pi_{1 f}+\Pi_{2 f} P_{f}\right)^{-1}
$$

This equation can be solved for P_{f} giving

$$
\begin{align*}
P_{f}= & \left(\left[\begin{array}{cc}
P_{f a} & 0 \\
0 & P_{f b}
\end{array}\right] \Pi_{2 f}-\Pi_{4 f}\right)^{-1} . \\
& \cdot\left(\Pi_{3 f}-\left[\begin{array}{cc}
P_{f a} & 0 \\
0 & P_{f b}
\end{array}\right] \Pi_{1 f}\right) \tag{45}
\end{align*}
$$

which gives the solution of the filter global discrete Riccati equation (31).

Applying the transformation (43) to the Kalman filter equation (28) leads to

$$
\begin{align*}
{\left[\begin{array}{l}
\hat{\eta}_{1}(k+1) \\
\hat{\xi}_{1}(k+1)
\end{array}\right] } & =\Omega^{-T}(A-K C) \Omega^{T}\left[\begin{array}{l}
\eta_{1}(k) \\
\xi_{1}(k)
\end{array}\right]+ \tag{46}\\
& +\Omega^{-T} K y(k)
\end{align*}
$$

or

$$
\begin{align*}
& \hat{\eta}_{1}(k+1)=\left(a_{1 f}+a_{2 f} P_{f a}\right)^{T} \hat{\eta}_{1}(k)+K_{1} y(k) \\
& \hat{\xi}_{1}(k+1)=\left(b_{1 f}+a_{2 f} P_{f b}\right)^{T} \hat{\eta}_{1}(k)+K_{2} y(k) \tag{47}
\end{align*}
$$

$$
\left[\begin{array}{l}
\eta_{1} \tag{42}\\
\xi_{1} \\
\eta_{2} \\
\xi_{2}
\end{array}\right]=E^{T} T_{f} E\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right]=\Pi_{f}\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right]=\left[\begin{array}{ll}
\Pi_{1 f} & \Pi_{2 f} \\
\Pi_{3 f} & \Pi_{4 f}
\end{array}\right]\left[\begin{array}{c}
x_{1}(k) \\
x_{2}(k) \\
\lambda_{1}(k) \\
\lambda_{2}(k)
\end{array}\right]
$$

which completely decomposes the global Kalman filter into two reduced order subfilters, that can be implemented independently. Again, as it was the case in the previous section, in order to realize the above presented decomposition procedure it is necessary to solve continues-time nonsquare and nonsymetric Riccati equations (37) and (40).

4 LQG CONTROL PROBLEM

The well known linear quadratic Gaussian control problem is defined as follows. Given the linear discrete-time stochastic system

$$
\begin{align*}
{\left[\begin{array}{l}
x_{1}(k+1) \\
x_{2}(k+1)
\end{array}\right] } & =\left[\begin{array}{cc}
A_{1} & \varepsilon A_{2} \\
\varepsilon A_{3} & A_{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+ \\
& +\left[\begin{array}{cc}
B_{1} & \varepsilon B_{2} \\
\varepsilon B_{3} & B_{4}
\end{array}\right]\left[\begin{array}{l}
u_{1}(k) \\
u_{2}(k)
\end{array}\right]+ \\
& +\left[\begin{array}{cc}
G_{1} & \varepsilon G_{2} \\
\varepsilon G_{3} & G_{4}
\end{array}\right]\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]\left[\begin{array}{l}
y_{1}(k) \\
y_{2}(k)
\end{array}\right]= \\
& =\left[\begin{array}{cc}
C_{1} & \varepsilon C_{2} \\
\varepsilon C_{3} & C_{4}
\end{array}\right]\left[\begin{array}{l}
x_{1}(k) \\
x_{2}(k)
\end{array}\right]+\left[\begin{array}{l}
v_{1}(k) \\
v_{2}(k)
\end{array}\right] \tag{48}
\end{align*}
$$

with performance criterion

$$
\begin{equation*}
J=\frac{1}{2} \mathrm{E}\left\{\sum_{k=0}^{\infty} x(k)^{T} Q x(k)+u(k)^{T} R u(k)\right\} \tag{49}
\end{equation*}
$$

Find the control low which minimizes the criterion. The optimal control law is given by [8]

$$
\begin{equation*}
u(k)=-F \hat{x}(k) \tag{50}
\end{equation*}
$$

where F is found according to the section II with the optimal filter

$$
\begin{equation*}
\hat{x}(k+1)=(A-K C) \hat{x}(k)+K y(k)+B u(k) \tag{51}
\end{equation*}
$$

which is decomposed into reduced order filters according to the section III as

$$
\begin{align*}
\hat{\eta}_{1}(k+1) & =\left(a_{1 f}+a_{2 f} P_{f a}\right)^{T} \hat{\eta}_{1}(k)+ \\
& +K_{1} y(k)+\Phi_{1} u(k) \\
\hat{\xi}_{1}(k+1) & =\left(b_{1 f}+a_{2 f} P_{f b}\right)^{T} \hat{\eta}_{1}(k)+ \tag{52}\\
& +K_{2} y(k)+\Phi_{2} u(k)
\end{align*}
$$

where

$$
\left[\begin{array}{l}
\hat{x}_{1}(x) \tag{53}\\
\hat{x}_{2}(k)
\end{array}\right]=\Omega^{T}\left[\begin{array}{l}
\hat{\eta}_{1}(k) \\
\hat{\xi}_{1}(k)
\end{array}\right],\left[\begin{array}{l}
\Phi_{1} \\
\Phi_{2}
\end{array}\right]=\Omega^{-T} B
$$

5 THE EIGENVECTOR SOLUTION TO NONSYMETRIC ALGEBRAIC RICCATI EQUATION

The eigenvector method for solving the algebraic symmetric and square, nonsymmetric and nonsquare Riccati equations has received considerable attention in the literature [8, 9]. Without loss of generality, let us consider the algebraic square and nonsymmetric Riccati equation (ARE) given by

$$
\begin{equation*}
A X+X B+C+X D X=0 \tag{54}
\end{equation*}
$$

where matrices A, B, C, D are of appropriate dimensions $(n \times n)$ and X is the sought solution of dimension $(n \times n)$.

Let the matrix R be associated with the ARE

$$
R=\left[\begin{array}{cc}
B & D \tag{55}\\
-C & -A
\end{array}\right]
$$

The matrix R can be diagonalized by the matrix M consisting of eigenvectors of the matrix R as follows. Calculate all $2 n$ eigenvalus of $R, \lambda_{\mathrm{i}}=a_{i}+j b_{\mathrm{i}}$ and all corresponding eigenvectors $v_{i}=x_{i}+j y_{i}$. Arrange in the $(2 n \times 2 n)$ matrix M all real eigenvectors (x_{i}) and for each complex-conjugate pair use consecutively the real and imaginary parts of one eigenvector only ($x_{\mathrm{i}}, y_{\mathrm{i}}$). There are many ways to form matrix M.

Then, it follows that

$$
\begin{align*}
M^{-1} R M & =\Lambda, R M=M \Lambda= \\
& =\left[\begin{array}{ll}
M_{1} & M_{2}
\end{array}\right]\left[\begin{array}{cc}
\Lambda_{1} & 0 \\
0 & \Lambda_{2}
\end{array}\right] \tag{56}
\end{align*}
$$

where M_{1} contains the first n columns and M_{2} contains the remaining n columns of $M . \Lambda_{1}$ and Λ_{2} are diagonal or block diagonal matrices.

The equation (56) may be rewritten as

$$
\begin{equation*}
R M_{1}=M_{1} \Lambda_{1}, R M_{2}=M_{2} \Lambda_{2} \tag{57}
\end{equation*}
$$

By partitioning M_{1} as

$$
M_{1}=\left[\begin{array}{l}
M_{11} \tag{58}\\
M_{21}
\end{array}\right]
$$

we get from (57)

$$
\begin{align*}
& B M_{11}+D M_{21}=M_{11} \Lambda_{1} \\
& -C M_{11}-A M_{21}=M_{21} \Lambda_{1} \tag{59}
\end{align*}
$$

Rearranging the last two equations and using the substitution

$$
\begin{equation*}
X=M_{21} M_{11}^{-1} \tag{60}
\end{equation*}
$$

leads to

$$
\begin{equation*}
A X+X B+C+X D X=0 \tag{61}
\end{equation*}
$$

which proves that X is a solution to (54). Since the matrix M can be formed in many ways it follows that all solutions to (54) have the form

$$
\begin{equation*}
X_{k}=M_{k 21} M_{k 22}^{-1} \tag{62}
\end{equation*}
$$

Let the spectrum of R be $S=\left\{\lambda_{1}, \ldots \lambda_{2 n}\right\}$ or $S=S_{1} U S_{2}$, where $S_{1}=\left\{\lambda_{1}, \ldots \lambda_{n}\right\}$ and $S_{2}=\left\{\lambda_{n+1}, \ldots\right.$, $\left.\lambda_{2 n}\right\}$. If corresponding eigenvalues of eigenvectors used to form M_{1} are $S_{1}=\left\{\lambda_{1}, \ldots \lambda_{n}\right\}$ and to form M_{2} are $S_{2}=\left\{\lambda_{n+1}, \ldots, \lambda_{2 n}\right\}$, then eigenvalues of $(B+D X)$ are S_{1} and eigenvalues of $-(A+D X)$ are S_{2} [9]. This is easily justified by transforming the matrix R as follows

$$
\begin{align*}
& {\left[\begin{array}{cc}
I & 0 \\
-X & I
\end{array}\right]\left[\begin{array}{cc}
B & D \\
-C & -A
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
X & 0
\end{array}\right]=} \\
& =\left[\begin{array}{cc}
B+D X & D \\
0 & -(A+X D)
\end{array}\right] \tag{63}
\end{align*}
$$

Further, the matrix R can be put in the block diagonal form by using another transformation matrix

$$
\begin{align*}
& {\left[\begin{array}{cc}
I & -Y \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
B+D X & D \\
0 & -(A+X D)
\end{array}\right]\left[\begin{array}{ll}
I & Y \\
0 & I
\end{array}\right]=} \\
& =\left[\begin{array}{cc}
B+D X & 0 \\
0 & -(A+X D)
\end{array}\right] \tag{64}
\end{align*}
$$

where Y satisfies the Sylvester equation

$$
\begin{equation*}
(B+D X) Y+Y(A+X D)+D=0 \tag{65}
\end{equation*}
$$

6 EXAMPLE

Consider the system with problem matrices given by $(\varepsilon=1)$

$$
\begin{aligned}
& A=\left[\begin{array}{cccc}
0.8674 & -0.3024 & 0.4092 & 0.2066 \\
-0.9509 & -0.2256 & 0.3904 & 0.0966 \\
0.9218 & 0.5582 & -0.3639 & -0.3696 \\
-0.3360 & -0.1248 & 0.1511 & 0.3564
\end{array}\right] \\
& B=\left[\begin{array}{ccc}
0.0190 & 0.0030 \\
0.1800 & 0.0578 \\
0.0152 & 0.0190 \\
-0.1641 & 0.1810
\end{array}\right] \\
& C=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& Q=0.1 I_{4}, R=I_{2}, W=I_{2}, V=I_{2}
\end{aligned}
$$

The obtained solutions for LQG problem according to the presented methodology (note that iterative methods in this case do not converge) are summarized as follows
$P_{r}=\left[\begin{array}{cccc}391.0855 & -50.8930 & 96.3664 & 49.4185 \\ -50.8930 & 8.3975 & -14.4404 & -7.3477 \\ 96.3664 & -14.4404 & 26.0110 & 13.2175 \\ 49.4185 & -7.3477 & 13.2175 & 6.8589\end{array}\right]$
$P_{f}=\left[\begin{array}{cccc}1.7500 & -0.9361 & 0.7142 & -0.4013 \\ -0.9361 & 0.6377 & -0.4928 & 0.2313 \\ 0.7142 & -0.4928 & 0.4316 & -0.2111 \\ -0.4013 & 0.2313 & -0.2111 & 0.1718\end{array}\right]$
$\hat{\eta}(k+1)=\left[\begin{array}{cc}-0.1339 & -1.0531 \\ -0.6604 & 0.1458\end{array}\right] \hat{\eta}(k)+$
$+\left[\begin{array}{cc}0.2742 & 0.3128 \\ -0.4997 & -0.1248\end{array}\right] y(k)+\left[\begin{array}{cc}0.0799 & -0.0984 \\ 0.1798 & 0.0495\end{array}\right] u(k)$
$\hat{\xi}(k+1)=\left[\begin{array}{cc}0.1849 & -0.1127 \\ 0.0289 & 0.2919\end{array}\right] \hat{\xi}(k)+$
$+\left[\begin{array}{cc}0.0066 & -0.0114 \\ -0.0053 & 0.0185\end{array}\right] y(k)+\left[\begin{array}{cc}0.1479 & -0.0104 \\ -0.1987 & 0.1899\end{array}\right] u(k)$
$u(k)=\left[\begin{array}{cc}-5.7198 & 5.5950 \\ 6.2312 & -6.6806\end{array}\right] \hat{\eta}(k)+$
$+\left[\begin{array}{cc}-11.0231 & -5.7617 \\ 12.5405 & 6.5756\end{array}\right] \hat{\xi}(k)$

7 CONCLUSION

In this paper the algebraic Riccati equation decomposition and eigenvector method have been
used in order to solve the optimal control and filtering of the discrete linear weakly coupled stochastic system. This approach can be used in case of higher level of coupling between the subsystems. Beside providing reduction and parallelism in on-line computation of control and filtering tasks, it gives new insights into the optimal control and filtering of weakly coupled systems.

REFERENCES

[1] Z. Gajic and X. Shen, Decoupling transformation for weakly coupled linear systems, International Journal of Control, Vol. 50, 1517-1523, 1989.
[2] Z. Gajic and X. Shen, Parallel Algorithms for Optimal Control of Large Scale Linear Systems, Springer Verlag, London, 1993.
[3] W. Su and Z. Gajic, Decomposition method for solving weakly coupled algebraic Riccati equation, AIAA Journal of Guidance, Dynamics and Control, Vol. 15, 496-501, 1992.
[4] X. Shen and Z. Gajic, Optimal reduced-order solution of the weakly coupled discrete Riccati equa-
tion, IEEE Transaction on Automatic Control, AC-35, 1160-1162, 1990.
[5] Z. Aganovic, Z. Gajic and X. Shen, New method for optimal control and filtering of weakly coupled linear discrete stochastic systems, Automatica, Vol. 32, No.1, 83-88, 1996.
[6] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, Wiley, 1972.
[7] F. Lewis, Optimal Control, Wiley, 1986.
[8] P. Van Dooren, A generalized eigenvalue approach for solving Riccati equations, SIAM J. Sci. Stat. Comput., Vol. 2, 121-135, 1981.
[9] J. Medanic, Geometric Properties and invariant manifolds of the Riccati equation, IEEE Transaction on Automatic Control, AC-27, 670-677, 1982.
[10] V. Kecman, S. Bingulac and Z. Gajic, Eigen vector approach for order reduction of singularly perturbed linear-quadratic optimal control problems, Automatica, Vol. 35, 151-158, 1999.
[11] V. Kecman, Eigenvector approach for reduced--order optimal control problems of weakly coupled systems, to appear in Dynamics of Continuous, Discrete and Impulsive Systems

Primjena svojstvenih vektora pri optimalnom upravljanju i filtriranju slabo spregnutih linearnih stohastičkih sustava. U članku je opisan postupak rješavanja regulatorskih i filtrirajućih Riccatijevih jednadžbi koje se dobiju prilikom definiranja ravnotežnog rješenja problema optimalnog upravljanja i filtriranja slabo spregnutih linearnih diskretnih stohastičkih sustava. Postupak je zasnovan na primjeni svojstvenih vektora u rješavanju podproblema nižeg reda. Takav postupak pokazuje bolje značajke u odnosu na iterativne postupke (iteracije u fiksnoj aritmetici, Newtonovi postupci) u rješavanju podproblema nižeg reda u slučaju kada su podsustavi jače spregnuti.
Ključne riječi: optimalno upravljanje i filtriranje, slabo spregnuti sustavi, blokovsko dijagonaliziranje, rasprezanje

AUTHORS’ ADDRESSES
Naser Prljaca, Associate Professor University of Tuzla, Faculty of Electrical Engineering
Franjevačka 2, Tuzla 75000
Bosnia and Herzegovina
e-mail: naser.prljaca@untz.ba
Zoran Gajic, Professor Rutgers University,
Department of Electrical and Computer Eng.
94 Brett Road, Piscataway, NJ
USA
e-mail: gajic@ece.rutgers.edu

Received: 2007-04-02
Accepted: 2007-10-31

