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Dye pollutants, mainly discharged from the textile industry, have caused severe risks 
to human health and the ecosystem because of their toxicity, non-biodegradability, and 
carcinogenicity. This study investigated the use of commercial biochar derived from mela-
leuca wood as an adsorbent for the removal of methylene blue (MB) using a packed-bed 
column. The selected biochar was characterized by nitrogen adsorption-desorption iso-
therms, Fourier transform infrared spectroscopy, and scanning electron microscopy. The 
experiments were performed to determine breakthrough curves (BTCs) with varying pH 
(3–9), inflow rate (5–20 mL min–1), bed height (16–65 cm), and initial MB concentration 
(0.75–9 mg L–1). The biochar (particle size of 1–2 mm) exhibited a low adsorption capacity 
for MB (~21 mg kg–1), resulting in a short breakthrough time. The Thomas, Bohart-Adams, 
Yoon-Nelson, and Bed Depth Service Time models were quite suitable for describing the 
experimental BTCs, with R2-values ranging from 0.92 to 0.98. The obtained BTCs were 
not in the typical S-shape, which characterizes diffusion-controlled adsorption. Therefore, 
a serial logistic-exponential model, which accounts for both the mass transfer and inter
action contributions, was proposed. The experimental data effectively fit this proposed 
model, as indicated by high R2-values (>0.998). The dominant influence of mass transfer 
compared to interaction in controlling the adsorption rate of MB was highlighted.
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Introduction

Methylene blue (MB) is a colored pollutant 
commonly found in wastewater discharged from 
textile industries. MB poses significant risks to hu-
man health and the environment due to its toxicity, 

carcinogenic properties, and poor biodegradabili-
ty1–3. MB can cause the death of premature cells in 
tissues, skin and eye irritations, and serious sero-
tonin toxicity1,2. Various techniques are employed 
for removing dyes from wastewater, including 
membrane processes4,5, chemical oxidation process-
es6,7, biological processes8,9, and physiochemical 
techniques, primarily adsorption10,11. In an aqueous 
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environment, the presence of MB can inhibit micro-
organism activity due to its high light absorbance, 
resulting in limited efficiency of biological and 
photocatalytic degradation12. Adsorption, being a 
potentially effective and convenient method for MB 
removal, offers advantages such as high efficiency, 
low cost, flexibility, and the availability of adsor-
bent precursors1,13,14.

Biochar is considered a low-cost and environ-
mentally friendly adsorbent for wastewater treat-
ment. Both modified and unmodified biochars have 
been studied for their ability to adsorb MB15,16. Raw 
biochars derived from various sources have been 
utilized to adsorb MB, resulting in varied adsorp-
tion capacities, such as 4.58 mg g–1 for sawdust bio-
char17, 8.07 mg g–1 for rice husk biochar18, and 3.99 
mg g–1 for pine wood biochar19. To improve the ad-
sorption efficiency of biochar, activation or modifi-
cation techniques can be applied. For example, 
chemical activation of lychee seed biochar can in-
crease the MB adsorption capacity to 124.5 mg g–1 20. 
Recently, Hassaan et al.21 prepared sawdust biochar 
modified by ozone-triethylenetetramine for MB ad-
sorption, achieving an adsorption capacity of 568.16 
mg g–1.

To the best of our knowledge, previous research 
has primarily focused on investigating MB adsorp-
tion through batch experiments. Important thermo-
dynamic parameters can be explored through batch 
adsorption studies22,23, while column adsorption 
studies provide valuable insights into the suitability 
and scalability of adsorbent utilization24. Break-
through analysis can be used to explore the dynam-
ics and characteristics of column adsorption25.

In this study, we evaluated the potential of uti-
lizing commercial biochar for MB removal in a 
continuous adsorption mode. We examined the ef-
fects of pH, inflow rate (Q), bed height (Z), and in-
let MB concentration (C0) on MB adsorption. To 
understand the theoretical basis of MB adsorption, 
we employed and analyzed the Thomas, Bohart-Ad-
ams, Yoon-Nelson, and Bed Depth Service Time 
(BDST) models. Furthermore, we evaluated the 
contribution of mass transfer and interaction in MB 
adsorption using the proposed serial exponential-lo-
gistic model, demonstrating a good agreement with 
experimental data.

Experimental

Adsorbent preparation

Commercial biochar derived from melaleuca 
wood was locally collected from Tien Giang Prov-
ince, Vietnam. The raw material was milled and 
sieved to obtain particles ranging in size from 1 to 
2 mm. Subsequently, the biochar particles were 

dried at 120 °C for 4 hours. The resulting adsorbent 
was then stored in a sealed plastic bag.

Instrumentation

The specific surface area and pore size distri-
bution of the biochar were determined by analyzing 
nitrogen adsorption and desorption isotherms using 
Surfer equipment (Thermo Scientific Ltd.). The sur-
face morphology of the biochar was examined by 
scanning electron microscopy with a Prisma E SEM 
system. An iS5 Nicolet FTIR spectrometer (Thermo 
Scientific Ltd.) was utilized to record the FTIR 
spectrum in the wavenumber range from 500 to 
4000 cm–1, using KBr as the beam splitter. The con-
centration of MB in the solution was measured at 
640 nm with an EvolutionTM 350 UV-Vis spectro-
photometer.

Solution preparation

Analytical-grade methylene blue trihydrate 
(C16H18ClN3S  .  3H2O) from Xilong (China) was used 
to prepare the adsorbate solutions. A stock solution 
of MB was prepared by dissolving 1.169 g of MB 
in 1.0 L of distilled water, resulting in a concentra-
tion of 1000 mg L–1. This stock solution was then 
diluted to the desired concentration for the continu-
ous adsorption experiments. The initial pH of the 
MB solutions was adjusted using solutions of HCl 
(0.1 mol L–1) and NaOH (0.1 mol L–1).

Continuous adsorption studies

Poly(vinyl chloride) pipes with an inner diame-
ter of 21 mm were utilized in this study. These pipes 
were filled with adsorbent particles, and the bed 
height varied between 16, 40, and 65 cm. Glass 
wool layers were employed to secure the adsorbent 
bed at the bottom and top of the pipes. The MB 
solution was continuously pumped upward to pre-
vent gravitational effects, which could lead to in-
complete saturation of the solution in the adsorption 
column. The treated stream was discharged at the 
top of the bed, and collected at regular intervals of 
60 seconds. The effects of inflow rate (Q = 5, 10, 
15, and 20 mL min–1), pH (3, 4, 6, 7, and 9), bed 
height (Z = 16, 40, and 65 cm), and inlet MB con-
centration (C0 = 0.75, 2.5, 6.5, and 9 mg L–1) on MB 
adsorption performance were investigated.

Results and discussion

Characterization of the adsorbent

The porous structure of the biochar was inves-
tigated through N2 adsorption-desorption analysis 
(Fig. 1). As presented in Fig. 1, the volume of ad-
sorbed N2 rapidly increased at P/P0 less than 0.2 or 
higher than 0.7, and reached a plateau in the middle 
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of the range. A hysteresis loop appeared at P/P0 
near 0.4, which depicts capillary condensation in 
mesopores26,27. These findings, along with the pore 
size distribution (inset in Fig. 1), indicate the pres-
ence of micro-, meso-, and macro-pore structures in 
the adsorbent, with the mesopore structure being 
predominant. The BET surface area and pore vol-
ume were determined to be 274.2 m2 g–1 and 0.44 
cm3 g–1, respectively.

The chemical functional groups on the surface 
of the biochar were determined using FTIR spec-
troscopy. The FTIR spectrum (Fig. 2) reveals peaks 
at 3365 and 3642 cm–1, associated with the O–H 
bond stretching mode of free water and functional 
groups on the biochar surface, respectively28. The 
characteristic peak at 3022 cm–1 is attributed to C–H 
stretching vibration. The absorption band at 2237 
cm–1 corresponds to the C=C bond of aromatic rings 
within the biochar structure29. The appearance of 
the band at 1734 cm–1 corresponds to the C=O 
stretching vibration30, while the bending peak at 885 
cm–1 represents the vibration of the aromatic –CH 
group31. The unsaturated C=C and C=O groups can 
be deprotonated, thereby enhancing the interaction 
between the biochar and the cationic dye MB32. 
This FTIR analysis confirms the presence of func-
tional groups on the biochar surface, consistent with 
previous reports for other biochars28,31,33.

SEM images at 160× and 1200× magnification 
(Fig. 3) reveal the porous structure of the biochar. 
The biochar exhibits interconnected trenches and 
tunnels of varying diameters, forming a matrix with 
open channels. This structure facilitates the penetra-
tion of MB into the inner surface of the biochar34. 
However, the heterogeneity in size and shape of 
these trenches and tunnels may impede the diffu-
sion of MB molecules within the biochar, resulting 
in a slow rate of MB adsorption35.

F i g .  1  – Nitrogen adsorption-desorption isotherm F i g .  2  – FTIR spectrum of charcoal

F i g .  3 	–	 SEM images of charcoal at a) 160×, and b) 1200× 
magnification

Adsorption 
Desorption

https://www.sciencedirect.com/topics/engineering/hysteresis-loop
https://www.sciencedirect.com/topics/engineering/capillary-condensation
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Effects of operating parameters on adsorption

Column adsorption studies play a significant 
role in assessing the practical applicability of adsor-
bents in industrial settings. The effects of the initial 
pH, inflow rate, bed height, and inlet MB concen-
tration on MB removal were investigated in the 
continuous adsorption mode. The obtained break-
through curves (BTCs) are depicted by the discrete 
points in Fig. 4. Overall, the characteristic S-shape 
of the BTCs was not clearly discernible.

Effect of pH

The pH variations affect the formation and ac-
tivation of functional groups on the biochar surface, 
thereby influencing the surface charge. As pH value 
increases, the unsaturated C=C and C=O groups un-
dergo deprotonation, resulting in a more negative 

surface charge. This result promotes electrostatic 
interactions between the cationic dye MB and the 
biochar surface32, leading to accelerated MB ad-
sorption.

Fig. 4a displays the experimental BTCs at var-
ious pH values. With increasing pH values, MB ad-
sorption reached saturation (C/C0 → 1) more rapidly. 
The BTCs at different pH values exhibited a notable 
trend where MB breakthrough occurred instanta-
neously as the MB solution was plugged.

Effect of inflow rate

Fig. 4b presents the adsorption performance of 
MB at different inflow rates. At low inflow rates (5 
mL min–1), the residence time of MB in the adsor-
bent bed was prolonged, facilitating the intra-parti-
cle phenomenon, where MB diffuses into the inner 

F i g .  4 	–	 Influence of a) initial pH (Q = 10 mL min–1, Z = 16 cm, C0 = 5 mg L–1), b) inflow rate (pH 7.5, Z = 16 cm, C0 = 5 mg L–1), 
c) bed height (pH 7.5, Q = 10 mL min–1, C0 = 5 mg L–1), and d) inlet MB concentration (pH 6.5, Q = 10 mL min–1, Z = 16 
cm) on breakthrough curves



H. D. Tran et al., A Proposed Model for Breakthrough Curves of Methylene…, Chem. Biochem. Eng. Q., 38 (2) 153–164 (2024)	 157

surface of the biochar’s porous structure36. This 
suggested enhanced penetration of MB molecules 
into the biochar, increasing adsorption opportuni-
ties. Conversely, at higher inflow rates, MB primar-
ily adsorbed onto the external surface of the bio-
char, resulting in steeper BTCs37. As shown in Fig. 
4b, the BTC obtained at an inflow rate of 5 mL min–1 
displays an S-shaped curve, indicating that mass 
transfer and internal resistance governed adsorption 
performance of MB38.

Effect of adsorbent bed height

The adsorption of MB was performed at differ-
ent adsorbent bed heights, revealing the BTCs as 
shown in Fig. 4c. The BTCs obtained at bed heights 
of 40 and 65 cm exhibited similar shapes but dif-
fered significantly from the 16 cm bed height BTC. 
Increasing bed height led to a longer breakthrough 
time, indicating enhanced MB adsorption capacity 
of the biochar. This was because a greater mass of 
the biochar was used, providing more adsorptive 
sites38,39. Moreover, as the bed height increased, the 
tortuosity of the transfer pathways for MB through 
the biochar bed also increased, promoting collisions 
between MB molecules and the adsorption sites40. 
Consequently, the BTC obtained at a higher bed 
height displayed a gentler slope and a longer break-
through time, as shown in Fig. 4c.

Effect of inlet MB concentration

Fig. 4d presents the BCTs of MB adsorption 
with varying C0 values (0.75, 2.5, 6.5, and 9 mg L–1). 
The BTCs exhibit a steeper slope with an increased 
C0, indicating a faster MB breakthrough. As the C0 
increases, the probability of collision between MB 
molecules and adsorption sites increases, leading  
to a decrease in the time required to reach satura-
tion40.

Breakthrough curve analysis

Thomas model

The Thomas model (Eq. (1)) has been widely 
used to predict BTCs by considering the adsorp-
tion-desorption isotherm of Langmuir kinetics and 
ignoring the resistances of external and internal dif-
fusion41. If column adsorption data follows the 
Thomas model, the adsorption processes predomi-
nantly occur at the external surface of the adsorbent 
rather than being governed by a chemical pro-
cess42,43. Non-linear fits of experimental results to 
the Thomas model reveal a considerable correlation 
(R2 > 0.9), as shown in Table 1. The KTh value, rep-
resenting the adsorption rate, exhibits minor chang-
es with pH and Q variations, whereas this parameter 
increases with increasing Z and C0. This trend is 

consistent with previous studies44,45. Additionally, 
Russo et al.38 found that an increase in C0 results in 
an enhancement in the mass transfer driving force, 
which subsequently leads to a rise in the KTh con-
stant. The model equation is:
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where C is the MB concentration in the outlet flow 
(mg L–1), KTh is the Thomas rate constant (L mg–1 min–1), 
qTh is the equilibrium MB adsorption (mg kg–1), w is 
the weight of the biochar in column (kg), Q is the 
volumetric flow rate (L min–1), and V is the treated 
effluent volume (L).

The theoretical maximum adsorption capacity, 
qmax (mg kg–1), can be calculated according to Eq. 
(2):
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Applying Eq. (2) to the Thomas model, the 
Thomas maximum adsorption capacity can be de-
termined by the following algebraic equation:
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At low pH (3.24), the excess H+ in solution can 
protonate functional groups on the biochar surface, 
resulting in a low qTh,max for MB46. At high pH 
(9.41), the free OH– can compete with MB for ad-
sorption sites47, causing a fast saturation of the bio-
char and resulting in a low qTh,max. Notably, the ex-
perimental results show that the removal of MB is 
less affected within the pH range of 4–7. Another 
important parameter that affects the MB adsorption 
performance is C0. With increasing C0, the driving 
force, also referred to as the concentration gradient 
from the solution to the adsorbent surface, intensi-
fies. As a result, more adsorption sites become oc-
cupied, leading to a higher value of qTh,max

46,48,49.
Over different inflow rates, the calculated  

qTh,max values remained almost unchanged. This 
finding demonstrates that the breakthrough time 
was significantly shorter than the residence time. 
This is the characteristic difference between the bio-
char and other adsorbents with large qTh,max values, 
such as phoenix tree leaf powder (qTh,max = 135  
mg g–1)48, palm shell-based activated carbon (qTh,max 
= 115.87 mg g–1)50, groundnut shell powder (qTh,max 
= 272 mg g–1)51.

The effect of Z on the qTh,max is also displayed 
in Table 1. The results revealed a decrease in qTh,max 
as Z increased, contrary to previous reports49,52. 
However, it should be noted that Kumar et al.51 
found no definitive effect of bed height on qTh,max.
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Bohart-Adams model

The Bohart-Adams model (Eq. (4)) assumes 
that the adsorption equilibrium does not occur in-
stantaneously, and that the adsorption rate is pro-
portional to both the residue capacity of the adsor-
bent and the concentration of the adsorbate53. The 
adsorption process is controlled by external mass 
transfer, which is represented by the KBA constant in 
this model45,54. To account for non-equilibrium, the 
Bohart-Adams model is commonly used to predict 
the initial portion of BTCs, typically for C/C0 < 
0.5  55.

To determine the parameters of the Bohart-Ad-
ams model, the experimental BTCs with C/C0 < 0.5 
were fitted using a non-linear approach, and the 
results are presented in Table 2. The value of  
KBA varied in a narrow range from 0.009 to 0.016  
L mg–1 min–1 as pH, Q, and C0 increased. However, 
as Z increased, this parameter exhibited a signifi-
cant increase. This result highlighted the dominant 
role of bed height in influencing the dynamics of 
MB adsorption through mass transfer. The model 
equation is:
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where KBA is the Bohart-Adams kinetic constant  
(L mg–1 min–1), N0 is the saturation concentration 
(mg L–1), Z is the bed height (cm), u is the flow rate 
(cm min–1).

However, the experimental data did not cor-
relate well with the Bohart-Adams model, as indi-

cated by the low R2-values presented in Table 2. 
This suggested that the adsorption equilibrium of 
MB on the biochar occurred with C/C0 < 0.5.

Yoon-Nelson model

The Yoon-Nelson model (Eq. (5))56 was applied 
to analyze the adsorption of MB, assuming that the 
rate of MB adsorption is proportional to the proba-
bility of both MB adsorption and the probability of 
MB breakthrough on the biochar. The rate constant 
(KYN) and the time required for 50 % MB break-
through (t) were determined and are listed in Table 
3 for different conditions. As evident from Table 3, 
the pH, Q, and Z do not play definitive roles in the 
variation of the KYN. However, as C0 increased, the 
driving force of mass transfer increased, resulting in 
a more rapid saturation and adsorption rate of the 
biochar. This led to an increase in KYN and a de-
crease in t 48,57. Furthermore, increased Z resulted in 
more adsorption sites, enhancing the t value. This 
trend was also reported in previous research48,58. 
However, the relationship between τ values and pH, 
as well as Q, was not clearly established. The mod-
el equation is:
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where KYN is the Yoon-Nelson proportionality con-
stant (min–1), and t is the time required for removing 
50 % of the inlet MB amount (min).

Ta b l e  1 	– 	Thomas parameters obtained

pH Q, mL min–1 Z, cm C0, mg L–1 KTh,  L mg–1 min–1 qTh, mg kg–1 R2 qTh,max, mg kg–1

3.24 10 16 5 0.17 10.7 0.9677 11.8

4.18 10 16 5 0.10 16.1 0.9483 18.3

6.06 10 16 5 0.14 14.6 0.9745 15.7

7.22 10 16 5 0.12 17.6 0.9699 18.8

9.41 10 16 5 0.13 13.1 0.9582 14.7

7.5 5 16 5 0.26 12.3 0.9734 12.3

7.5 10 16 5 0.13 20.4 0.9230 21.1

7.5 15 16 5 0.12 16.3 0.9790 19.8

7.5 20 16 5 0.13 13.9 0.9672 19.9

7.5 10 40 5 0.10 15.4 0.9766 15.5

7.5 10 65 5 0.14 9.3 0.9818 9.3

6.5 10 16 0.75 0.46 3.7 0.9629 4.1

6.5 10 16 2.5 0.16 11.3 0.9761 12.5

6.5 10 16 6.5 0.09 16.7 0.9437 19.4

6.5 10 16 9 0.09 18.7 0.9496 21.0
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Bed depth service time (BDST) model

The BDST model describes the relationship be-
tween bed depth (Z) and service time (t), expressed 
by Eq. (6). This model can be rearranged to show 
the non-linear relationship between C/C0 and the 
volume treated (V), as obeyed in Eq. (7). The BDST 
model is based on the assumption that the adsorp-
tion process is primarily controlled by the surface 

reaction between the adsorbate and the remaining 
capacity of the adsorbent52,54. The model equations 
are:
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Ta b l e  2 	– 	Bohart-Adams parameters obtained

pH Q, mL min–1 Z, cm C0, mg L–1 KBA, L mg–1 min–1 N0, mg L–1 R2

3.24 10 16 5 0.352 4.2 0.8133

4.18 10 16 5 0.299 4.9 0.7620

6.06 10 16 5 0.396 4.5 0.9185

7.22 10 16 5 0.431 4.8 0.9622

9.41 10 16 5 0.534 3.4 0.8780

7.5 5 16 5 0.124 14.2 0.7903

7.5 10 16 5 0.263 7.0 0.9280

7.5 15 16 5 0.339 5.0 0.8652

7.5 20 16 5 0.324 4.8 0.8235

7.5 10 40 5 0.142 4.6 0.9578

7.5 10 65 5 0.178 3.2 0.9696

6.5 10 16 0.75 0.583 1.9 0.8447

6.5 10 16 2.5 0.364 4.1 0.8811

6.5 10 16 6.5 0.328 4.7 0.7381

6.5 10 16 9 – – –

Ta b l e  3 	– 	Yoon-Nelson parameters obtained

pH Q, mL min–1 Z, cm C0, mg L–1 KYN, min–1 t, min R2

3.24 10 16 5 0.52 3.41 0.9677

4.18 10 16 5 0.45 3.31 0.9483

6.06 10 16 5 0.61 3.01 0.9745

7.22 10 16 5 0.62 3.23 0.9699

9.41 10 16 5 0.63 2.52 0.9582

7.5 5 16 5 0.76 3.93 0.9734

7.5 10 16 5 0.58 4.30 0.9879

7.5 15 16 5 0.55 3.28 0.9790

7.5 20 16 5 0.57 2.87 0.9672

7.5 10 40 5 0.21 16.0 0.9766

7.5 10 65 5 0.30 16.7 0.9818

6.5 10 16 0.75 0.34 4.66 0.9629

6.5 10 16 2.5 0.41 4.22 0.9761

6.5 10 16 6.5 0.55 2.46 0.9437

6.5 10 16 9 0.80 1.93 0.9496



160	 H. D. Tran et al., A Proposed Model for Breakthrough Curves of Methylene…, Chem. Biochem. Eng. Q., 38 (2) 153–164 (2024)

where Ko is the adsorption rate constant (L mg–1 min–1), 
No is the adsorption capacity (mg L–1).

Non-linear fitting of the BDST model to exper-
imental data yielded the dynamic parameters of the 
MB adsorption, as presented in Table 4. Theoreti-
cally, a lower Ko value indicates a slower mass 
transfer, necessitating a longer bed depth to prevent 
breakthrough59. As the Q value increased, the mass 
transfer rate also increased, resulting in a higher Ko 
value, as shown in Table 4. On the other hand, as C0 
values increased, Ko values decreased, contrasting 
with the behavior of adsorption capacity (No). This 
trend was also observed by Yagub et al.60 From Ta-
ble 4, the Ko values are in a low range, indicating 
that the mass transfer of MB from the fluid phase to 
the adsorbent surface is a rate-limiting step in the 
adsorption process. The dependence of Ko and No on 
other conditions was not as regular.

Proposed model of the breakthrough curve of 
methylene blue adsorption on biochar

The experimental BTCs of MB on biochar, as 
depicted in Fig. 4, did not exhibit a sharp S-shape 
due to short breakthrough times. Additionally, sev-
eral BTCs displayed an intermediate plateau region, 
such as at pH 4.18 in Fig. 4a, and C0 = 0.75 mg L–1 
in Fig. 4d. This suggests that the BTCs for MB ad-
sorption on biochar can be characterized by a serial 
exponential-logistic pattern. Similar behavior in 
BTCs has been observed in previous studies on dye 
adsorption, such as Direct Blue 71 on chitosan-glu-
taraldehyde biosorbent52, dye AB25 on commercial 

activated carbon61, methyl green on Mobil Compo-
sition Matter No. 41 62, or MB on the tartaric ac-
id-treated bagasse63. However, no explanation or 
mention of this observation has been provided. It 
notes that the influence of mass transfer on the ad-
sorption rate differs in the initial and final por-
tions64. Ghorbanian et al.25 found that the adsorption 
rate could be governed by either mass diffusion or 
surface interaction, resulting in a weak satisfactory 
agreement of the Bohart-Adams and Yoon-Nelson 
models with the unusual S-shape BTCs.

The biochar initially exhibits a high adsorption 
capacity due to the abundance of available adsorp-
tion sites where MB molecules to bind. Conse-
quently, the rate of MB adsorption is governed by 
the mass transfer of MB from the external or inter-
nal spaces of the biochar particles to the adsorption 
sites, driven by a concentration gradient. Thus, the 
initial portion of the BTCs can be described using a 
logistic function 1/[1+exp(A–k1V)]  65.

As the total treated volume increases, the resid-
ual adsorption capacity of the biochar decreases to a 
limit. At this point, the rate of adsorption is equiva-
lent to the rate of mass transfer. Beyond this limit, 
the MB adsorption rate depends on the interaction 
rate between MB molecules and the unoccupied ad-
sorption sites66. This second portion of the BTCs 
can be characterized as an exponential function  
[1–exp(–k2V)]  67.

The mixing rule68 was applied to account for 
the contributions of both mass transfer and interac-
tion to the adsorption performance of MB, resulting 

Ta b l e  4 	– 	BDST parameters obtained

pH Q, mL min–1 Z, cm C0, mg L–1 Ko, L mg–1 min–1 No, mg L–1 R2

3.24 10 16 5 0.104 3.06 0.9677

4.18 10 16 5 0.091 2.97 0.9483

6.06 10 16 5 0.122 2.70 0.9745

7.22 10 16 5 0.124 2.90 0.9699

9.41 10 16 5 0.126 2.26 0.9582

7.5 5 16 5 0.077 3.53 0.9734

7.5 10 16 5 0.116 3.86 0.9879

7.5 15 16 5 0.165 2.94 0.9790

7.5 20 16 5 0.228 2.57 0.9672

7.5 10 40 5 0.022 11.50 0.9766

7.5 10 65 5 0.030 7.36 0.9818

6.5 10 16 0.75 0.457 0.63 0.9629

6.5 10 16 2.5 0.164 1.89 0.9761

6.5 10 16 6.5 0.085 2.86 0.9437

6.5 10 16 9 0.090 3.11 0.9496
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in Eq. (8), which was referred to as the serial logis-
tic-exponential model:

	 ( )( )2

1
0

1
1 1 e

1 e
k V

A k V
C
C

-
-= a + -a -

+
	 (8)

where a represents the contribution fraction of the 
mass transfer; hence, (1–a) indexes the contribution 
fraction of the interaction.

Clearly, 0 1£ a£ . When a is close to 1, the 
adsorption of MB is primarily controlled by mass 
transfer. Conversely, when a is close to 0, the ad-
sorption of MB is mainly influenced by interaction. 
By conducting non-linear fitting with experimental 
data, four parameters in Eq. (8) were found, and are 
listed in Table 5. The predicted BTCs following Eq. 
(8) are illustrated by smooth lines in Fig. 4.

Equation (8) effectively describes the experi-
mental data, as indicated by high R2-values (>0.998). 
As presented in Table 5, the values of a were in the 
medium range (from 0.1 to 0.6), suggesting that the 
adsorption rate of MB on the biochar cannot be de-
scribed by the mechanism of mass transfer control. 
Most values of a < 0.5 denoted that the interaction 
was a predominant influence on the adsorption of 
MB on the biochar. Additionally, in almost all cas-
es, the ratio of k1/k2 was larger than 1, demonstrat-
ing the faster rate of mass transfer compared with 
interaction.

An increase in the values of Q and C0 decreased 
the a-value due to the fast saturation of the biochar, 
resulting in a short time for the first part of the 
BTCs. Next, the MB adsorption rapidly changed to 
the second stage, which was governed by interac-
tion. The value of constant A represents the bias 

contribution of the mass transfer to the overall rate 
of MB adsorption. A high A-value results in a low 
value of 1/[1+exp(A–k2V)], indicating that mass 
transfer played a trivial role in MB adsorption. At 
pH 3.24, the A-value was found to be 184, much 
higher compared to the others. This may have been 
due to the prevention of MB molecules from inter-
acting with the protonated biochar surface, as dis-
cussed previously.

Conclusion

This study investigated the adsorption proper-
ties of commercially available biochar derived from 
melaleuca wood for MB removal in a continuous 
adsorption system. This biochar exhibited limited 
affinity for MB adsorption, resulting in short break-
through times. Most of the obtained BTCs did not 
conform to the characteristic S-shape pattern asso-
ciated with regulated diffusion adsorption. The dy-
namics of MB adsorption were elucidated, with the 
results aligning well with the serial logistic-expo-
nential models. Notably, the poor compatibility of 
experimental data with the BDST model suggests 
that MB adsorption equilibrium was attained swift-
ly after initiation. Based on the observed behavior 
of the BTCs, the study determined that the MB ad-
sorption performance was strongly influenced by 
the combined effects of mass transfer and interac-
tion. Among these, the mass transfer process con-
trolled the adsorption rate of MB on the biochar. 
This emphasizes the substantial potential of biochar 
in organic wastewater treatment through advanced 
adsorption techniques.

Ta b l e  5 	– 	Breakthrough parameters predicted from serial logistic-exponential model

pH Q, mL min–1 Z, cm C0, mg L–1 A, [–] k1, L
–1 k2, L

–1 a, [–] R2

3.24 10 16 5 184 4.102 0.026 0.12 0.9932

4.18 10 16 5 8.95 0.133 0.073 0.40 0.9961

6.06 10 16 5 2.98 0.087 0.029 0.16 0.9982

7.22 10 16 5 9.15 0.360 0.024 0.19 0.9957

9.41 10 16 5 4.77 0.566 0.031 0.07 0.9997

7.5 5 16 5 5.45 0.150 0.016 0.60 0.9935

7.5 10 16 5 3.65 0.077 0.023 0.54 0.9929

7.5 15 16 5 2.96 0.061 0.030 0.23 0.9984

7.5 20 16 5 2.18 0.044 0.034 0.18 0.9952

7.5 10 40 5 5.00 0.023 0.001 0.27 0.9914

7.5 10 65 5 5.15 0.020 0.000 0.50 0.9896

6.5 10 16 0.75 2.63 0.041 0.161 0.84 0.9868

6.5 10 16 2.5 2.84 0.042 0.028 0.35 0.9961

6.5 10 16 6.5 2.67 0.053 0.091 0.45 0.9961

6.5 10 16 9 2.40 0.040 0.055 0.13 0.9988
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