
FIZIKA, 1 {1968) 69-80 

ATTENUATION OF ELECTROMAGNETIC SURFACE WAVES ON PLASMA COLUMNS 
B. A. ANICIN 

Institute »Boris Kidril", Beograd 
Received 3 June 1968; revised manuscript received 10 July 1968 

Abstract: The attenuation coefficient of an electromagnetic surface wave is derived using aperturbation method which takes into account both collisional loss in the plasma anddiele�tric loss in the surrounding glass. The attenuation coefficient increases as the
square of t�e phase coefficient in the region of low phase velocity. Numerical data arc presented for both dipole and axially symmetric modes. The theory is comparedwith recent experimental observations. 

1. I ntr(fduction
· The inclusion of a small amount ·of loss in· the equations describing the pro­

pagation of electromagnetic surface waves on plasma columns was first 
eff ectcd by Trivelpiece and Gould 1> by adding a small imaginary part · to the 
real frequency. The method is therefore inherently limited to plasrrra losses 
only. A comprehensive analysis of both· propagation characteristics and atte­
nuation of waveguide modes and surface wave modes was published by Clar­
ricoats, Olver and Wong2>. The attenuation characteristics are derived and 
numerical data are given for axial annular plasma columns surro�nded by 
glass and a metallic waveguide tube. 

Attenuation measurements are reported by Akao, Ida and Oike3> who 
measured the Q factor of a length of surface wave guide used as resonator. 
Anomalous attenuation in the low phase velocity region of the dipolar mode 
was observed. 

The aim of this paper is to provide adequate numerical data on the atte­
nuation · of electromagnetic surface waves propagating on open structures L e., 
without a metallic wall and give the theoretical background for the attenuation 
measurements on plasma-glass c�mbinations which have been studied earlier 
at the Institute »Boris Kidric«4 • 5) from the standpoint of phase characteristics. 

The attenuation coefficient is derived from the characteristic equation 
describing both the dispersive properties and the attenuation of surface waves 
usi�g a perturbation technique. The· _res��t�nt formula is then specialized to 
the quasi-static dispersion relation ·in the cold plasma approximation. 
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2. Formulation and solutionWe consider a circular column of homogeneous plasma bound by a glass tube with inner and outer radii a and b, respectively. A characteristic equation of the problem is obtained from the requirement that non-zero solutions of Maxwell's equations in the three regions of interest should exist and satisfy the boundary conditions. Irrespective of the simplifications introduced in this procedure, the characteristic equation will depend on the dielectric constant of the plasma Ep, the dielectric constant of glass and on the propagation constant i'· The dielectric constant Ep is 
Ep = 1 -

(J) (w - jv) ' (I ) 

where w is the angular signal frequency, Wp the plasma frequency, and v the electron-atom collision frequency; the dielectric constant of glass can be written as 
I • II e = e - J E ,e" = e' tg C,, (2) 

(3) where tg b is the loss tangent of glass. For convenience, instead of the propa­gation constant 
r = a + j {J (4) we introduce 

1/ = p - j a = - j 'J'· (5) The char�cteristic equation then reads F (e11, e, 'YJ) = 0. {6) Under the assumption that the imaginary parts of the arguments of F are much smaller in magnitude than the respective real parts, F can be developedin Taylor series around the point (ep', e', /J). After the application of some elementary rules on partial derivatives the attenuation coefficient is obtained as 
ap v ap ,,a = aw 2 + ae ' e · (7)



A1'TF.NUATI0N OF . . . 7 1  The first term o f  this expression also comes from the analysis of Trivelpiece and Gould1>. It is convenient to rearrange equation (7) for computation pur­poses. The dispersion relation of surface waves on plasma - glass guides can be expressed as 
wl 

I - - = e' . w2 

In (A) Kn'(B) Pn + e' Kn (B) Qn In'(A) Kn'(B) Rn + e' Kn (B) Sn 'where I,, and Kn are modified Bessel functions, A = pa, B = Pb and Pn = In'(A) Kn (B) - In (B) Kn'(A) 'Qn = In' (B) Kn' (A) - l,i' (A) Kn' (B) 'Rn = In (A) Kn (B) - In (B) Kn (A) 'Sn = In'(B)·Kn (A) - In (A) Kn'(B) .

(8) 

The relation is valid in the quasistatic case and may be found in a slightly different form in the paper by Akao and lda6>, where a complete derivation is given. To avoid writing a lengthy programme for the two relevant partial derivatives of (8) , the differentiation is performed numerically by varying the two arguments (P and e') . The derivative a� is avoided using the identityae a w a /J ae' a e' = - a w
ap 

(9) 

Further, the normalized group velocity Vu is introduced, so from the expression (7) we obtain
aa = _I (-v . _ a (�) •") 

Vu . 2�11 8£· 
( 10) 

where v, and a ( ;;;) can be determined by numerical differentiation of the ae' dispersion relation (8) using a computer. 
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3. Numerical results
The attenuation coefficient involves two terms : one associated· with plasma loss and the other with glass loss 

�a = AP - + Ao tg b .. . c.o . . Thus some degree . .  of generality is- retained by computirig 
w £ a(: ) Ap = and Ao = - - --� 

2 Pa ·w.P ·. . . . . . 
. ·vg · •  - ae'

 instead of the attenuation coefficient itself. 
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Fig. 1. Plasma and glass attenuation {acto�s for axially syQ1II1etric:.mode (1t' =:=:: Ok- ·:. 
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Besides the attenuation coefficient the Q factor of a cavity formed from a length of surface wave guide i� also a _relevant experimental parameter, re-lated to the attenuation coefficient hy Q = :a . The reciprocal Q factor has. · t 2A,. . l . 2As Qi�. �dditive property and therefore the coefficien(s Q, . /Ja and Q, = {J. fa. the fomiula 
have been __ computed . . , . . . 

1 1 V 1 
- = - - + - tg dQ Q, w -Qs . (1-3) 
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With l = 4.8 (Pyrex glass) the quantities !!!_ , Vu, a ( �) , A,, A,, l!Q,, l!Q, 
wp ae have been tabulated for b/a = 1 ,  I . I ,  1 . 1 5, 1 .20, 1 .25, 1 .30, 1 .40, 2.0, oo and for the following values of the phase constant : n = 0 (axially symmetric mo­de) pa = 0. 1 (0. 1) 1 ;  1 .2 (0.2)3 ; 4 ( 1 ) 1 0 ;  n = 1 (dipole mode) pa = 0.2(0.2)3;4 ( 1  ) 10*. 
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Fig. 3. Glass Q factor for axially symmetric mode . 

The resulting attenuation data are shown graphically in figures 1-7 . Glass · and plasma attenuation factors for the n = 0 mode are evident from figure 1 .The range o f  the phase constant i n  this figure is limited to PaE(0,1 ) .  For
/Ja > 1 the data tend to .become less reliable for several reasons : the uniformplasma assumption is no longer correct ; warm plasma effects and the Dopplereffect of a streaming plasma tilt the asymptote of the dispersion relation ; fi

* Five-figure tables as specified above are available from the author on request. 
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2 3 4 oa. Fig. 4. Plasma attenuation factor for dipole mode (n = 1 )

Fig. 5 .  Dipole mode glass attenuation factor . 
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nally, near the point v11 = 0 the present perturbation theory breaks down. Theplasma and glass Q factors for n = 0 are given in figures 2 and 3, respec­tively. The coefficients A for the n = I mode are plotted vs. Pa in figures 4 and 5for PaC..(0,5) . The larger interval for the dipole mode is explained by the factthat Akao, Ida and Oike3) measured Q factors up to pa = 5 in this mode andby the inherent difference between the n = 0 and n = I dispersion relation.The curves extend only to the first zero of group velocity. The respective data of reciprocals 1/ Q are given in figures 6 and 7.
It is worth noting that glass and plasma losses will be comparable if- �tg�, 

(J) which is frequently the case with commercial grade glasses, laboratory pla­smas and signal frequencies. 
4. On the anomalous attennuation of e. m. surface waves

The Q factors of cavities formed from sections of plasma sµrface waveguides operated in the dipolar mode have been recently_ measure.dJ:>y Akao, Ida and Oike!J). The main result of their investigation is the constancy of Q in 
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Fig. 6. Dipole mode plasma Q factor. 
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Fig. 7. Dipole mode glass Q factor, 
a �ide range of phase velocity, which is in accordance with a theory predic-w angular frequency ting Q = - = 11. . f , and an increase of attenuation for small -v co mon requency phase velocities, which appears to be anomalous in the light of the above theory. The Landau damping was considered as a possible mechanism to ac­count for the decrease in Q near the asymptote of the dispersion relation, but numerical agreement did not prove to be rewarding. As the present theory does not predict a constant Q, independent of themode number and phase coefficient, it is of interest tp establish whether it can provide an explanation of the high attenuation of the dipolar surface wave for low phase velocity. For illustration in figure 8 the computed data are compar­ed with the results of measurements8> performed a·: 7 70 MHz, Te = 2.6 X 104 �K, assumin,J v = 25 MHz8> , l = 4.8, tg � = 0, 2.4 X 1 0-s for glas and,8.9 X I o-s for Pyrex glass7> . Figure 8 has to be regarded as an illustration of the fact that the decrease in Q is to be expected within the framework of cold plasma theory and not as an actual comparison of theory and experiment. The 



78 ANICINproperties of glass, for instance, are not quoted in ref.-11) .  The increase in at­tenuation is associated with the decrease in group velocity near the asymptote of the dispersion relation. The fact that the ratio of phase velocity and thermal velocity vp/vr appearsto be a normalizing parameter3) also finds some justification in cold plasmatheory. Assuming very thick glass walls, we can prove (Appendix I) that the attenuation coefficient near the asymptote of the dispersion relation is propor-tional to the square of the phase constant 
I +  e' v 

aa ,...., --,-- (Pa)2 • 
8 (J) 

( 1 4) 

30,--����,--���--::::�-o-���--r����----r��----,
EXPERIMENTAL 
CURVE FROM 
AKAQ\ IDA AND 
OIK�3

' Q f:770MHz 
Te,=2·6x104°K

20 

10 

0 

THEORY. €' :4.8. €•:4.8x8.9 xl0:3 

(PVREX GLASS) . 

2 3 4 5x109 

Vp(cm/sec) 

Fig. 6. Theoretical and experimental Q factor vs. phase velocity. 

The collision frequency is given by v = pPcvr, where f, is the gas pressu_re, Pc the collision probalility, vr the electron thermal velocity, and the phase 
(J) velocity is given by v,, = p . This gives__ e' _ __ l_ Vp ( 15) 

In conclusion, cold plasma theory seems to be capable of explaining the in­creased attenuation of surface waves in the region of low phase .velocity. 



ATTENUATION OF . .  79 A p p e n d i x  I When the glass thickness is large (b/a -+ oo) the dispersion relation ( 15) is simplified to the expression 
, , In (Pa) Kn'(Pa) E "  = E In'(Pa) Kn (Pa) ·We choos� the function F in equation (6) as ( 16) 

F = - log e' + log In (Pa) - log In' (Pa) + log Kn' (Pa) - log Kn (Pa) , 
F = 0 obviously yields the same information as ( 16) .  The relevant partial derivatives are 

aF 1 -, = - -, '  ae P e P 
aF . 1
ae' = 7 '  

_!!_ = In'(Pa) _ In"(Pa) + K,i"(Pa) _ Kn'(Pa) .a (Pa) In (Pa) In' (Pa) Kn' (Pa) Kn .(Pa) • After some manipulation with W ronskians we obtain aa [ T · 1 ( . n2 - )l . e/' · e" · ·  pa In Kn + ],.' K,.' 1 + (.Pa)2 J 

= e/ - 7 ( 1 7) 
Using the first three terms of the asymptotic deve.lopments of the modified Bessel functions we have 

( ,, .  ,, Ep E aa � --, + -, ) (/Ji,,)2 ,
Ep E 

(18) 
irrespective of the mode number n. Finally, after inserting the asymptotic value of the plasma dielectric constant and plasma loss we obtain 

( 
I + , .

) aa � / : + tgd (/Ja)2 .
A p p e n d i x  I I  

( 19) 

A simplified formula expressing the attenuation of surface waves on thin glass tubes can be derived from equation (10) . First, the equation is modified to w!w,, [ v ( w2 ) a log e',, ,, l aa = -- - + 1 - -- , e • 2 Vo w w,,2 a e (20)



so ANICIN Then the expressions P n, Qn, Rn and Sn entering the dispersion relation (8) are b developed in powers of b/a around the point - = 1 .  The resulting attenuation . a formula is aa = ;�:• { :  - pa (� - 1  ) (1 - ::. ) e'�: + •-:: ( 1 + ;� )}, (21 )where the argument of Kn and Kn' is {Ja. 
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SLABLJENJE ELEKTROMAGNETNIH POVRSINSKIH TALASA NA STUBU PLAZME 
B. A. ANICIN 

lnstitut »Boris Kidric", Beograd Koeficijent slabljenja povrsinskih elektromagnetnih talasa izveden je jed­nom perturbacionom metodom koja omogucuje da se uzme u obzir gubitak u plazmi i gubitak u okruzujucem staklu. Analiza je pokazala da koeficijent slabHenja raste sa kvadratom fazne konstante u oblasti -malih faznih }?rzina. lzneseni su numericki podaci za dipolni i aksijalno simetricni tip talasa. lzvr­seno je uporedenje teorije sa eksperimentalnim podacima drugih autora. 




