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A B S T R A C T  

The design requirements for the hydrodynamic performance of underwater vehicles 

vary significantly depending on the application. Optimization without an initial model 

results in challenges such as large design domains, nonlinear complexity, and high data 

requirements. To optimize the hydrodynamic performance during the design process, 

in this paper, a multi-surrogate model was employed to progressively design the shape 

of an autonomous and remotely-operated vehicle. Based on the data characteristics of 

different stages, this approach strikes a balance among data quantity, prediction 

accuracy, and multi-objective requirements. An artificial neural network prediction 

surrogate model was constructed based on the principle of the minimum prediction 

factor using the optimal Latin hypercube sampling method. During the optimization of 

the design domain, the optimum objective was to minimize the dimensionless force 

(𝐺(𝑥)). During the multi-objective optimization stage, a regression kriging surrogate 

model was constructed based on a support vector product. The optimization objectives 

were to maximize volume and minimize dimensionless forces. This enabled the overall 

design process to attain optimal Pareto solutions within the design domain while 

simultaneously ensuring high prediction accuracy and minimum data requirements. 

The results obtained are consistent with the simulation comparison, thus verifying the 

reliability of the entire optimization process. 

1. Introduction 

Underwater vehicles play an important role in high-value commercial applications in ocean engineering, 

such as ocean exploration and surveying, engineering monitoring, intervention operation, and engineering 

maintenance [1–3]. Based on the control method, underwater vehicles can be broadly categorized into two 

types: Autonomous Underwater Vehicles (AUVs) and Remotely Operated Vehicles (ROVs) [4]. Currently, 

several new vehicles, such as Autonomous and Remotely-operated Vehicles (ARVs), Hybrid Remotely 

Operated Vehicles (HROVs), and Underwater Gliders (UGs), have been developed to meet particular 

engineering needs. [5–7]. 
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Underwater vehicles require precise control in complex environments. Therefore, improving the 

hydrodynamic performance of the main structure is important for most forms of underwater vehicles. 

Computational Fluid Dynamics (CFD) is considered to be the best tool for optimizing the shape of underwater 

vehicles under complex hydrodynamic environments [8]. Although ROVs consist of an integrated design of 

modules, they are often poorly designed in terms of the hydrodynamic performance. For AUVs with their own 

energy systems, resistance reduction is desirable because less energy consumption means longer working 

hours [9]. In practical applications, it is necessary for AUVs and ROVs to meet the requirements of different 

tasks [10]. In contrast to ROVs and AUVs, ARVs have various control modes and flexible operation modes, 

making them applicable and extensible in ocean engineering. ARVs normally have two operational modes, 

i.e., the remotely operated mode and the autonomous-operated mode [11]. In the autonomous-operated mode, 

ARVs can be used in a wide range of search and monitoring applications. In the remotely operated mode, 

ARVs can be used for detailed inspection and simple maintenance. For the routine maintenance of large 

offshore engineering projects, such as offshore wind power development, large-scale docks, and marine 

ranching, the real-time communication and whole-process monitoring of vehicles are essential. The synergy 

of real-time communication monitoring and autonomous operation in an ARV optimizes its capabilities and 

broadens its range of applications. 

As a new concept of underwater vehicles, research on ARVs is still in the early stages. Some well-

known related products include Nereus HROV, Nereid UI, Taser, and Haidou [12]. Nevertheless, similar 

concepts have been applied and recognized in engineering fields [6,13]. ARVs should be developed while 

considering the shape design because of their unique energy system [14]. Improved hydrodynamic shapes 

facilitate the prediction of the hydrodynamic performance of ARVs, thereby reducing the difficulty of control, 

which makes it possible to engage in more complicated operations for ARVs. The numerous studies on AUVs 

and ROVs have guiding value for ARV design because of the special operational characteristics and design 

requirements of ARVs. 

The hull shape of underwater vehicles directly affects many important factors, including the structure, 

general arrangement, vehicle weight, manoeuvrability, etc. Therefore, multidisciplinary and multi-objective 

optimization designs are more frequently adopted. Multidisciplinary design for disciplinary coupling and 

multi-objective design for specific requirements have proven that hydrodynamic optimization of underwater 

vehicle shapes should receive more attention and be developed further. Zhang and Song [15] calculated 

gradients under a multidisciplinary feasible architecture using the discipline-merging method and obtained the 

optimized design of a new underwater vehicle. Luo et al. [16] adopted a collaborative optimization method to 

improve the resistance and manoeuvrability of underwater vehicles. To validate its effectiveness, Hu and 

Huang [17] presented a multidisciplinary optimization framework that covers multiple disciplines, including 

the hydrodynamics, structure, and energy requirements, and an AUV was developed based on the results of 

the proposed framework. As the entire shape optimization process requires a large amount of data to ensure 

reliability and accuracy, surrogate models and simulation analysis are widely used in small design domains. 

Furthermore, kriging [18], radial basis functions [19], response surfaces, gene expression programming [20], 

Artificial Neural Networks (ANNs), and other surrogate models have been applied in the hydrodynamic 

optimization of underwater vehicles. A dynamic surrogate based on the trust region and lower confidence 

bound is also a good practice [21]. The application of these methods significantly reduces the computational 

cost of hydrodynamic simulation and lays the foundation for the rapid and efficient shape design of underwater 

vehicles. Genetic algorithms and ANN algorithms are widely applied in relevant fields. Wu et al. [22] 

proposed an improved genetic collision avoidance algorithm to address the problem of Autonomous Surface 

Vehicles (ASVs) in congested sea areas. ANN models have demonstrated excellent performance in predicting 

the resistance of ships [23–25]. 

Furthermore, underwater vehicles are affected by various dynamic loads during operation. This situation 

is more prominent when working in shallow water. Moreover, the effects of waves and currents should not be 

overlooked during the design of underwater vehicles. Some scholars have made contributions to related 

research. Joseph et al. [26] measured the wave-induced forces and moments on various cross-sectional shapes 

experimentally and found that the heaving force of the revolution body was much smaller than that of the 



Jian Liu et al. Brodogradnja Volume 75, Number 3 (2024) 75301 

 

3 

 

square and asymmetric structures in most cases. Alvarez et al. [27] investigated the optimum hull shape of an 

underwater vehicle moving near a free surface and obtained the wave resistance of the revolution body using 

a first-order Rankine panel method. Shariati et al. [28] studied the effect of appendages on the hydrodynamic 

characteristics of an underwater vehicle near a free surface and concluded that appendages significantly 

increase the total resistance. Improvements in shape optimization can reduce wave-induced loads and 

resistance, which is important for underwater vehicles. 

The purpose of this paper is to study the optimization of the shape of an ARV for improving the 

hydrodynamic performance without an initial model. Based on the characteristics of the objective function 

and data composition in the design process, an optimization process combining multiple surrogate models is 

adopted to strike a balance among the data volume, prediction accuracy, and stability. The Pareto solution 

frontier for waves and yawing conditions is obtained by tending towards small dimensionless forces (𝐺(𝑥)) 

and a larger volume (𝑉). Dimensionless objective values are adopted for comparison to confirm that the 

method has good engineering applicability. The core of the optimization process is completed by open-source 

code. The remainder of this paper is organized as follows. In the second section, the design principles and 

methods employed are introduced. In the third section, details on the simulation calculations and verification 

are provided. In the fourth section, the complete design optimization process is presented. Finally, conclusions 

are provided in the last section. 

2. Hydrodynamic optimization of the ARV shape 

2.1 Design requirement 

2.1.1 Design principles 

The ARV operation system consists of three parts, namely, the ARV body, the free surface co-module, 

and the information processing centre, as shown in Figure 1. The ARV and the free surface co-module form 

a complete operation framework that is connected by a cable. Cables are still an economical and reliable choice 

for operational depth and underwater communication considerations. The free surface co-module includes 

necessary parts such as communications devices and main power, while the configuration of the ARV is 

similar to that of ROVs. In particular, certain measures are essential for an ARV, including a distinct backup 

power module. The ARV operation system can be used to perform tasks under different work requirements. 

Moreover, optimizing the shapes of ARVs to improve their hydrodynamic performance is important for 

ARVs. 

 

Fig. 1  The prototype of the ARV concept 

ARVs have the advantages of two control modes, and the following factors must be considered during 

their design process: 

• Adjustable speed; 

• Larger monitoring area; 

• Longer working hours; 
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• Control performance; 

• Carrying capacity. 

A better hydrodynamic performance is the foundation for achieving the above goals. 

2.1.2 The conditions of the sea zones 

According to the environmental parameters monitored in a particular offshore wind farm in the South 

China Sea, the corresponding conditions were specified as the design basis, as shown in Table 1. The data 

closely resemble the wave data observed without typhoons in the literature [29]. The majority of existing 

offshore wind farms are located at water depths less than 20 m [30]. Therefore, three typical operating 

conditions were analysed in detail, with consideration given to the specific marine environment and 

application. The expected velocity of the ARV was 2 m/s. The detailed parameters of the operating conditions 

are shown in Table 2. These parameters were utilized to evaluate the hydrodynamic performance of the ARV 

shape. 

Table 1 Environmental parameters of the wind farm 

Parameter type Values 

Water depth (m) 20 

Annual average significant wave height (m) 0.8 

Significant wave period (s) 5.5 

Table 2 The parameters of the working conditions 

Parameters Case 1 Case 2 Case 3 

Water depth (m) 20 20 20 

Wave height (m) - 0.8 - 

Period (s) - 5.5 - 

Operating depth (m) 10 10 10 

Wave form - Fifth order Stokes wave - 

Relative velocity (m/s) 2 2 2 

Yaw angle (°) 0 0 5 

2.2 Theoretical methods and models 

2.2.1 Artificial Neural Network 

ANNs have been widely applied in modern surrogate models, with one advantage being that they 

consume a trivial amount of computational effort [31]. As an aid to CFD, they greatly improve the 

optimization efficiency. Their accurate generalization and parallel computation capabilities in complex 

engineering design problems are helpful in the rapid investigation of the design space [32]. By mimicking the 

learning process of organisms, ANNs consist of an input layer, one or more hidden layers, and an output layer, 

each with one or more neurons, in which the computed values are propagated from the input neuron to the 

output neuron. 

The predicted outputs given by the ANN are shown as follows [33]: 
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where 𝑈𝑖 is the input vector, 𝑎𝑖 represents the results after the nonlinear mapping of an activation function 

𝐻(∙), 𝑍𝑖 denotes the results after linear mapping for each layer, 𝑊𝑖 represents the weight matrices, 𝑏𝑖 denotes 

the bias vectors, and 𝑌̂ is the predicted output vector. 

2.2.2 Regression Kriging (RK) 

The kriging model is an interpolation model with few assumptions, so it has high applicability in many 

design fields [34,35]. RK is a hybrid interpolation technique that combines regression methods and kriging 

techniques. Regression is used to fit the explanatory variation, and kriging is used to fit the residuals. RK has 

a stronger explanatory performance than does ordinary kriging. It can be represented as follows [36]: 
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where 𝑧̂(𝑠0) is the predicted value of the objective variable, 𝑚̂(𝑠0) is the fitted drift, 𝑒̂(𝑠0) is the interpolated 

residual, 𝛽̂𝑘 represents the estimated drift model coefficients, 𝜆𝑖 denotes the kriging weights determined by 

the spatial dependence structure of the residual, and 𝑒(𝑠𝑖) is the residual at location 𝑠𝑖. 

2.2.3 Genetic Algorithm (GA) 

GAs have been applied in many fields, mimicking the Darwinian theory of the survival of the fittest in 

nature. The basic elements of GAs are chromosome representation, fitness selection, and biologically inspired 

operators [37]. GAs have a better global search capability, flexibility, and robustness. They can adjust the 

encoding, selection, crossover, and mutation combined with engineering requirements, so they are popular in 

engineering applications. 

2.3 Preliminary design and design logic 

2.3.1 Shape structure and constraints 

The preliminary shape was designed based on the principles of streamline shape designs. It consists of 

a head, body, and tail, which can change the characteristics of different areas of the surrounding flow field to 

achieve the design goals. The head and tail were constructed using two planar ellipses, and the body parts 

were connected by spline curves. The preliminary shape is a conceptual model class rather than an initial 

model with clear parameters. This will enhance the possibility of our optimization while also increasing its 

complexity. The parameters of the model are shown in Figure 2, where the blue coordinate system represents 

the local coordinates of the ARV. The surrogate models took geometric parameters as inputs. 
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a) Vertical view of the ARV   b) Side view of the ARV 

 
c) Three-dimensional view of the ARV 

Fig. 2  The detailed diagram of the ARV model parameters 

The relationships among the parameters are as follows: 
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2.3.2 Optimization problem description 

Considering the operation characteristics of shallow water vehicles and the design principle of ARVs, 

the forces and moments were selected as important references for measuring the hydrodynamic performance. 

At the same time, several typical operating conditions were analysed to ensure that the designed ARV shape 

still had good practical value in the real situation of shallow water operation. The dimensionless forces and 

moments are expressed as follows: 
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where 𝑓𝑟(𝑥) denotes the resistance of an ARV while sailing along the x-axis (Case 1). 𝑓ℎ(𝑥) and 𝑀𝑝(𝑥) 

represent the heaving force and pitching moment, respectively, under wave conditions (Case 2). 𝑓𝑠(𝑥) and 

𝑀𝑦(𝑥) represent the transverse force and yawing moment, respectively, under yawing conditions (Case 3). 

Moreover, the moment centre is chosen at the top of the tail. Table 2 provides detailed information on the 

operating conditions of the ARV. 𝑐𝑠, 𝑐𝑤 and 𝑐𝑦 are the weights under different operating conditions, all of 

which were set to 1 in this paper. Obviously, the water density 𝜌, gravitational acceleration g, and maximum 

length L are constants, so G(x) can be regarded as a combination of the unit volume force performance, which 

is helpful for evaluating the real hydrodynamic performance of the shape of the ARV. A larger cabin means a 

higher carrying capacity, and it can provide favourable conditions for the modular design of ARVs to 
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accommodate multiple monitoring and operation requirements. Therefore, minG(x) and maxV were chosen as 

the optimization functions. 𝐹𝑟  is the dimensionless resistance. 𝐹  denotes the scalar sum of dimensionless 

heaving and transverse forces, and 𝑀 signifies the scalar sum of dimensionless pitching and yawing moments. 

They were utilized to assess the hydrodynamic performance of the ARV shape under various operating 

conditions. 

2.3.3 Optimization process 

The whole optimization process of the ARV shape design was divided into two parts. The initial step 

was to reduce the design domain based on the core performance. The second step involved establishing a high-

fidelity surrogate model under multiple operating conditions and obtaining the Pareto optimal solutions. 

A. Reducing the design domain based on core performance 

The large design domain increases the possible design choices of ARVs. However, this approach also 

involves a large number of design variables and high computational costs. Thus, this approach was not 

worthwhile especially for some abnormally designed candidates, so the preliminary selection of a large design 

domain was necessary. The large design domain in this paper encompassed all the models that met the length 

constraint requirement. The difficulty of large design domains is balancing sample data costs, component data 

sparsity, and model reliability. ANNs are suitable for predicting large-scale and highly complex models [31]. 

ANNs and GAs were used together in this part. The data samples were supplemented by regions in batches 

using the optimal Latin hypercube sampling method, which conformed to minimizing the predictor. This 

approach could not only add as little sample data as possible but also present local gradient changes in real 

data to a greater extent. A more accurate surrogate model with as few computational costs as possible was 

built. Therefore, an improved design domain was obtained. This stage required a large amount of data, so we 

considered only the performance of a single core. In this stage, the hydrodynamic performance (𝐺(𝑥)) in Case 

1 was evaluated as the core performance and the minimized 𝐺(𝑥) value in Case 1 was regarded as the 

optimization criterion. The data obtained through steady-state calculations were utilized to train and test the 

ANN surrogate models. The geometrical parameters of the shape models were the inputs of the ANN, while 

the values of core performance (𝐺(𝑥) in Case 1) of the shape models were the outputs of the ANN. 

B. Establishing a high-fidelity surrogate model under multiple operating conditions 

After Stage A, the improved design region was generally small, and the unknown objective functions 

could be considered random continuous distributions. Considering their distribution characteristics, the 

kriging model was used to predict the objective function. In this stage, typical operating conditions such as 

shallow water waves were considered. The focus of this stage is on evaluating the hydrodynamic performances 

(𝐺(𝑥)) in Cases 2 and 3, which were determined via unsteady calculations. Finally, Pareto optimal solutions 

were obtained to ensure better overall performance of the vehicle body. 

The entire design logic process is shown in Figure 3. 

 

Fig. 3 Optimization process 
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Notably, the algorithm implementation and data extraction were conducted in Python, the geometric 

models were generated via SolidWorks, and STAR-CCM+ was used to obtain the hydrodynamic performance 

as the training and test data for the predictive models. The core of optimization was developed in open-source 

code, and the entire framework had good scalability and portability. 

3. Numerical calculation of the hydrodynamic performance 

3.1 Computational domain and boundary conditions 

The computational domain was selected and adjusted according to Reference [38]. The inlet boundary 

was positioned 2.5 L upstream from the top of the head, and the outlet was located 6.5 L downstream. The 

side boundary was 3 L from the central axis of the vehicle, which was set as a symmetry plane. The surface 

of the vehicle was set as a non-slip wall. The details of the computational domain are shown in Figure 4. 

Notably, the results were compared with those of a larger computing domain (1.5 times the side length), and 

the difference between them was less than 2%. Therefore, the selection of the computational domain was 

reasonable. 

Furthermore, the upper and lower boundaries as well as the inlet were set to vary with changes in the 

Stokes wave pressure and velocity to simplify the effects of waves. Therefore, the changes in the flow velocity 

and pressure at the boundary can be simulated. Given the working depth of the ARV, this simplification was 

necessary. 

 

Fig. 4 The computational domain 

3.2 Hydrodynamic model, grid, and grid independence study 

The computational model was based on the Reynolds Averaged Navier‒Stokes (RANS) equations. The 

finite volume method of the separated flow solver was used to solve the three-dimensional viscous flow field. 

The k-ω shear stress transport (SST) turbulence model was adopted in this paper. This model accurately 

resembles actual situations. Thus, it has become the model used by many scholars [9,17]. The pressure-

velocity coupling was based on the SIMPLE (Semi-Implicit Method for Pressure-Linked Equation) algorithm. 

And the second order upwind scheme was used for the spatial discretization of the momentum equations. The 

convergence criterion of the steady calculation was {RMS} < 1e-6, and the maximum number of iteration 

steps was set to 1500. In unsteady calculations, the criteria are as follows: {RMS} < 1e-5, a constant time step 

of 0.02 s and a maximum number of time steps of 150. Additionally, the maximum number of iterations per 

time step was 10. Notably, the maximum time step in the wave conditions was set at twice the period. 

In this study, trimmed meshing is employed with a prism layer. The ARV surface mesh was mainly 

composed of rectangular elements with some unstructured meshing. The meshing was segmented into zones, 

with finer mesh sizes near the model surface. This method can ensure the computational economy of the grid 

construction method. The grid was generated as shown in Figure 5. The y plus for the first layer of the elements 

from the ARV shape was less than 3. 
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a) Global meshing       b) Local meshing of the boundary layer 

Fig. 5  Meshing 

One of the best models in the database was utilized for grid independence analysis. Four grid 

configurations were systematically generated to study grid independence. The specific parameters of the grids 

are shown in Table 3. They were studied at a current of 2 m/s. 

Table 3 Grid data for grid independence 

Parameters Grid 1 Grid 2 Grid 3 Grid 4 

Total cells 1.08e+6 1.39e+6 1.79e+6 2.30e+6 

Expansion ratio 1.3 1.3 1.3 1.3 

Number of prismatic layers 20 20 20 20 

Prismatic layer near wall Thickness (m) 5e-5 5e-5 5e-5 5e-5 

Grid refinement factor - 1.29 1.29 1.29 

As shown in Figure 6, the resistance decreased with mesh refinement. From Grid 2 to Grid 3, the 

deviation in the calculation result was approximately 3%, which indicated that the calculation results were 

reliable. The calculation equation for the resistance difference ratio 𝑅(𝑖,𝑖+1) is as follows: 

1
, 1

1

R i i
i i

i

Ft Ft

Ft

+
+

+

−
=    (5) 

where 𝐹𝑡𝑖 is the resistance calculated from Grid 𝑖. 

 

Fig. 6 Variation in the resistance difference ratio with mesh refinement from Grids 1 to 4 

3.3 Verification and validation 

Due to the challenges presented by large design domains, two models were chosen for verification and 

validation analyses. Model 1 represented the model with better hydrodynamic performance in the database, 

while Model 2 represented the model with average hydrodynamic performance in the database. The scale 

models are depicted in Figure 7. 

The grid Convergence Index (GCI) method is known to be an acceptable and recommended method for 

the estimation of discretization errors in CFD simulations [39]. Model 1 in Case 1 was utilized for GCI 
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verification, Table 4. Grid 2, Grid 3, and Grid 4 were used for verification by the GCI. Finally, considering 

error and computational convergence, Grid 3 was selected for analysis. 

Table 4 The results of the grid independence simulation 

Parameters Values 

𝑟32 1.29 

𝑟43 1.29 

𝜙2 6.69 

𝜙3 6.55 

𝜙4 6.42 

𝑝𝑎 3.69 

𝜙𝑒𝑥𝑡
32  6.78 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
32  1.71% 

Models 1 and 2 were utilized in scaled wind tunnel experiments to verify the resistance force without 

any yawing angle. The scaling ratio was 1:5. The experiment was conducted in a wind tunnel, as shown in 

Figure 7. The detailed parameters are shown in Table 5. The Reynolds number range for the wind tunnel 

experiments was 5.80e4 to 1.16e5. The same grid settings were scaled according to the characteristic length 

ratio, which was applied to the wind tunnel model. A comparison between the simulation and experimental 

results is shown in Figure 8, which reveals that the simulation results were consistent with the experimental 

results. It was evident that the boundary layer variations and the flow field distribution could be accurately 

represented by grid division. The same operation was applied for the validation of the suboff model, and the 

experimental data were obtained from [40]. The suboff model is a structure with typical streamline shape 

characteristics that has been widely used by scholars for optimization and validation. The Reynolds number 

range in the suboff model experiments was 3.36e6 to 9.07e6. The errors between the simulation results and 

experiments were less than 5%, as shown in Figure 9. When the boundary layer variations and flow field 

distribution can be accurately represented by grid division, the cases still have a good predictive ability in a 

large Reynolds range. 

The validation study of wave-induced loads is based on the experimental data from [41]. The body used 

for wave testing was an 11.43 cm diameter circular cylinder with hemispheric end caps and a total length of 

1.143 m. Moreover, the parameters for the wave experiments are presented in Table 6. The same grid settings 

were scaled according to the characteristic length ratio for wave validation. Considering the differences in the 

length-to-width ratios of the models, the computational domain was intentionally reduced below the free 

surface, and satisfactory results could still be obtained via simulation. A comparison of the experimental and 

simulation results is shown in Figure 10. 

The comparison results validated that the CFD simulation could produce reliable and accurate solutions. 

Notably, comparisons between the simulation cases with time steps of 0.02 s and 0.005 s were carried out as 

part of the validation and verification study. It is evident from Figures 8, 9, and 10 that the results of both were 

essentially the same. The time step was set to 0.02 s due to accuracy and computing resource considerations. 

 

Fig. 7 The wind tunnel experiment 
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Table 5 The parameters of the wind tunnel 

Parameters Values 

Overall dimension (m) 4.55*1.4*1.9 

Experimental area (mm) 400*300*700 

Maximum wind speed (m/s) 35 

Wind speed error (m/s) ±0.15 

Test force error (N) ±0.01 

Turbulence intensity <1% 

Table 6 The parameters of the wave experiments 

Parameters Values 

Section radius (m) 0.05715 

Total length of the model, L (m) 1.143 

Wave height (m) 0.0508 

 

 

Fig. 8 Comparison of the experimental and calculated values in the wind tunnel 

 

Fig. 9 Comparison of the experimental and calculated values for the suboff model 
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Fig. 10 Comparison of the wave experiments and simulation results 

Notes: In the table, 𝐶𝐹𝑧
 represents the wave-induced maximum heaving force coefficient, 𝐶𝐹𝑥

 represents 

the wave-induced maximum resistance coefficient, and 𝐶𝑀𝑦
 represents the wave-induced maximum pitching 

moment coefficient. 

4. Results and discussion 

4.1 Reducing the design domain 

In this part of our study, we aimed to obtain an improved design domain with lower costs. Therefore, 

considering the resistance of the vehicle body as the core performance was acceptable for autonomous systems 

such as ARVs. The dimensionless force (𝐺(𝑥)) calculated from the steady-state simulation in Case 1 was 

utilized to assess the hydrodynamic performance of the ARV shape. 

The initial data size was 300. To minimize the predictor principle, the sample data were added 28 times. 

It is worth emphasizing that three methods were adopted to prevent the results from converging to local 

optima. The minimum and suboptimal points were obtained through multiple GA searches, and samples were 

taken 10 times around each point. The data sampling range adopted the gradually decreasing selection strategy. 

Data points in the random regions outside the optimal region were added. The final dataset size was 920, and 

the optimal value could be stabilized within the improved domain. 

    

Fig. 11 Convergence history of ANN training    Fig. 12 Comparison between the predicted and  

objective values 

Considering the possible subsequent data expansion, the numbers of hidden layers and nodes were 

determined. The ANN model had five hidden layers, each layer had 60 neurons, and the activation function 

was the Exponential Linear Unit (ELU). The output layer did not specify an activation function. The optimizer 

in the ANN model was Nadam, which combines the Nesterov Accelerated Gradient (NAG) and Adaptive 

Moment estimation (Adam). The learning rates were adaptive. The settings gave the ANN model good 

predictive performance in predicting resistance. Training was halted when the mean absolute error (MAE) of 

the dimensionless force was less than 5.1e-4, with a resulting resistance error of approximately 0.1 N. There 

was not much hyperparameter optimization performed in this part, despite comparing various settings. 
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However, these were futile before an improved design domain was obtained. Due to the unique data structure 

resulting from the supplementary law, a randomly selected 10% of the data was considered to be the test set. 

Figure 11 displays the variations in the MAEs for both the training and test datasets during the training of the 

ANN model. The MAEs of both the training and test sets were stable within an acceptable range. Because the 

supplemented data can be used to satisfactorily minimize the predictor, the model had a greater ability to 

improve the design domain, as shown in Figure 12. 

The improved design domain was determined by the combination of GA searches and simulation data. 

The predictive performance of the trained ANN model remains consistent after multiple data additions, and 

the results of the GA searches approached the actual optimal solution domain. These findings implied that the 

ANN model adeptly captured the resistance, aligning with our expectations in this stage. Using this method, 

an improved design domain was established with a range of 10 mm, and the details of its centre are shown in 

Table 7. Figure 13 illustrates the Euclidean metric graph, depicting the relationship between the centre of the 

improved domain and the results during the last five GA searches. All the last five search results fell within 

the improved design domain. It is worth noting that the GA integer search was employed in this paper, which 

partly mitigated the risk of encountering local minimums and enhanced the search efficiency. In the GA 

integer search, the population size was 200, the number of iterations was 50, the selection operation was 

tournament selection, and the crossover factor and mutation factor were both 0.5. 

 

Fig. 13 The convergence process of the GA search 

Table 7 The details of the improved design domain 

Parameters Values 

𝐿1(mm) 80 

𝐿2(mm) 70 

ℎ1(mm) 115 

ℎ2(mm) 140 

𝑤1(mm) 145 

4.2 Establishing the surrogate model 

Waves and small-angle disturbances are inherent challenges for shallow underwater vehicles. One 

hundred sets of data on the hydrodynamic performance of the ARV body under Case 2 and Case 3 were used 

to establish the surrogate model, and these data were obtained from the simulation cases. In contrast to Stage 

A, the focus of Stage B is mainly on the accurate predictive ability of the model. The regression model in the 

RK model adopts support vector regression. A random search approach was employed to optimize the support 

vector regression and enhance the prediction accuracy of the RK model. Moreover, the predictive coefficient 

of determination (𝑅2) was employed to evaluate the confidence of the surrogate models. This validation 

method analysed the correlation between the surrogate model outputs and expected outputs. Ten percent of 

the data were utilized for validation purposes. The R2 values for each surrogate model validation are presented 

in Table 8. In the table, 𝐹𝑧 and 𝑀𝑦 denote the peak heaving force and pitching moment during a single cycle 

in Case 2. 𝐹𝑦 and 𝑀𝑧 represent the transverse force and yawing moment, respectively, in Case 3. 𝑉 represents 
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the volume of the model. The reference coordinates and origin are depicted in Figure 2. All 𝑅2  values 

exceeded 95%, validating the surrogate model’s robust adaptability and precise prediction performance across 

various prediction targets. 

Table 8 𝑅2 values for each prediction target 

Prediction target The values of𝑹𝟐 

𝐹𝑧 97.2 

𝑀𝑦 99.3 

𝐹𝑦 96.5 

𝑀𝑧 97.2 

𝑉 98.2 

 
a) Error analysis of 𝐹𝑧      b) Error analysis of 𝑀𝑦 

 
c) Error analysis of 𝐹𝑦      d) Error analysis of 𝑀𝑧 

 

e) Error analysis of 𝑉(m3) 

Fig. 14 Error analysis of the prediction targets 

Figure 14 shows the predicted results obtained by the surrogate model in comparison with the test data. 

The maximum relative error occurred at 𝐹𝑧 in Case 2, with a value of 3.29%. The maximum absolute error 

observed in Case 3 for the 𝐹𝑦 parameter was approximately 1.27e-3, which corresponded to a transverse force 
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of approximately 0.25 N. The predicted values agreed well with the test data, proving that the surrogate models 

have high prediction accuracy and strong generalizability. 

 

   
a. Scatter plot of the Pareto frontier b. X-Z projection plane c. Y-Z projection plane 

Fig. 15 Pareto optimal solution for the stability and carrying capacity of the vehicle body 

Table 9 The comparison between predicted targets by the RK model and simulation results 

Parameters Solution 1 Solution 2 Solution 3 Solution 4 

𝐿1(mm) 76 75 75 85 

𝐿2(mm) 70 75 65 75 

ℎ1(mm) 110 115 110 120 

ℎ2(mm) 145 145 135 145 

𝑤1(mm) 150 150 150 150 

𝐹 0.05441 0.05754 0.05837 0.06557 

Predicted𝐹 0.05346 0.05938 0.05734 0.06595 

𝐹 error (%) -1.75 3.19 -1.77 0.58 

𝑀 0.06228 0.06359 0.06547 0.06674 

Predicted𝑀 0.06313 0.06419 0.06535 0.06842 

𝑀 error (%) 1.38 0.95 -0.19 2.52 

𝑉 (m3) 0.02174 0.02202 0.02043 0.02214 

Predicted 𝑉 (m3) 0.02159 0.0219 0.02061 0.02186 

𝑉 error (%) -0.69 -0.54 0.88 -1.26 

Notes: In the table, F denotes the scalar sum of dimensionless heaving and transverse forces, and M signifies 

the scalar sum of dimensionless pitching and yawing moments. 

The Pareto optimal solution is a crucial concept in multi-objective optimization problems because it 

represents the optimal trade-off point for balancing diverse objectives. In the design of small ARVs in shallow 

water, the stability, control ability, and carrying capacity are crucial performance factors. Hence, it is necessary 

to more fully consider the overall performance during the design process. For the sake of visual presentation, 

the forces and moments under Case 2 and Case 3 were combined separately to create a Pareto solution frontier 

that encompassed dimensionless forces (𝐹), dimensionless moments (𝑀), and volumes. The Pareto solutions 

tend towards a small dimensionless force, a small dimensionless moment, and a large volume. The technique 

of combining the NSGA-II and GA integer search was employed, and the Pareto solution frontier was 

ultimately obtained after 50 iterations, as depicted in Figure 15. In the ideal Pareto solution set of the improved 

design domain, the variation in the range of 𝐹 was the largest, at greater than 12%. 𝑀 exhibited a variation 

range exceeding 6.5%. The change in the vehicle volume was less than 3.5%. It should be noted that there was 

a substantial range of variability in the moment and volume during the simulation and RK models of 13% and 

8%, respectively, providing ample space for candidate solutions. Considering the Pareto frontier and the 

improved design domain, four representative solutions were chosen for comparison with the predicted values 

of the RK model. Solutions 1 and 2 were the points on the Pareto frontier. Solution 1 had the lowest predicted 
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value of 𝐹, while Solution 2 had a higher predicted value of 𝐹. They are depicted as green dots in Figure 15. 

The parameters in Solution 3 were the minimum values that could be achieved for all the parameters except 

𝑤1 in the improved design domain. In contrast, those in Solution 4 were the maximum values. The results are 

shown in Table 9. By verifying these shape models, it was evident that the RK model had a high prediction 

accuracy near the Pareto frontier and over the improved design domain.  

4.3 Performance analysis of the optimization results 

The models on the boundaries of the improved design are represented by Solutions 3 and 4. Solution 1 

represents the better overall performance model. More details of Solutions 1, 3 and 4 were compared. The 

outcomes of these analyses have significant reference value for design purposes. 

Figure 16 is the comparison diagram (on the XOZ plane) of flow field details during the moment of 

maximum heaving force experienced by the model in Case 2, where the velocity vector fields are presented 

using the line integral convolutions. The three models consistently showed a flow field distribution with a 

higher fluid velocity along the spline positioned on the upper and lower sides. Among them, the flow velocity 

transition in Figure 16(c) is more gradual, with a reduced difference between the upper and lower surface flow 

velocities, leading to a decreased level of wave-induced force in Case 2. The flow velocity at Point A in Figure 

16(a) was lower, and the distance between Points A and B was greater, resulting in a weakened influence 

between them. Consequently, the flow velocity influence area depicted in Figure 16(a) was smaller than that 

in Figure 16(b). The variation in height will inevitably impact the location of the separation point. Moreover, 

due to the nature of wave motion, relying on the separation point as a definitive reference for analysis is not 

feasible. 

   
a) Model of Solution 1 b) Model of Solution 3 c) Model of Solution 4 

Fig. 16 The comparison of the flow field details in Case 2 

   
a) Model of Solution 1 b) Model of Solution 3 c) Model of Solution 4 

Fig. 17 The comparison of the flow field details in Case 3 

Figure 17 shows a comparison diagram of the flow field details in the XOY plane obtained by the model 

for Case 3. The transverse force in the local coordinate system of the model was a combination of axial forces 

in the x and y directions in the global coordinate system. The flow field distributions on both sides of the three 

models were essentially the same. However, the projected area in the XOZ plane in the local coordinate system 

decreased in the following order: Solutions 4, 1, and 3. The fluid separation point was moved forward in 

Figure 17(c), resulting in a larger wake area. Considering both factors, the transverse forces in the local 

coordinate system exhibited an increasing order as follows: Solutions 3, 1, and 4. 

5. Conclusions 

In this study, a multi-surrogate model approach was employed to optimize the hydrodynamic 

performance of an ARV shape without an initial model. To enhance the engineering applicability of our 
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method, dimensionless objective values were used. The programming is based on open-source code, making 

the entire process highly extensible, transparent, and applicable for further research. 

The optimal Latin hypercube sampling technique was applied to construct the original dataset for the 

ANN surrogate model. By employing a GA integer search and the principle of the minimum prediction factor, 

the ANN surrogate model was progressively enhanced and expanded. After multiple iterations and updates, 

the ANN surrogate model can reliably predict global trends to obtain an improved design domain. RK models 

based on a support vector product were then constructed to improve the spatial correlation of the data and 

minimize data requirements. The RK models exhibited excellent applicability under various operating 

conditions. 

Within the improved design domain, we focused on the multi-objective optimization of hydrodynamic 

performance. The Pareto frontier of the optimized design domain was obtained through the application of the 

NSGA-II algorithm and a GA integer search. The optimization results are consistent with the simulation 

results, confirming the effectiveness and reliability of the optimization process. In the Pareto frontier solution, 

the variation in the range of force F is greater than 12%, M exhibits a variation range exceeding 6.5%, and the 

change in the vehicle’s volume is less than 3.5%. Therefore, engineering requirements should be developed 

to place more emphasis on the design and optimization of the overall performance. 

This study confirmed the design and optimization process of the hydrodynamic shape of an ARV. Future 

research will focus on the optimization of hydrodynamic performance and the principle of underwater vehicles 

in more complex situations. Furthermore, the authors will also focus on creating a system that provides a more 

overall evaluation of the performance of underwater vehicles. 
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