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A B S T R A C T  

The prediction of manoeuvring performance for safe navigation and effective design 

of ships increasingly depends on artificial intelligence (AI), mainly digital twin 

technology. This technology requires a digital model of the physical ship. The 

hydrodynamic coefficients and parameters of these models are commonly obtained 

through two experimental methods: the planar motion mechanism (PMM) and the 

circular motion test (CMT). These methods are time-consuming and expensive, which 

may not be feasible during the early stages of the design process. This study 

investigates a cost-effective alternative approach to these methods by implementing a 

grey box method on ships. For the first of these implementations, a full-scale tanker 

ship was applied with artificial training data of zigzag manoeuvres. A validation study 

was carried out by comparing the simulation and free-running model test results of the 

tanker. For the second of these implementations, a scale model of a car carrier was 

selected, and several numerical search methods were combined to obtain a more 

accurate digital model. The 3-degree-of-freedom (DOF) Manoeuvring Modelling 

Group (MMG) models identified through this combination were validated with 

simulations and compared with the free-running model test results for various 

manoeuvres. The contribution of this study lies in the accurate capture of the 

manoeuvring characteristics of the physical model, which is achieved through the use 

of the adjustment interval and the combination of various numerical search method of 

the grey box method. Consequently, the developed model can be used in future studies 

as a faster decision-making tool for determining the straight-line stability or instability 

of a ship in the ship design and in predicting the manoeuvring performance of the ship.

1. Introduction 

The growing global adoption of electric vehicles is aimed at reducing the carbon footprint of passenger 

vehicles, thereby increasing the importance of car carriers in transporting these vehicles to ports [1]. The use 

of new technologies such as digital twins on surface ships has the potential to help stop the rising global 
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warming threat by reducing CO2 emissions and to increase maritime safety by preventing possible ship 

collisions in marine environments [2]. As vehicle carriers are also expected to become autonomous as a result 

of digitalisation, in this study emphasises the importance of predicting and simulating the manoeuvring 

characteristics of car carriers with a digital model in order to meet the increasing demands of marine 

transportation.  

Various methods are used to predict surface ship manoeuvrability, including database and model testing 

[3] methods such as empirical formulas [4], full-scale trials [5], free-running model tests [6], System 

Identification (SI) [6], captive model tests like Planar Motion Mechanism (PMM) [7], and Circular Motion 

Test (CMT) [8], as well as virtual captive model tests (VCMT) [9] . Each method offers unique insights. 

Firstly, empirical methods, which are based on model scale experiments or full-scale sea trials, are typically 

employed at the preliminary design stage. Although empirical methods provide preliminary information about 

the ship’s manoeuvring and course-keeping ability, their sensitivity is low. The use of such formulas carries 

the risk of erroneous results when the data limits are exceeded [10]. It is necessary to supply the hydrodynamic 

forces and derivatives from the captive model test when the limits are far from those of the database [3]. 

Secondly, full-scale trials represent a valuable source of real-world data for the assessment of whether a ship 

complies with the International Maritime Organization (IMO)'s recommended manoeuvring characteristics at 

the final stage of the design cycle. The advantage of full-scale trials is that the scale effect between the full-

scale ship and its scale model can be avoided [11]. Nevertheless, test environments with wind, waves, and 

currents where calm water conditions cannot be achieved during full-scale sea trials present a challenge, as 

they require more processing of measurement data, such as trajectory correction, compared to scale model 

tests carried out in the manoeuvring basin [12]. Thirdly, free-running test results can provide directly assess 

inherent directional stability [13] and manoeuvring performance, only requiring a large enough basin or lake 

to carry out manoeuvres in good weather conditions, such as calm water. However, they do not provide data 

on the effects of hull and appendages separately. First of the captive methods, PMM can determine the 

complete set of hydrodynamic coefficients of a ship moving through a fluid [13]. It also provides essential 

data related to the effects of the hull and appendages separately. Also, the other captive method of CMT 

reduces uncertainties regarding hydrodynamic forces and moments because it has zero motion frequency [14]. 

Despite the advantages of captive tests, they are expensive [13] and require a quite wide towing tank in order 

to prevent boundary effects from the walls of the towing tank [15]. Final method, system identification, is the 

process of deriving the parameters of the ship motion equations describing a ship's characteristics through the 

application of mathematical optimization [16]. In contrast to a large number of captive model tests, the SI 

method provides an opportunity for the estimation of all coefficients and parameters with the use of a single 

or a few free-running tests [17]. While identification can be achieved through model-scale free-running tests, 

SI can also be accomplished with full-scale sea trials and simulation data [18]. SI methods can be economical 

alternatives for determining hydrodynamic coefficients and parameters compared to captive tests [19]. 

However, this approach also has disadvantages. Although mathematical model with the determined 

coefficients and parameters can accurately predict the ship’s manoeuvrability, as evidenced by the 

experimental test results, there is a possibility that the determined coefficients and parameters may differ from 

the actual values [16]. Following a comprehensive evaluation of the available methods, it can be concluded 

that the SI method represents the superior alternative to other methods in terms of its highly effective, useful, 

and cost-effective approach for determining coefficients and parameters. 

SI methods range from simple determinations to complex algorithms [20] and can be divided into three 

categories [21,22]. The initial method, white-box modelling, also called parametric models [23], usually refers 

to a mathematical model [24] and is completely based on physical laws. Furthermore, white box modelling 

can eliminate the scale effect and improve the accuracy of the prediction appropriately [22]. However, despite 

these advantages, white box modelling may be subject to excessive computation in the calculation of 

coefficient values [24]. A further category, black box models, also called non-parametric models [23], can be 

flexible and easy to implement, but on the other hand, they are completely data-driven and have poor 

generalisation properties due to their lack of physical meaning [22]. Grey box modelling lies between white 

box modelling and black box modelling and grey box modelling takes the strengths of both models and avoids 

their disadvantages. Moreover, grey box modelling can be used in the creation of digital twin based models 

for the control and prediction of ship motion [21]. Also, in grey box modelling, a mathematical model 
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representing the known part of the system is established to ensure rapid generalisability [22]. In light of these 

evaluations, the present study seeks to investigate the application of grey box modelling through the use of 

appropriate mathematical models. 

Various conventional mathematical models are available to represent ship manoeuvrability. These 

models are commonly used by naval architects, ship designers, and ship operators to improve ship designs and 

enhance ship handling and safety. Nomoto et al. [25] developed linear [26] and nonlinear models. The linear 

model is widely used in ship autopilots due to its simplicity. However, it is only valid for small yaw rates and 

sway velocities because of its linearity. Additionally, there are two other commonly used methods for 

consideration: the Abkowitz model developed by Abkowitz [26] and the MMG model proposed by Ogawa 

and Kasai [27] and later described by Yoshimura [28], Yasukawa and Yoshimura [14]. The Abkowitz model 

considers the hull, rudder, and propeller as a single rigid body, whereas the MMG Model divides them into 

separate components, including the hull, propeller, and rudder [28]. The primary challenge in the Abkowitz 

and MMG mathematical manoeuvring models has been estimating hydrodynamic coefficients, also known as 

manoeuvring derivatives, accurately. To overcome this difficulty, variety of grey box SI methods have been 

proposed as alternatives to aforementioned captive model tests.  

Notable various methods from grey box modelling among SI methods are presented in this part of the 

study. In the study of Milanov [29], the author successfully applied the offline grey box method, precisely the 

Trust Region Reflective Newton Optimization (TRR) method, which is one of the SI methods, to KRISO 

Container Ship (KCS), a benchmark ship. In another study of Efremov and Milanov [30], the authors also 

applied the same TRR method to a surface vessel equipped with twin propellers and rudders. On these two 

studies, the ship dynamics were identified for determining Abkowitz’s mathematical model coefficients and 

validated with turning manoeuvre data. These studies also demonstrated the effectiveness of the TRR method 

in capturing and simulating the 3-DOF ship dynamics. It is important to highlight that Milanov [29] and 

Efremov and Milanov [30]  accessed the initial coefficients in TRR through PMM test. The study of Liu et al. 

[31] presented an overview of the identification process. They compared the capabilities and challenges of 

offline grey and black box methods for determining the coefficients of Abkowitz’s mathematical model of the 

the second variant of the MOERI tanker KRISO Very Large Crude Carrier (KVLCC2) using zigzag maneuver 

data. Zhang et al. [32] implemented the target-oriented crow search algorithm for determining the second-

order linear and nonlinear Nomoto model coefficients of fast ferry. Their study demonstrated a precise offline 

method for accessing a ship’s heading angle and yaw rate data, which is beneficial for autonomous navigation 

control systems of ships and for determining the Nomoto model coefficients with less data. However, their 

study is limited to control applications. Alexandersson et al. [33] used advanced offline methods, such as the 

Extended Kalman Filter (EKF) with a Rauch Tung Striebel (RTS), to obtain the coefficients of linear, 

Abkowitz, and modified Abkowitz mathematical models for a twin-screw wind-powered car carrier (wPCC) 

with good stability and symmetrical hydrodynamic manoeuvring forces. Chen et al. [34] presented an offline 

grey-box model based on the 4-DOF MMG model, utilizing the least square support vector machine (LS-

SVM) method by implementing different levels of noise to the training datasets of SR108 container ship for 

parameter identification, and demonstrated the model’s robustness under disturbance. In order to generate the 

artificial training datasets, the researchers conducted simulations of zigzag manoeuvres with rudder angles 

ranging from 10   to 30  . Zhang et al. [35] explored online grey-box modelling with SVM to Abkowitz 

mathematical model for capturing 3-DOF ship manoeuvring motion of the Mariner ship model, compared 

online and offline SVM, and demonstrated that the performance of their proposed online SVM on the data of 

20 / 20     zigzag manoeuvre was preferrable to the offline SVM. Chillcce and Moctar [36] applied an offline 

LS method to identify the coefficients of the 3-DOF Abkowitz mathematical model of the KVLCC2 tanker. 

The training data used in their study were obtained from numerical simulations, which differed from the 

measurement data often subject to noise. The simulations included a 10 / 10   zigzag manoeuvre and were 

validated with 35 / 35     zigzag manoeuvre and 35   turning circle test.  Chillcce and Moctar [36] obtained 

the initial coefficients for fine-tuning through the literature. In their study, they applied the lower and upper 

bounds on the hydrodynamic derivatives that varied between 1.00  and 1.00  in their study. Sutulo and 

Guedes Soares [37] presented an offline genetic algorithm (GA) method to identify the artificial virtual ship’s 
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parameters of a 3-DOF mathematical model using artificial training data of a 30 / 30     zigzag manoeuvre. 

In their research, the upper and lower bounds of the mathematical model were extended to different ranges, 

starting from 1.00  to 1.00  and extending from 10.00  to 50.00 . Their study demonstrated that the 

implementing extremely large ranges resulted in a significant search difficulty. Moreover, they emphasised 

that the spiral test is paramount importance in evaluating the efficacy of mathematical models. Han et al. [22] 

proposed an offline grey-box model based on the 3-DOF Abkowitz model. Furthermore, they employed a 

data-driven model for hydrodynamic correction terms developed with a feedforward neural network using 

data from free-running model tests. Their findings demonstrated enhanced prediction accuracy.  Jiang et al. 

[24] presented a multi-objective optimal input design method aimed at improving both the accuracy and 

robustness of model and accuracy and identifying the offline grey-box model based on 4-DOF MMG 

mathematical model for SR108 container ship, and incorporating the correlation factor to minimize the 

parameter drift. Their findings demonstrated the superiority and efficacy of the proposed method in terms of 

generalizability. 

According to the authors of this study, considering the cited publications on predicting ship 

manoeuvrability based on grey box modelling, more comprehensive studies are needed to examine ship 

manoeuvring characteristics by determining the parameters of the 3-DOF MMG model for a single-screw ship, 

which is a car carrier that exhibits dynamic instability. The authors of this study highlight that the TRR method 

is not combined with free-running test data in parameter estimation of car carriers as a significant shortcoming. 

Another point to consider is that research on car carriers has not adequately focused on capturing and assessing 

course-keeping ability using the pull-out manoeuvre and spiral tests. This spiral test was emphasized in the 

study of Sutulo and Guedes Soares [37] as being of great importance in evaluating the effectiveness of 

mathematical models. In order to compensate for these gaps, the TRR grey box modelling of the SI method 

was applied to identify the parameters of the 3-DOF MMG mathematical model, which differs from the 

mathematical models used by Milanov [29], and Efremov and Milanov [30], for car carrier in this study. 

This study implemented a 20 / 20     zigzag manoeuvre on the car carrier model using the grey box 

model and verified it with turning circle tests using 35   starboard and 35   port rudder angle, pull-out tests, 

and spiral tests. The study differs from Milanov [29] and Chillcce and Moctar [36] in terms of the verification 

data used. Unlike Milanov [29] and Chillcce and Moctar [36], who obtained the initial coefficients through 

PMM tests and literature, this study empirically estimated initial coefficients. The identification procedure is 

similar to that used by Milanov [29], and Efremov and Milanov [30], but combining search methods with TRR 

differs from those used in previous studies. In addition to the combined search method, the authors of this 

study focus more on obtaining a physically realistic solution, for which they applied constraints varied between 

8.00  and 1.50  on the hydrodynamic coefficients and parameters, specifically for the car carrier. The 

validation of this grey box model is carried on by predicting the zigzag manoeuvre of the KVLCC2 tanker 

with data on a rudder angle of 20 / 20     obtained from the open-source MANSIM tool [38]. The identified 

model was used to simulate the manoeuvre, and the results were compared to the literature provided for model 

scale in [39] and plotted for full scale in [38]. 

The paper is structured as follows: Section 2 describes the digital model of physical ship, and Section 3 

describes the system identification algorithm of the digital model separately. Section 4 presents numerical 

results and discusses them. Section 5 describes practical implications and future directions, while Section 6 

concludes the paper. 

2. Ship mathematical model 

The mathematical model developed by Yoshimura [28], Yoshimura and Masumoto [40], and Yasukawa 

and Yoshimura [14] can be used to predict and simulate the manoeuvring motions of a single propeller and 

single rudder ship in calm water.  The following subsections explain further details, including the ship motion 

coordinate system, variable non-dimensionalization, and equations for hydrodynamic forces and moments 

acting on the hull, propeller, and rudder. 
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2.1 Coordinate systems and non-dimensionalization 

The motion of a ship during manoeuvring involves two coordinate systems: space-fixed ( 0o - 0 0 0x y z ) 

and ship-fixed (o - xyz ). Both coordinate systems were used in this study, as described in detail by Yasukawa 

and Yoshimura [14] and shown in Fig. 1. The 0x - 0y  plane of  the space-fixed coordinate system was aligned 

with the calm water surface, and the 0z  axis was oriented vertically downward. The ship-fixed coordinate 

system o - xyz  was defined by the origin o located at the midship of the ship with the x -axis oriented towards 

the bow of the ship, the y -axis towards the starboard side of the ship, and the z -axis downward of the ship. 

The velocity components in the ship-fixed coordinate system can be transformed to the space-fixed coordinate 

system using the equations 0 ( cos sin )u u v   and 0 ( sin cos )v u v    where   is the heading angle 

between the 0x  and x  axis. 

 

Fig. 1  Earth-fixed and ship-fixed coordinate systems [14] 

In this study, hydrodynamic forces and moment acting on the hull, propeller, and rudder, as well as the 

mass, added mass, moment of inertia, and added moment of inertia, are non-dimensionalized, as expressed in 

the study by Sukas et al. [38]. The prime symbol ( ' ) next to the parameters of motion equations indicates their 

non-dimensionalization. The hydrodynamic forces X  and Y  are non-dimensionalized by 
2(1/ 2) U Ld , while 

moment N  is non-dimensionalized by 
2 2(1/ 2) U L d . The velocity components surge, u , sway, v , yaw rate, 

r , are non-dimensionalized for u , and v  by U  and for r  by U L . Additionally, the mass and added mass 

are non-dimensionalized by 
2(1/ 2) L d , while the yaw moment of inertia and added yaw moment of inertia 

are non-dimensionalized by 
4(1/ 2) L d . The variables used are U  for the total speed of the ship,   for the 

water density, L  for the length between perpendiculars, and d  for the ship’s draught.  

2.2 Motion equations of the dynamic model 

The 3-DOF MMG model, known for incorporating nonlinear aspects and capturing hydrodynamic 

interactions in ship manoeuvring, is employed in this study by utilizing Eq. (1), which includes the 

hydrodynamic surge force of X and sway force of Y , and the yaw moment of N , as presented in the study of 

Sukas et al. [38]. Due to the calm water test conditions, heave, pitch, and roll motions are neglected. Simulation 

studies by Wu et al. [41] support the validity of this 3-DOF MMG model by adding wind and wave terms, 

which can be used to prevent collisions between multiple autonomous surface vehicles in wind and wave 

conditions. 
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( ) ( )

( ) ( )

( ) ( )

x y G

y x G

zG G z G

m m u m m vr x mr X

m m v m m ur x mr Y

I x m J r x m v ur N

    

    

    

         (1) 

Here, zGI  represents the yaw moment of inertia and is assumed to be approximately 
2(0.25 )m L  for 

typical merchant ships. The dot notation ( ).  indicates the time-dependent derivatives of the relevant 

parameters. In Eq. (1), Gx  represents the longitudinal coordinate of the ship’s center of gravity, as given in 

Table 1, where m  represents the mass of the ship, while xm  and 
ym  represent the added masses resulting 

from the ship’s motion in the x  and y -directions, respectively. The empirical formulas given in Eq. (2) 

presented in the study by Sukas et al. [38] were used to calculate the added mass values of xm  and 
ym  and 

their value of the coefficients are presented in Table A.1 for the car carrier. In Eqs. (2) and (3) use the main 

particulars of the ship, which are described in Table 1 as L , B , d , and BC . 

 

 

0.05

0.882 0.54 (1 1.6 0.156 1 0.673

0.826 1 0.678 0.638 1 0.669

x

B B

y

B

m m

d L

B B
m

d L d d L d

B B B B B B

C C

m

C



  
     

  
    
       

    

    (2) 

In Eq. (1), ZJ  defines the added yaw moment of inertia, and the value of the coefficient is calculated 

for the car carrier using the empirical formula in Eq. (3) taken from Sukas et al.’s [38] study and presented in 

Table A.1.  

2
1

(33 76.85 (1 0.784 ) 3.43 (1 0.63 ))
100

z B B B

L
J m C C C

B

 
     

 
    (3) 

The 3-DOF motion in Eq. (1) can be expressed in matrix form as follows: 

 
2

0 0 0 0 0

0 0 0

0 0 0

x

y G x

G zG G z G

m m u u X

m m x v m m u v Y

x I x m J r x

m

m m ru N

         
         

   
         
                   

                                     (4) 

The first term of the right-side of Eq. (4) represents the mass matrix M . Eq. (4) is rearranged so that the 

acceleration matrix is remained on the left-hand side, as shown in Eq. (5). 

 

11

33 32

23 22

1
0 0

( )

0
det det

0
det det

y G

x

G

M
u X m m vr rx

M M
v Y m m ur

M M
r N x m

M M

M

m

M

r

ur

 
 
       

    
      
        
 
 

      (5) 

The determinant of matrix M , denoted by det M , is explained in Eq. (6) as: 

22 33 23 32det M M M M M          (6) 

The values of 11M , 22M , 23M , 32M , and 33M  are calculated by the following formulas: ( )xm m , 

( )ym m , ( )Gx m , and 2 )( zG G zI x m J  , respectively.  
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X , Y , and N , stated in Eq. (1) can be subdivided due to MMG’s modular structure as follows: 

H P R

H R

H R

X X X X

Y Y Y

N N N

  

 

 

          (7) 

The MMG mathematical model considers hydrodynamic forces and moments in a modular way, as 

shown in Eq. (7). The forces and moments given on the right-hand side of Eq. (7) are denoted by the subscripts

H , P , and R  representing the contributions of the hull, propeller, and rudder, respectively as stated in [38]. 

In this model, it is assumed that the propeller only provides forward thrust on the x -axis, in which case, PY  

and PN  are zero.  

The sub-sections following Eq. (7) explain the different methods used to obtain each hydrodynamic 

force and moments in the second matrix on the right-hand side. 

2.2.1 Hull forces and moment 

The forces acting on the hull, HX , and HY , and the moment HN , are expressed as the first and third-

order polynomial functions of sway velocity v  and yaw rate r  are as follows [38]: 

2 2 4

0

3 2 2 3

3 2 2 3

H vv vr rr vvvv

H v r vvv vvr vrr rrr

H v r vvv vvr vrr rrr

X X X v X vr X r X v

Y Y Y r Y v Y v r Y vr Y r

N N N r N v N v r N vr N r

     

     

     

      (8) 

Here, 0X  is the resistance coefficient. Its value is calculated using the Holtrop Mennen method [42,43] 

to reliably estimate resistance in the early stages of ship design, as stated in Xhaferaj’s study [44].  

To obtain the hydrodynamic derivatives described in Eq. (8), captive model tests and the VCMT can 

be employed as an entry for the mathematical model [33]. However, as these methods are costly, they were 

not used in this study. In addition to the aforementioned methods, free-running and full-scale tests can also be 

used as inputs for the manoeuvring model. However, these two methods do not directly yield the 

aforementioned derivatives. As this study aims to identify these derivatives from free-running test data using 

the grey box method, which is a system identification method, it is necessary to provide estimated values for 

these derivative values at the beginning of the estimation process. Empirical formulas stated in Eqs. (9) and 

(10) were used in the present study to expedite the acquisition of the required values. To estimate the linear 

coefficient of hydrodynamic sway force acting on the hull HY  and the yaw moment HN , empirical formulas 

can be expressed as follows [38]: 

2

2

2

2

1.4
1

0.

2

1.0 4

5

4

v B

r

v

r

L

d

L

d

L
N

d

L
N

d

d B
Y C

L d

d
Y

L

d

L

d d

L L










 


  
  

   

 
 
  

 
 
  



 
   

 

  
       

  
      

 
 



  
  

   
 



         (9) 
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The empirical formulae for estimating the nonlinear coefficient of the hydrodynamic surge and sway 

forces acting on the hull HX , HY , and the yaw moment HN  can be expressed as follows [38]: 

 

 
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0.008
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



 
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



 


 


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0.056
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  
  

  

 
 

 

  
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

  

  
  

                    (10) 

Table A.1 in Appendix 1 presents the estimated linear and non-linear coefficients of the car carrier 

calculated using the empirical formulae mentioned above. 

2.2.2 Propeller and rudder forces and moment 

The force due to the propeller in the x-axis of PX  is expressed as follows: 

 1P P PX t T                         (11) 

Here, Pt  represents the propeller thrust reduction coefficient and is considered to be 0.2700 for the car 

carrier as stated in Sukas et al.’s [38] study. PT  represents the thrust propeller and is calculated using the 

empirical formula shown in Eq. (12) as given [38]. 
2 4

P P TT n D K                        (12) 

Here, the thrust coefficient TK  is presented as a second-order polynomial function of the propeller 

advance ratio, PJ . TK  can be calculated as follows: 

2

0 1 2T P PK k k J k J                      (13) 
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The propeller model used in this study for the car carrier is within the specified ranges, namely blade 

numbers Z  ranging from 2 to 7, blade area ratios 0EA A  ranging from 0.30 to 1.05, and pitch ratios PP D  

ranging from 0.5 to 1.4, to evaluate the TK  for Wageningen B-series propeller models. The coefficients 0k , 

1k , and 2k  for expressing TK  for the car carrier were estimated as 0.4084, -0.2917, and -0.1211 from the 

propeller series above mentioned according to the polynomials given in the study of Oosterveld and Van 

Oossanen [34]. Where PJ  can be calculated as follows: 

P
P

P

u
J

nD
                (14) 

Here, Pu  represents inflow velocity to propeller as follows: 

 1P Pu wu                         (15) 

where Pw  is the wake coefficient of the propeller. The wake coefficient Pw , which varies during the 

manoeuvre, is given as follows [38]: 

 2

0 exp 4P P Pw w                       (16) 

Here, 0Pw  is the effective wake fraction, which can be estimated, using the empirical formula as stated 

in the study by Sukas et al. [38].  

0 0.5 0.05P Bw C                      (17) 

where P  is the geometrical inflow angle to the propeller as stated in the study by Dai et al. [9], and can be 

calculated as follows: 

'P
P

x
r

L
                        (18) 

Here   represents the drift angle of the ship and can be calculated by the formula
1tan ( )v u   as stated in the 

study by Dai et al. [9], while Px  represents the distance of the propeller from the midship.  

The modelling of the hydrodynamic surge force  on the x -axis, sway force  on the y -axis, and 

the yaw moment  on the z -axis induced by the rudder are calculated using the following equations [38]: 

 

 

 '

sin

c1 os

cos

1R R N

R H N

R R H H N

X t F

Y a F

N x a x F







  

  

  

                   (19) 

Here, Rt , Ha , and '

Hx   are the hull-rudder interaction parameters, and can be calculated using empirical 

formulae as presented in the study by Sukas et al. [38]: 

'

3.6

0.

39

0

0.

4

R

H B

H

t

a C

x

B

L





 

                     (20) 

RX RY

RN
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For the car carrier, Rx  is the longitudinal coordinate of the rudder position, and can be approximated as 

2L  as presented in the study by Yoshimura and Masumoto [40]. Where NF  represents the rudder normal 

force as defined by Sukas et al. [38] and is as follows: 
2 si0.5 nN R R RF A U f                     (21) 

Here RA  represents the rudder profile area, and f  represents the rudder lift gradient coefficient and 

can be calculated as presented by Sukas et al. [38]: 

6.13

2.25
f 



Λ

Λ
                     (22) 

where Λ  represents the rudder aspect ratio, RU  represents the inflow velocity to the rudder and is calculated 

as follows [38]:  

2 2

R R RU u v                       (23) 

where R  is effective inflow angle to the rudder and is as follows [38]: 

 1tanR R Rv u                        (24) 

Here, Ru  and Rv  are components of the inflow velocity to rudder. The lateral component Rv  can be 

calculated as follows [38]: 

R R Rv                         (25) 

where R  is the flow-straightening coefficient of sway velocity for the rudder. The upper and lower values for 

the  coefficient are as follows [38]: 

2

2

2

2

2 2 2
23.708 83.84 173.72 71.64 157 261.11

2 2 2
6.8736 16.77 3.5687 4.68 253.14 74.83

upper

lower

R B B B

R B B B

d d d
C C C

L L L

d d d
C C C

L L L





     
          

     

     
          

     

                 (26) 

where R  represents the effective inflow angle to the rudder in manoeuvring and is as follows: 

' '

R Rl r                        (27) 

Here, '

Rl  is the flow-straightening coefficient of the yaw rate for the rudder and can be calculated as 

follows [38]: 

' 1.7 1.2R B

B
l C

L
                      (28) 

The longitudinal component Ru  can be calculated as follows [38]: 

   

2

2

8
1 1 1 1 1T

R P P

P

K
u u w

J
   



   
         

   

                (29) 

Here   is the ratio of the effective wake fraction in the way of the propeller and rudder and can be 

calculated as follows [38]: 

 02.26 1.82 1 Pw                        (30) 

R
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where   represents the ratio of propeller diameter to rudder span.   is an experimental constant for expressing 

longitudinal component Ru  and  can be calculated by the following formula [38]: 

 0

0.55

2.26 1.82 1 Pw
 

   
                   (31) 

3. System identification method 

The fundamental principle of the SI process is to fit the coefficients and parameters of a mathematical 

model to observed input and output data through optimization, as shown in Fig. 2. The process of SI requires 

inputting a signal ( )u t  into the system and observing the output ( )y t . The input u  of the process is the 

measured rudder angle of the ship ( ) , while the outputs are the measured velocity components of the ship (

u , v , and r ), which constantly change depending on time. Then, the predicted response of the digital model 
ˆ( )y t  at each time step is then compared with the actual system output.  

 

Fig. 2  Diagram of the system identification process for ship manoeuvring 

3.1 State-space representation of grey box model 

To initiate the SI process, it is necessary to construct a continuous-time state space representation, which 

is a mathematical model of a physical system [45]. The general form of a state-space model can be expressed 

as follows:  

      
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
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
  

                 

   







 
 
  

           (32) 

Here,   is the parameter vector to be identified during the SI process, and (0)x  is the value of the initial 

state used by the solver at the starting point. The first equation, ( )x t , represents the state equation of the digital 

model, while the second equation, ( )y t , represents the observation (output) equation. ( )u t  is the input vector 

and equal to the rudder command,  . The state equations of the 3-DOF MMG model are as follows in more 

detail, 



Input,  
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 

               (33) 

Selecting state variables 1( )x t u , 2 ( )x t v , and 3( )x t r , the observation equations of 3-DOF MMG 

can be written as follows: 

   

   

   

2

1

3 3

1

2

y t x t

y t x t

y t x t







                     (34) 

3.2 Optimization methods 

The coefficients and parameters of the 3-DOF MMG model are estimated by minimizing the sum of 

squares of the errors between observed and predicted outputs as described by Ljung et al. [46]: 

 
 

   
2

1LB,UB
ˆmin

N

t
t y t y t





                    (35) 

Here, ( )t  represents the prediction error, N  represents the size of the training data, and .  indicates 

the 2-norm of a vector. Estimating the coefficients and parameters of the 3-DOF MMG mathematical models 

is often formulated as a nonlinear least-squares problem, which aims to fit predictions to observations in a 

given training set. The cost function of parameters, ),( N

NV Z , of the nonlinear least squares problem without 

regularization is as follows [47]: 

   2

1

1 1
, ,

2

NN

N t
V Z t

N
  


                     (36) 

where 
NZ  is the training dataset. The regularised nonlinear least squares cost function is [48]: 

       
T

2

1

1 1 1ˆ , ,
2

NN

N t
V Z t R

N N
        


                   (37) 

where  , R , and    represent the regularization options of the grey box method in MATLAB. A higher 

value of the multiplication of   and R  reflects the confidence in the initial estimates of the parameters. 

Nominal selection keeps the estimated values close to their initial estimates. Eqs. (36) and (37) cannot be 

solved analytically in most cases and must therefore be solved iteratively using a numerical method such as 

the numerical minimisation path as follows [47]: 

     1ˆ ˆi i i
f  


                     (38) 

Here,  1ˆ i


  is the estimated parameter set at the ( 1)i  th iteration, denoting the estimate of the 

minimization point. Meanwhile,   is a positive constant adjusted to obtain a reasonable decrease in ( )V  , 

also known as the step size.  i
f  is the search direction determined based on the information from previous 

iterations concerning ( )V  , as stated by Ljung [47]: 

       
1

ˆ ˆi i i
f V V 


 


 


                   (39) 
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To determine the search direction f , common iterative search methods, known as Newton algorithms, 

use the gradient and the Hessian of ( )V  . Various Newton optimisation algorithms, including adaptive Gauss-

Newton (GNA) line search, gradient-descent (Grad) line search, sequential quadratic programming (fmincon), 

and Levenberg-Marquardt (LM) line search, are used in this study to minimise the cost function ),( N

NV Z . 

The gradient of the cost function is, according to Ljung [47], as follows: 

     
1

1
, , ,

NN

N t
V Z t t

N
    


                     (40) 

Here,   represents the gradient matrix of the cost function 
NV . To minimize 

NV , the search routine 

outlined by Ljung [47] iteratively proceeds as follows: 

          
1

1ˆ ˆ ˆ ,
i i i i i N

N N N N N NR V Z   


  
 

                   (41) 

where 
 ˆ i

N  is the i th iteration, while  i
N  is the step size to minimize the cost function 

NV . 
 i
NR  is a (d,d) -

matrix and modifies the search direction. The Hessian of the cost function is [47]: 

       T

1

1
, , ,

NN

N Nt
V Z t t H

N
     


                  (42) 

Once the gna line search method is selected in MATLAB, eigenvalues of the Jacobian matrix that are 

less than a certain threshold are neglected. 
 i
NR  as follows, according to Ljung [47]: 

    ˆi i

N N NR H                       (43) 

Here, 
NH  denotes Hessian, which is the second-order partial derivatives matrix. Eq. (43) is inserted 

back into Eq. (41), and the gna search routine can be written as [47]: 

           
1

1ˆ ˆ ˆ ˆ ,
i i i i i N

N N N N N N NH V Z    


  
 

                  (44) 

When the grad line search method is selected in MATLAB, the matrix 
 i
NR  is formed as follows, 

according to Ljung [47]: 

 i
NR I                       (45) 

where I  is the identity matrix, Eq. (45) is reinserted into Eq. (41), and the grad line search routine is 

simplified as follows [47]: 

          11ˆ ˆ ˆ ,
i i i i N

N N N N NI V Z   
                     (46) 

Once the lm line search method is selected in MATLAB, which is a combination of the Gauss-Newton 

and Grad methods, the matrix 
 i
NR  from Ljung [47] is: 

      ˆi i

N N NR H I                        (47) 

where   is a positive scalar that is increased until a lower value of the criterion is found. Eq. (47) is inserted 

back into Eq. (41), and the lm search routine can be written [47]: 

         
1

1ˆ ˆ ˆ ˆ ,
i i i i N

N N N N N NH I V Z    


   
 

                 (48) 
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Increasing the value of   results in a decrease in step size and a change in the search direction towards 

the gradient. When the lsqnonlin TRR search method is selected in MATLAB trust-region to the act of 

approximating the cost function [49], the general form for iterative search algorithms in Eq. (38) is rewritten 

as follows: 

1
ˆ ˆ
k k k ks                          (49) 

Here, k  represents the step size, while ks  represents the search direction. However, unlike other 

Newton line search methods, determining the second term of Eq. (49) is not easily expressed in closed form. 

The TRR method has an advantage in handling constraints compared to other line search methods, as stated 

in [47]. For a detailed algorithm of the TRR method, refer to the studies of Coleman and Li [50], Zhang and 

Zhang [51], and Gao et al. [52].  

3.3 Evaluation metrics of the system identification method 

Evaluating different models against each other is an essential step in SI. While visual inspection of the 

results can be helpful, quantitative assessment through numerical calculations is often preferred. One of these 

calculations, the normalized root mean squared error (NRMSE), is given in [47] as follows: 

ˆ
NRMSE

y y

y y





                    (50) 

where y  is the mean of the measured output data, this NRMSE assessment provides a measure between 0 and 

1 that indicates the similarity between the predicted and actual output data. A value of 0 indicates a perfect 

match between the prediction and the actual data. For measuring errors and model precision, the other 

calculation method is the mean squared error (MSE) as follows in [47]: 

   
1

1 1
MSE , ,

2

N T

t
t t

N
   


                    (51) 

Therefore, using Eq. (51) aims to find a model whose complexity gives the lowest combined model 

variance and bias. In addition, a calculation method is used to assess the quality of the models, which is 

Akaike's final prediction error (FPE) as described in [47]: 

 2

1

1
1 1 ˆFPE ,

2
1

p

N

Nt
p

n

N
t

n N

N

 








                    (52) 

Here, 
pn  denotes the number of parameters to be identified in the model. It also includes the number of 

estimated initial states. FPE is a metric for assessing the expected performance of a model on validation data. 

Pillonetto et al. [45] also give the Bayesian information criterion (BIC), also known as the minimum 

description length: 

        
1

1 1
BIC logdet , , log 2 1 log

2

N T

y pt
N t t N n n N

N
    



 
    

 
              (53) 

where 
yn  is the number of outputs of the model. The last method presented in this study is the corrected Akaike 

information criterion (AICc) instead of the commonly used AIC, which is defined by Pillonetto et al. [45] as 

follows: 

      
 

 1

11 1
AICc log det , , 2 log 2 1 2

2 1

N pT

p y pt

p

n
N t t n N n n

N N n
    



 
     

  
        (54) 
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Once the dataset size N  is small, this criterion is often more reliable for selecting the best model with 

optimal complexity among the identified models. 

3.4 Process of the system identification method 

This paper presents a powerful method to determine the hydrodynamic coefficients and parameters of a 

3-DOF digital MMG model. The key steps of the SI method are: 

 Select the training data to be identified from the manoeuvres and create an iddata object providing 

the input data u , which is the rudder angle of the ship  , and the output data y , which are the 

velocity components u , v , and r , as well as specifying the sampling interval. 

 For the representation of the ship's dynamics, construct the idnlgrey model based on physical 

knowledge of the 3-DOF motion in the following way: 

(1) Describe the ship dynamics, represented by the 3-DOF motion equation in matrix form, as a 

set of first-order differential equations in a function within a Matlab M-file named Ship.m. 

(2) Specify the number of model outputs and the states and the number of model inputs. 

(3) Define the matrix  , which consists of the coefficients and parameters of the 3-DOF MMG 

model, along with its boundaries . 

(4) Define the initial states of the velocity components u , v , and r  to represent the initial 

conditions at the start of the ship manoeuvring problem. 

(5) Define the idnlgrey model using the Ship.m file, which represents the state space of 

the 3-DOF MMG Model. 

 To apply an offline grey box identification method, follow these steps: 

(1) Create an estimation option set that specifies the search method of the grey box algorithm, 

regularization options, maximum iteration number, and gradient options. 

(2) Use the nlgreyest (or pem) command and lsqnonlin search method to estimate the 

parameters of idnlgrey model.  

 To compare the response of the idnlgrey models to the training and validation data as follows: 

(1) Use the goodnessOfFit command to check for errors and model precision by examining 

the NRMSE and MSE. 

(2) Continue the estimate by making a second call to nlgreyest (or pem) to improve the 

response of the idnlgrey models. Starting with TRR (lsqnonlin) and then applying 

GNA (gna), Grad (grad), SQP (fmincon), and LM (lm). Also implementing 

regularization options Lambda, R, and Nominal following TRR.  

(3) Select idnlgrey model based on the fit criteria (FPE, AICc, BIC) of models. 

4. Numerical results and discussion 

The mathematical model and process of SI, as described in the previous sections 2 and 3, have been 

applied to predict the manoeuvring performance of a full-scale KVLCC2 tanker and a scaled-model car carrier. 

The tanker, described in detail by Yasukawa and Yoshimura [14], is a 320 m full-scale ship. The car carrier, 

on the other hand, is a 4 m length model ship. Table 1 shows the principal geometric particulars of both ships.  

Table 2 shows the main specifications of single propeller single rudder ships. These ships are equipped 

with a right-handed single-screw with four blades. It should be noted that open-water tests for the propeller of 

the car carrier model used in this study have not been conducted at BSHC. 

 

 

 

 

ib
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Table 1 Nondimensional principal particulars of ships 

Description with symbol KVLCC2 Car Carrier Unit 

Ship length between perpendiculars, L , to 

beam, B , ratio 
5.5200 6.0000 [-] 

Beam, B , to draught, d , ratio 2.7900 3.0000 [-] 

The profile area of the movable part of the 

rudder, RA , to multiplied by the length, L , 

and draught of the ship, d , ratio 

0.0169 0.0200 [-] 

Block coefficient, BC  0.8098 0.7360 [-] 

Coordinate point of the centre of gravity, 

Gx , to Length, L , ratio 
0.0350 -0.0140 [-] 

Table 2 Main specifications of propeller 

Parameters KVLCC2 Car Carrier Unit 

Number of propeller blades, Z  4 4 pcs. 

Diameter, PD  9.860 0.132 m 

Pitch ratio, PP D  0.721 0.926 [-] 

The blade area ratio, 0EA A  0.431 0.615 [-] 

Propeller revolution, n  1.53 13.55 [1/s] 

The study tested a benchmark tanker and a car carrier for calm water manoeuvres. The training data for 

the full-scale tanker’s zigzag manoeuvres, with rudder angles 20 / 20    , were obtained using the open-

source simulation tool MANSIM [38]. The validation study of TRR method was performed using the free-

running results of the 1/45.7 scaled model tanker conducted by Maritime Research Institute Netherlands 

(MARIN) for The Workshop on Verification and Validation of Ship Manoeuvring Simulation Methods 

(SIMMAN 2008) [39]. The verification study of TRR method was performed using the car carrier. The free-

running tests of the car carrier with a NACA 0012 profile were carried out in the BSHC test basin, which 

measures 60 x 40 x 2.5 m. Standard manoeuvres suggested by IMO were performed in calm water conditions, 

with a water depth set to a depth/draught ( h d ) value of 2.00. Table 3 shows that the model test data are 

divided into training, validation, and verification sets. The training set consisted of the zigzag 20 / 20     

tests proposed in Källström’s [19] thesis study, while the verification set included the turning circle, pull-out, 

and spiral tests. The free-running test and simulation data were collected using a time series, which recorded 

the trajectory, total ship speed, heading angle ( ), rudder angle ( ), yaw rate ( r ), and propeller speed at 

0.100 and 0.136 (sec)  sampling intervals for car carrier and KVLCC2, respectively. While the tests and 

simulations of the car carrier’s free-running model maintained a constant forward speed of 1.20 (m / s) , 

assuming a constant propeller speed, the simulations of the KVLCC2 maintained a forward speed of 7.90 

(m / s) . The steering rate is set to 2.34 (° / sec)  for the full-scale ship KVLCC2 and 16.26 (° / sec)  for the car 

carrier in the model simulation tests. 

4.1 Application of system identification to KVLCC2 and car carrier 

The authors of this study suggested that linear derivatives are estimated more accurately in zigzag tests 

as the data is more linear than in the turning circle test, which is a non-linear manoeuvre. This impact is 

particularly pronounced in unsteady-state conditions typical of zigzag tests, requiring more precise 

estimations. The authors initially used the TRR method and then applied various line search methods to obtain 

a model, as the line search algorithm cannot handle bound constraints. The linear and nonlinear derivatives 

were estimated with these models, using the zigzag test data listed in Table 3 for Manoeuvre No. 1.a and 1.b 

for the KVLCC2 and car carrier, respectively. The required information, such as hydrodynamic derivatives 
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and parameters, for simulating Manoeuvre No. 1.a for the KVLCC2 tanker was obtained from the literature 

[38]. This includes the main dimensions, hydrodynamic properties and derivatives, propeller, and rudder 

parameters. The TRR method was used to identify the parameter matrix,  , for the simulation of Manoeuvre 

No. 1.a. of the KVLCC2 tanker. Furthermore, the TRR method and varied line search methods were used to 

determine the parameter matrix  , for the simulation of Manoeuvre No. 1.b. of car carrier. Here, 

T

0 vv vr rr vvvv v r vvv vvr vrr rrr v r vvv vvr vrr rrrX X X X X Y Y Y Y Y Y N N N N N N                      for KVLCC2 tanker and  

T

0

0 upper lower
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   

 
 
  

 for car carrier. 

Table 3 Experimental & simulation test program of car carrier model 

Manoeuvre 

No. 
Ship Type 

Manoeuvre 

Type 

Propeller 

speed (rpm) 

Commanded 

rudder angle 

(deg) 
Fr [-] Data type 

1.a KVLCC2 Zigzag 91.8 20 / 20     0.142 
Training, 

Validation  

1.b Car carrier Zigzag 813 20 / 20     0.194 Training  

2.a Car carrier 
Turning 

Circle 
813 35   0.194 Verification 

2.b Car carrier 
Turning 

Circle 
813 35   0.194 Verification 

3.a Car carrier Pull out 813 25 / 5     0.194 Verification 

3.b Car carrier Pull out 813 25 / 4     0.194 Verification 

4 Car carrier Spiral 813 35 / 35     0.194 Verification 

Accurately estimating initial parameters is crucial for commencing the model estimation process. To 

achieve more precise outcomes, it is recommended to impose upper and lower constraints on the parameter 

range with values closer to the actual value rather than using the default range of Inf / Inf  , as initially 

proposed by Ljung [49]. The authors of this study restricted the values of the hydrodynamic coefficient and 

parameters to realistic limits. The boundaries of coefficient and parameters for deep water were established 

according to Yoshimura's [53] and Yoshimura and Masumoto's [40] studies, as presented in Table A.1 for 

KVLCC2. Assuming that the ratio  2.00, which is between 1.5 and 3.0 in this study, represents medium 

deep water, the deep water to shallow water transition formulas specified in Taimuri et al.'s [54] study were 

applied, and the boundaries estimated by transition formulas of the coefficients and parameters were presented 

in Table A.1 for car carrier. The parameter estimation process started with initial numerical values given in 

Tables A.1 and A.2 in Appendix 1 for car carrier and KVLCC2 respectively and ended with fine-tuning of the 

parameters given in Tables A.2 and A.3 for KVLCC2 and car carrier respectively.  

4.2 Numerical results 

Once determining the coefficients and parameters of the mathematical model, idnlgrey models were 

created in the MATLAB environment, simulation studies were performed for the KVLCC2 tanker and car 

carrier. For this purpose, the grey box model was selected in the System Identification Toolbox library of the 

MATLAB/Simulink Library Browser. Then, the idnlgrey model from the MATLAB environment was 

embedded into the grey-box model in the MATLAB/Simulink environment as described by Ljung et al. [55]. 

Fig. 3 shows the scheme of the car carrier created by the authors of this study and used for simulation studies 

in MATLAB/Simulink. The ship’s trajectory and heading angle were derived by the simulation model at each 

time step by processing three velocities. The ode45 function was used as the ordinary differential equation 

solver. The simulation tests by the scheme shown in Fig. 3 were performed on two computers equipped with 

h d
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Windows 10 operating system. The specifications of the first computer are as follows: Intel(R) Core (TM) i7-

8750H processor with a speed of 2.20 GHz and 16 GB of memory. The second computer is equipped with an 

AMD Ryzen 9 3950X 16-Core Processor with a speed of 3.50 GHz and 64 GB memory. 

The time-dependent rudder command for the zigzag test of the KVLCC2 tanker and the car carrier was 

generated using the block of zigzag test rudder command with fin/rudder machinery from 

the Marine GNC Toolbox developed by Fossen [56], presented by Perez and Blanke [57] and evaluated by 

Perez et al. [58] library of the MATLAB/Simulink Library Browser, as shown in Fig. 4.  

 

Fig. 3  Simulation environment of the identified digital model with block diagram in MATLAB/Simulink 

 

 Fig. 4  Identified digital model with zigzag test rudder command block in MATLAB/Simulink 

 

Fig. 5  Identified digital model with fin/rudder machinery block in MATLAB/Simulink 

The fin/rudder machinery block was also utilized to produce rudder commands for the turning 

circle, pull-out, and spiral tests for the car carrier. As stated in [59], MATLAB Function block is used to 

implement command rudder angle at the beginning and when the ship's yaw rate reaches a steady state. 
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Fig. 5 displays the fin/rudder machinery block that was used in the pull-out test carried out in this 

study. 

4.2.1 Application of system identification to KVLCC2 and results 

The results obtained by applying the grey box identification method to determine the hydrodynamic 

derivatives of the 3-DOF manoeuvring motion are summarized for KVLCC2. All the necessary information 

for the simulation, including the propeller and rudder parameters for KVLCC2, was obtained from the 

literature [38]. The list of hydrodynamic derivatives from the application of SI to KVLCC2 is given in Table 

A.2 in Appendix 1.  

In this study, it was investigated whether the identification results could be improved by using the 

adjustment interval instead of the [ Inf , Inf ] value. Three models, IV 101, IV 102, and IV 103, were created 

for this purpose. The adjustment interval of IV 101 is [ Inf , Inf ], while that of IV 102 is similar to IV 101 

except for the 1b  value [ 0.23 , 0.21 ]. Here, ib  is an adjustment interval while non-dimensional resistance 

coefficient '

0X  has a lower bound of 0.23  and an upper bound of 0.21 . The adjustment interval of IV 103 

is given in Table A.2. Analysis of the result of 20 / 20     zigzag test identification showed that reasonable 

estimates were obtained from the non-linear models IV 101 and 102. However, the results were slightly 

improved by implementing the adjustment interval to the nonlinear model IV 103. The simulations of the three 

obtained models were compared with MARIN’s result given for SIMMAN [39] and with MANSIM [38] 

references. The reference data [39] were obtained from MARIN's 1/45.7 scale free-running model tests. The 

MANSIM tool [38] was used to perform full-scale simulations and obtained the results. The heading angle 

prediction performance of all identified models is illustrated in Fig. 6. SB represents system-based prediction 

as system identification in Fig. 6. As a consequence of SI implementation, for models IV 101 and IV 102, it 

was found that the signs of the non-linear derivatives changed with respect to the actual value, but that the 

linear coefficients did not change their signs, which made it possible to determine them more precisely. 

Moreover, in the comparisons made between the three models, it was found that the IV 101 and 102 had the 

lowest '

rN  value given in Table A.2, which was calculated to be 0.0356  for IV 101 and 102 models. These 

two models had the highest first overshoot angle (OS) of the same value of 37.73  (deg) as shown in Fig. 6. 

However, in Table A.2, model IV 103 was found to have the lowest '

vN  value and the lowest first OS of 

34.29  (deg) as shown in Fig. 6. As a result, while the criteria with the lowest AICc and BIC values indicated 

that models IV 101 and 102 were preferable to model IV 103 as shown in Table A.4, model IV 103 was 

captured first and second OS very close to the MARIN’s result given for SIMMAN [39]. This is confirmed 

by the NRMSE value of the yaw rate for model IV 103 as given in Table A.5. 

   

Fig. 6  Comparison of t  [sec] versus Heading   [deg]between the free-running model test of KVLCC2 and simulation with the 

identified model during a 20 / 20     zigzag test Manoeuvre No. 1.a 
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4.2.2 Application of system identification to car carrier and results 

The results obtained from applying the grey box identification method with the varied search algorithms 

to determine the hydrodynamic properties and derivatives of the 3-DOF manoeuvring motion are summarized 

for the car carrier in Table A.1. Five models, IV 201, IV 202, IV 203, IV 204, and IV 205, were created for 

this purpose. After performing a simulating Manoeuvre No. 1.b 20 / 20     zigzag test for the car carrier by 

using the simulation environment created by the authors in this study, shown in Fig. 3, the prediction accuracy 

of the digital models was compared. Poor estimates were generally obtained from models with line search 

directions, IV 202, IV 203, IV 204, and IV 205. An illustration of the results obtained by simulation with 

identified models is shown in Fig. 7. It can be seen that there are significant differences between IV 201 and 

other models. The model selection scores of the identified model with the TRR method, as well as the values 

of MSE and NRMSE for the surge and sway velocity, are differ from the KVLCC2 results; they are higher, as 

described in Table A.6. The reason can be that the training data of the KVLCC2 tanker was better than the car 

carrier model. The error results of IV 201 were the best among models IV 202, IV 203, IV 204, and IV 205 

with the lowest AICc, BIC, and FPE values as shown in Table A.7. It can also be concluded from Fig. 7 that 

the phase shifts in heading angles are generally caused by the mismatch in rudder execution times. 

Besides the option of various search algorithms, one of the estimation options of the grey box algorithm 

is the regularization option, which contains three terms,  , R , and   , defining the penalty term used. The 

penalty term 𝜃∗ with Nominal command is selected as model. A list of candidates λ and R values was 

generated to be tested. The TRR model with regularization options was estimated for each candidate set of 

regularization constants, and the models were compared to the validation data to determine if they fit. It is 

assumed that the value of the linear coefficients is more reliable than the non-linear coefficients to remain 

close to the initial guess. A higher value of the multiplication of   and R  was kept very close to the initial 

value of the parameters as stated [47]; it was concluded with a lower percentage fit to the validation data, such 

as for the drop in sway velocity from 75% to 50% as shown in Fig. A1 in Appendix 1. Thus,   was set to 

1.20, R  was set to 1.00 for linear coefficients and 0.001 for non-linear coefficients, and a variant of model IV 

201 was created with these regularisation options and named model IV 211. Furthermore, upon analysis of the 

predictions in the IV 211 model, which were obtained by applying regularization to the IV 201 model, it was 

observed that there was no additional improvement according to the model selection scores given in Table 

A.7. However, it can be seen that there is an improvement in predicting the yaw rate, as shown in Table A.6.  

It was observed that the prediction results of the IV 202, IV 203, IV 204, and IV 205 models were worse 

compared to IV 201, in Fig. 7.a and the fit criteria in Tables A.6 and A.7. For this reason, it was decided to 

perform the identification with model IV 201 before these methods and then apply these methods sequentially. 

In this way, four more different models were obtained, named IV 212, IV 213, IV 214, and IV 215. It can be 

seen that the improved variant of IV 201 significantly reduces the value of the MSE of the identified models 

IV 212, IV 213, IV 214, and IV 215 with the line search method compared to their initial models IV 202, IV 

203, IV 204, and IV 205, as shown in Tables A.6 and A.7. Although the criterion with the lowest value of 

AICc and BIC indicated that model IV 212 was preferable among the other models, as shown in Table A.7, 

model IV 215 was captured first OS very close to the free manoeuvring data of Manoeuvre No. 1.b as shown 

in Fig. 7.b. This is supported by the NRMSE value of the yaw rate for model IV 215, as given in Table A.6. 

Approximately the closest accuracies were thus obtained from the models combined with model IV 201. While 

EFD represents free-running data, SB represents system-based prediction as system identification in the 

following figures. 
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(a) Time series t  [sec] versus Heading   [deg], initial (b) Time series t  [sec] versus Heading   [deg], final 

Fig. 7  Comparison of time series between the free-running model test and simulation with the identified model varied search 

method during a 20 / 20     zigzag test Manoeuvre No. 1.b 

4.2.3 Verification results of identified models for car carrier 

Five simulations of IMO standard manoeuvres listed in Table 3, including turning circle, pull-out, and 

spiral tests, were each performed at constant speed for the car carrier. The free-running manoeuvre test data 

confirmed the verification of this method. These simulations utilizing the scheme shown in Fig. 3 used the 

updated parameters as given in Table A.1 for model IV 201 and Table A.3 for models IV 211, IV 212, IV 213, 

IV 214, and IV 215. Figs. 8, 9, and 10 show graphical comparisons of the free-running model with the 

simulation results for Manoeuvre No. 2.a and 2.b. It can be seen that the simulation results with identified 

models did not differ significantly. Based on all turning circle simulations, it was concluded that both the 

steady yaw rate and trajectory were predicted close to the free-running test data once the IV 213 was used 

instead of model IV 201. However, it was found that model IV 201, identified by the TRR method, was the 

best at predicting the speed of the ship model as shown in Figs. 8 and 9. 

   

Fig. 8  Comparision of the time series t  [sec] versus ship speed U  [-] at Maneuver No. 2.a (turning circle with rudder angle set 

on 35  ) measured in free-running model test and simulation by identified models. An enlarged version is shown on the right. 
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Fig. 9  Comparision of the time series t  [sec] versus ship speed U  [-] at Maneuver No. 2.b (turning circle with rudder angle set 

on 35  ) measured in free-running model test and simulation by identified models. An enlarged version is shown on the right. 

   

(a) Time series t  [s] versus Yaw rate r  [-]   (b) Trajectory /y L – /x L  [-] 

Fig. 10  Comparision of the yaw rate and turning trajectory at Maneuver No. 2.a and 2.b (turning circle to both sides) measured in 

free-running model test and simulation by identified models. 

Table 4 compares the non-dimensional turning indices, including advance ADV , transfer TR , tactical 

diameter TD , and drift angle at 360    of the models identified for the car carrier. Once the models were 

examined, it can be concluded that ADV  and TD  values for Maneuver No. 2.a were lowest in model IV 213, 

which had the lowest '

vY  value in Table A.3. Also, it can be deduced from Tables 4 and A.3 that a reduction 

in the magnitude of '

vN  can worsen some of the manoeuvring indices, such as the advance and transfer 

diameter of the turning circles. For example, model IV 211 has the lowest magnitude of '

vN  in Table A.3 with 

-0.1657 given and the highest indices ADV  and TD . 

Graphical comparisons of the free-running model with the simulation results are shown in Fig. 11 for 

Manoeuvre 3, a pull-out test to indicate the ship’s straight-line stability quickly. The simulation results with 

the identified models do not vary much. On the basis of both side-pull simulations, it was concluded that both 

the yaw rate and trajectory were predicted close to the free-running test data when model IV 213 was used 

instead of model IV 201. However, it was found that model IV 201, as identified by the TRR method, was the 

best at predicting the speed of the ship model as shown in Figs. 11.a and 11.b, similar to the turning test. It 

can also be concluded from Figs. 11.a, 11.b and 11.c that the phase shifts in ship speed and yaw rate from 

steady state to the end of the test are generally due to a mismatch in the time to execute the steering commands. 
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Table 4 Simulation results of turning indices 

Indices  Measured  Identified Version  IMO 

  
Model # 

200 
 

Model # 

IV 201 
IV 211 IV 212 IV 213 IV 214 IV 215   

/ADV L , 

35    
 2.3821  2.4769 2.5990 2.4655 2.4383 2.5408 2.4714  < 4.50 L 

/TD L ,  

35    
 1.8923  2.1773 2.2600 2.0098 1.9330 2.1627 1.9908  < 5.00 L 

/TR L ,  

35    
 0.9179  0.9201 0.9200 0.8634 0.8562 0.8900 0.8553  - 

 at 360   15.2962  16.6637 18.5609 16.2089 14.6498 18.3684 15.7484  - 

/ADV L , 

35     
 2.3744  2.4097 2.5238 2.3935 2.3666 2.4768 2.4008  < 4.50 L 

/TD L ,  

35     
 -1.7590  -2.1148 -2.1954 -1.9267 -1.8423 -2.0992 -1.9119  < 5.00 L 

/TR L , 

 
 -0.8538  -0.8912 -0.8905 -0.8323 -0.8250 -0.8727 -0.8251  - 

 at 360   -13.3562  -17.2190 -19.4226 -16.5925 -14.7321 -19.1371 -15.9556  - 

   

(a) Time series t  [sec] versus ship speed U  [-], portside  (b) Time series t  [sec] versus ship speed U  [-], starboard 

   

(c) Time series t  [s] versus Yaw rate r  [-]    (d) Trajectory /y L – /x L  [-] 

Fig. 11  Comparison of pull-out test case for car carrier, from simulation and free-running model test data of Manoeuvre No. 3 

35   
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The digital model accurately captures the dynamics of the car carrier, as demonstrated by the turning 

circle and pull-out tests. IMO standards specify that the tactical diameter TD  should not be more than five 

times the length of the ship; this study shows in Figure 10.b and Table 4 that both the free running test result 

of car carrier and the simulations with the identified digital models comply with this standard. The model 

demonstrated an asymmetry around the ship in its turning ability due to the screw propeller, despite the car 

carrier having a symmetric hull form and a symmetric NACA 0012 rudder profile. This resulted in a smaller 

diameter in the steady port side turn than in the starboard turn, as illustrated in Figs. 10.b and 11.d. This is 

further explored in Manoeuvre No. 4, where the spiral test simulation was initiated with the model on a straight 

course. The model’s rudder was adjusted to approximately 35   towards the starboard side and maintained 

until a steady yaw rate was achieved. While ITTC [5] recommends a maximum rudder angle of 25  , the 

rudder angle was subsequently reduced in 5  increments, and the process was repeated for both starboard and 

port sides up to 35 . Fig. 12 illustrates the actual measured data of the spiral test and the results of the spiral 

test’s simulations of the verification process, showing the response of the identified models to varying rudder 

angles. In the reverse spiral test, the width and height of the spiral loop were determined as shown in Fig. 12. 

Unlike the spiral test, instead of  rudder angle steps, the rudder was changed as decreasing   steps between 

 and , and   steps between   and amidships. This procedure was repeated from the counter-rudder 

port to the starboard side. The non-dimensional yaw rate in the spiral test was predicted to be closer to the 

free-running test data when model IV 213 was used instead of the IV 201 model. It is noteworthy that at a 

rudder angle ( ) of  , the non-dimensional yaw rate (
'r ) for the IV 213 model was 0.22, which is the closest 

value to the measured data of 0.170. The results of the spiral test and the pull-out manoeuvre indicate that the 

ship model exhibited poor course-keeping ability. Furthermore, the simulation of both spiral and reverse spiral 

test revealed that the yaw stability of the car carrier was low. 

   

Fig. 12  Comparison of rudder angle   [deg] versus yaw rate r  [-] of simulated spiral manoeuvring test data and free-running 

test data of Manoeuvre No. 4. An enlarged version is shown on the right. 

4.2.4 Assessment of straight-line stability 

According to Sutulo and Guedes Soares [60], it has been proposed that there is a correlation between 

straight-line stability and overshoot angle. Therefore, in this study, an adverse case, a correlation between 

straight-line instability and high overshoot angle, was investigated. The manoeuvring performance of the car 

carrier was assessed according to the IMO [61] requirements. The first OS angle of the car carrier exceeded 

25   at the 20     zigzag manoeuvre to assess the yaw checking and course-keeping ability of both 

actual measured data and identified models, as given in Table 5. 
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Table 5  1st OS angles of the car carrier in Zigzag 20       Manoeuvre No. 1.b 

 Measured  Predicted  Suggested 

by IMO 

Model 

# 

200  IV 201 IV 211 IV 212 IV 213 IV 214 IV 215   

1st OS 32.83°  35.04° 33.88° 31.31° 30.39° 35.17° 31.98°  25   

The straight-line stability, also known as the dynamic stability criterion, according to the studies of 

Kinaci and Ozturk [62], is as follows: 

    0v r G v rC Y N m x N Y m                            (55) 

The index C  was calculated, and the negative values in Table 6 show that the car carrier has not inherent 

dynamic stability. Nevertheless, the first OS angle value in Table 5 of the car carrier is larger than the IMO 

requirements, which can result from the negative value of the index 𝐶. The dynamic instability finding was 

supported by Manoeuvre No. 3, the pull-out test results, as shown in Fig. 11, indicating the need for autopilot 

assistance in course-keeping. The amount of dynamic directional instability is also assessed by performing 

Manoeuvre No. 4, the spiral test, as shown in Fig. 12. Therefore, according to the findings of this study, there 

is a correlation between straight-line instability and high overshoot angle. 

Table 6 Comparison of the car carrier stability index with models identified using data from Manoeuvre No. 1.b 

 Predicted 

Model 

# 
IV 201 IV 211 IV 212 IV 213 IV 214 IV 215 

C  [-] -0.0313 -0.0257 -0.0290 -0.0260 -0.0297 -0.0284 

5. Practical implications and future directions 

In this study, the authors incorporated the SI method into the MMG mathematical model to achieve high 

accuracy. The authors implemented the MMG model of a car carrier and compared the results to data obtained 

from free-running tests performed at BSHC. The proposed methodology provides a reliable framework for 

accurately predicting and assessing the manoeuvring performance of car carrier by IMO criteria. In summary, 

this method is a reliable reference for establishing efficient manoeuvring performance in car carrier models 

for practical applications. The successful application of the grey-box method to the MMG model brings 

significant benefits to ship control systems and marine simulation environments. The precision of this method 

enhances the reliability of the MMG model in predicting ship manoeuvring, thereby facilitating more informed 

decisions in various operational conditions. 

However, it is essential to note that the authors’ analysis, while comprehensive, is based on specific 

manoeuvring data and may not encompass all possible scenarios or varying operational conditions. Future 

research should be extended to investigate the manoeuvring performance of car carriers in medium-deep water 

to extremely shallow waters, as well as different loading conditions. The results of future studies can be helpful 

in predicting the trajectory of the car carrier in the turning circle and predicting the OS angles of the zigzag 

manoeuvres for shipmasters and autonomous vessels. This is particularly relevant in inland waterways or ports 

where dredging and sediment removal, as mentioned in the study by Bose and Dhar [63], are regularly required 

to enable deeper draught ships to enter ports worldwide. In addition, incorporating roll motion into the model 

is essential, especially in scenarios where roll dynamics significantly affect manoeuvrability. These 

prospective studies will enhance the authors’ understanding of ship behaviour under different conditions and 

a further improvement in the predictive accuracy and applicability of ship manoeuvring models. The authors 

will focus on digital twin technology, which allows for fully autonomous ship navigation through an online 

system identification method. They will also examine its control application, which is a crucial component of 

route tracking. 
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6. Conclusions 

The study involved identification analysis and simulation of a benchmark tanker and a car carrier. The 

objective of this study was twofold: to investigate the feasibility of determining ship manoeuvring dynamics 

using system identification methods, and to evaluate the manoeuvring characteristics using experimental 

results compared to predicted results. The main conclusions are summarised below. 

Experimental data for both ships were analysed in calm water. It was found that grey box modelling 

among system identification methods help predict ship manoeuvring dynamics and offer a good alternative to 

captive tests. Several alternative search methods of the grey box method were also created, analysed, and 

simulated. According to the simulation results of the obtained models, the combined TRR and Grad method 

was superior to the TRR method. It can be concluded that the grey box method discussed easily can be 

implemented on many types of ships, although both identifications so far have been performed with a 

benchmark tanker and a car carrier. 

The authors’ results show that the model effectively predicts the manoeuvring performance of a tanker 

and car carrier, specifically emphasizing on zigzag manoeuvres, turning circles, pull out test, and spiral test. 

The comparison of the simulation results with experimental data underscores the accuracy and effectiveness 

of the grey-box method in improving the predictive capabilities of the MMG model. The SI method can 

provide a speedy and cost-effective option for manoeuvring predictions. This approach is reliable for 

predicting ship motions in calm waters. It has significant implications for ship control systems and the 

simulation environments to improve marine safety. Key results indicate that the model’s yaw-checking 

performance does not meet IMO criteria, resulting in straight-line instability. Additionally, the model exhibits 

inadequate course-keeping stability, readily observed from the simulation of pull-out and spiral tests using the 

MMG model based on the SI method. Moreover, there is a connection between inherent dynamic instability 

and large overshoot angle. The simulation results closely agree with actual manoeuvring data, confirming the 

identified models' accuracy and usefulness in estimating MMG model parameters. 

Predicting the full-scale manoeuvrability of a ship using only scaled models is challenging. Sea trial data 

from the full-scaled ship can be integrated with model testing. It is nevertheless important to note that no 

correction for the scale effect was applied in the current study, and therefore, caution is advised when applying 

these results to estimate the manoeuvrability of a full-scaled car carrier. 

Future studies should investigate the inclusion of roll motion and assess the effect of shallow water 

conditions on yaw control performance. These investigations will enhance researchers’ understanding of ship 

manoeuvrability in various operational conditions. 
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Appendix 1: Extended results 

A.1 Parameter identification for car carrier and KVLCC2 

Table A.1  Estimated non-dimensional hydrodynamic hull coefficients of the 3-DOF model by empirical method and SI method 

for car carrier, initial 

𝑖 Parameter  Empirical   Identified version 

     

Adjustment 

interval  TRR  

Adaptive Gauss-

Newton line search 

(Wills-Ninness)  

Gradient-

descent line 

search 

   

0i  for 

200  ib   

i  for  

IV 201  

i  for  

IV 202  

i  for  

IV 203 

1 0X    -0.0229  [ -0.024, -0.020]  -0.0240  -0.0240  -0.0206 

2 vvX    -0.0400  [ -0.50, 0.00]  -0.0001  -0.0141  -0.0497 

3 vrX    0.0212  [ 0.00, 1.00]  0.1230  0.0121  0.0407 

4 rrX    0.0001  [ 0.00, 1.00]  0.0002  0.0000  0.0110 

5 vvvvX    0.2869  [ 0.00, 1.00]  0.9960  0.3006  0.2866 

6 vY    -0.3267  [ -3.00, -0.30]  -0.3012  -1.0710  -0.3171 

7 rY    0.0781  [ 0.00, 0.30]  0.0630  0.0000  0.0648 

8 vvvY    -1.5986  [ -7.00, -1.20]  -5.5359  -1.6597  -1.5985 

9 vvrY    -0.7500  [ -8.00, 0.00]  -0.6896  -0.6932  -0.7500 

10 vrrY    -0.5250  [ -4.00, 0.00]  -0.5880  -0.5811  -0.5253 

11 rrrY    -0.0510  [ -0.30, 0.00]  -0.0026  -0.1637  -0.0496 

12 vN    -0.0995  [ -0.50, 0.00]  -0.1938  -0.2813  -0.2027 

13 rN    -0.0418  [ -0.20, 0.00]  -0.0157  -0.0200  -0.0253 

14 vvvN    -0.1522  [ -1.00, 0.00]  -0.0002  -0.3658  -0.1555 

15 vvrN    -0.5713  [ -2.00, 0.00]  -1.1196  -0.3804  -0.5655 

16 vrrN    0.0217  [ -0.09, 1.00]  -0.0900  0.0747  0.0132 

17 rrrN 
  -0.0256  [ -0.30, 0.00]  -0.0379  -0.0291  -0.0334 

18 rl
   -0.9931  [ -1.50, -0.70]  -0.84164  -0.9772  -0.9883 

19    1.0188  [ 1.00, 1.70]  1.00248  1.0089  1.0299 

20 xm   0.0122  [ 0.01, 0.10]  0.01004  0.0200  0.0100 

21 ym
  0.1737  [ 0.01, 0.40]  0.35399  0.3930  0.1993 

22 zJ    0.0099  [ 0.0095, 0.0195]  0.00950  0.0095  0.0142 

23 Rt   0.3900  [ 0.15, 0.40]  0.39789  0.2897  0.3875 

24 Ha   0.4382  [ 0.30, 0.50]  0.34875  0.3027  0.4383 

25 Hx   -0.4000  [ -0.50, -0.30]  -0.49977  -0.4692  -0.4014 

26 Pt   0.2700  [ 0.10, 0.40]  0.14168  0.1305  0.2898 

27 0Pw   0.3180  [ 0.15, 0.55]  0.29650  0.2958  0.3074 

28 upperR  
 0.5266  [ 0.50, 0.90]  0.52711  0.5987  0.5266 

29 lowerR   0.3948  [ 0.40, 0.70]  0.42763  0.5984  0.4010 
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Table A.1 (continued) 

𝑖 Parameter  Identified version 

   Adjustment interval  SQP  Levenberg-Marquardt 

   
ib   i  for IV 204  

i  for IV 205 

1 0X 

 
 [ -0.024, -0.020]  -0.0237  -0.0240 

2 vvX 

 
 [ -0.50, 0.00]  -0.0413  -0.0030 

3 vrX 

 
 [ 0.00, 1.00]  0.0239  0.0139 

4 rrX 

 
 [ 0.00, 1.00]  0.0000  0.0000 

5 vvvvX 

 
 [ 0.00, 1.00]  0.2868  0.2668 

6 vY 

 
 [ -3.00, -0.30]  -0.3255  -0.7622 

7 rY 

 
 [ 0.00, 0.30]  0.0758  0.0083 

8 vvvY 

 
 [ -7.00, -1.20]  -1.5986  -1.4709 

9 vvrY 

 
 [ -8.00, 0.00]  -0.7501  -0.9909 

10 vrrY 

 
 [ -4.00, 0.00]  -0.5249  -0.2901 

11 rrrY 

 
 [ -0.30, 0.00]  -0.0514  0.0000 

12 vN 

 
 [ -0.50, 0.00]  -0.1115  -0.1701 

13 rN 

 
 [ -0.20, 0.00]  -0.0173  0.0000 

14 vvvN 

 
 [ -1.00, 0.00]  -0.1526  -0.3362 

15 vvrN 

 
 [ -2.00, 0.00]  -0.5704  -0.0370 

16 vrrN 

 
 [ -0.09, 1.00]  0.0198  -0.0485 

17 rrrN 

 
 [ -0.30, 0.00]  -0.0215  -0.0675 

18 rl


 
 [ -1.50, -0.70]  -0.9924  -1.1550 

19    [ 1.00, 1.70]  1.0203  1.0000 

20 xm

  [ 0.01, 0.10]  0.0113  0.0628 

21 ym

 
 [ 0.01, 0.40]  0.1766  0.4000 

22 zJ 

  [ 0.0095, 0.0195]  0.0184  0.0095 

23 Rt  
 [ 0.15, 0.40]  0.3896  0.4000 

24 Ha
 

 [ 0.30, 0.50]  0.4382  0.4377 

25 Hx
 

 [ -0.50, -0.30]  -0.4001  -0.4997 

26 Pt  
 [ 0.10, 0.40]  0.2728  0.1094 

27 0Pw
 

 [ 0.15, 0.55]  0.3166  0.5500 

28 upperR
 

 [ 0.50, 0.90]  0.5266  0.6857 

29 lowerR  
 [ 0.40, 0.70]  0.3940  0.6600 

Table A.1 summarize the hydrodynamic coefficients and parameters obtained from a range of identified 

models for car carrier. In Tables A.1 A.2, and A.3, 𝑏𝑖 is adjustment interval with a lower bound (LB) and an 

upper bound (UB). Propeller and rudder parameters of 3-DOF MMG model were kept fixed for KVLCC2. 

The following fixed parameter values were used: 
rl
 ,  , 

xm , ym
, 

zJ  , Rt , Ha , 
Hx , Pt , 0Pw , 

upperR , 
lowerR  as 

0.710, 1.09, 0.022, 0.223, 0.011, 0.387, 0.312, -0.464, -0.500, 0.220, 0.350, 0.640 and 0.395, respectively, 

from the study of Sukas et al. [38]. The hydrodynamic hull coefficients of KVLCC2 listed in Table A.2 were 
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free for identification. Therefore, estimates of hull coefficients were investigated. The initial hull coefficients 

of the 3-DOF MMG model, and its boundaries, estimated by SI, are presented in Table A.2.  

Table A.2  Estimated non-dimensional hydrodynamic hull coefficients of the 3-DOF model from the SI method for KVLCC2 

𝑖 Parameter MANSIM  Identified version 

  [38]  TRR  TRR   TRR 

  
0i  for IV 

100 

 
i  for IV 

101 

 
i  for IV 102  

ib  for IV 103 i  for IV 103 

1 
0X   -0.02200  -0.0219  -0.0219  [-0.23, -0.21] -0.0219 

2 
vvX   -0.04000  0.1867  0.1864  [-1.00, 0.00] -0.0016 

3 
vrX   0.00200  -0.0157  -0.0157  [0.00, 1.00] 0.0053 

4 
rrX   0.01100  0.0083  0.0083  [0.00, 1.00] 0.0204 

5 
vvvvX   0.77100  -0.2574  -0.2605  [0.00, 1.00] 0.9892 

6 
vY   -0.31500  -0.3925  -0.3922  [-1.00, 0.00] -0.3276 

7 
rY   0.08300  0.1028  0.1029  [0.00, 1.00] 0.0977 

8 
vvvY   -1.60700  -0.1726  -0.2084  [-2.00, 0.00] -1.6326 

9 
vvrY   0.37900  -0.3813  -0.4225  [0.00, 1.00] 0.3953 

10 
vrrY   -0.39100  -1.0571  -1.0733  [-1.00, 0.00] -0.3529 

11 
rrrY   0.00800  -0.1438  -0.1460  [0.00, 1.00] 0.0000 

12 
vN   -0.13700  -0.1392  -0.1391  [-1.00, 0.00] -0.1370 

13 
rN   -0.04900  -0.0356  -0.0356  [-1.00, 0.00] -0.0458 

14 
vvvN   -0.03000  -1.2394  -1.2506  [-1.00, 0.00] -0.0272 

15 
vvrN   -0.29400  -2.0769  -2.0898  [-1.00, 0.00] -0.3157 

16 
vrrN   0.05500  -0.7587  -0.7635  [0.00, 1.00] 0.0460 

17 
rrrN 

 -0.01300  -0.1267  -0.1273  [-1.00, 0.00] -0.0078 

Table A.3 summarize the hydrodynamic coefficients and parameters obtained from a range of identified 

models combined with varied line search method for car carrier. 
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Table A.3  Estimated non-dimensional hydrodynamic hull coefficients of the 3-DOF model by empirical method and SI method 

for car carrier, final 

𝑖 Parameter  Identified version 

   
Adjustment 

interval 
 TRR 

 
TRR with 

Regularization 

 Adaptive Gauss-

Newton line search 

(Wills-Ninness) 

   
ib   i  for IV 201  

i  for IV 211  
i  for IV 212 

1 0X    [ -0.024, -0.020]  -0.0240  -0.0240  -0.0240 

2 vvX    [ -0.50, 0.00]  -0.0001  -0.0014  -0.0006 

3 vrX    [ 0.00, 1.00]  0.1230  0.1156  0.1083 

4 rrX    [ 0.00, 1.00]  0.0002  0.0002  0.0000 

5 vvvvX    [ 0.00, 1.00]  0.9960  0.6073  0.7099 

6 vY    [ -3.00, -0.30]  -0.3012  -0.3018  -0.3147 

7 rY    [ 0.00, 0.30]  0.0630  0.0754  0.0651 

8 vvvY    [ -7.00, -1.20]  -5.5359  -1.9029  -2.1093 

9 vvrY    [ -8.00, 0.00]  -0.6896  -0.3653  -0.3496 

10 vrrY    [ -4.00, 0.00]  -0.5880  -0.7378  -0.7032 

11 rrrY    [ -0.30, 0.00]  -0.0026  -0.0326  -0.0188 

12 vN    [ -0.50, 0.00]  -0.1938  -0.1657  -0.1928 

13 rN    [ -0.20, 0.00]  -0.0157  -0.0105  -0.0206 

14 vvvN    [ -1.00, 0.00]  -0.0002  -0.1207  -0.1299 

15 vvrN    [ -2.00, 0.00]  -1.1196  -0.8705  -0.7873 

16 vrrN    [ -0.09, 1.00]  -0.0900  0.0595  0.0383 

17 rrrN 
  [ -0.30, 0.00]  -0.0379  -0.0120  -0.0062 

18 rl
   [ -1.50, -0.70]  -0.84164  -0.8946  -0.9526 

19    [ 1.00, 1.70]  1.00248  1.0022  1.0013 

20 xm   [ 0.01, 0.10]  0.01004  0.0103  0.0100 

21 ym
  [ 0.01, 0.40]  0.35399  0.2835  0.2899 

22 zJ    [ 0.0095, 0.0195]  0.00950  0.0129  0.0097 

23 Rt   [ 0.15, 0.40]  0.39789  0.3902  0.4000 

24 Ha   [ 0.30, 0.50]  0.34875  0.4029  0.4072 

25 Hx   [ -0.50, -0.30]  -0.49977  -0.4018  -0.4580 

26 Pt   [ 0.10, 0.40]  0.14168  0.2079  0.1822 

27 0Pw   [ 0.15, 0.55]  0.29650  0.3564  0.3559 

28 
upperR   [ 0.50, 0.90]  0.52711  0.5266  0.5399 

29 
lowerR   [ 0.40, 0.70]  0.42763  0.4186  0.4449 
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Table A.3  (continued) 

𝑖 Parameter  Identified version 

   

Adjustment interval  

TRR with 

Gradient-

descent line 

 

TRR with SQP 

 
TRR with Levenberg-

Marquardt 

   
ib   i  for IV 213  

i  for IV 214  
i  for IV 215 

1 0X    [ -0.024, -0.020]  -0.0240  -0.0240  -0.0240 

2 vvX    [ -0.50, 0.00]  -0.0007  -0.0018  0.0000 

3 vrX    [ 0.00, 1.00]  0.1154  0.1153  0.1096 

4 rrX    [ 0.00, 1.00]  0.0000  0.0004  0.0000 

5 vvvvX    [ 0.00, 1.00]  0.7100  0.7099  0.7101 

6 vY    [ -3.00, -0.30]  -0.3000  -0.3022  -0.3006 

7 rY    [ 0.00, 0.30]  0.0830  0.0758  0.0692 

8 vvvY    [ -7.00, -1.20]  -2.1107  -2.1105  -2.1109 

9 vvrY    [ -8.00, 0.00]  -0.3456  -0.3466  -0.3453 

10 vrrY    [ -4.00, 0.00]  -0.7112  -0.7071  -0.7119 

11 rrrY    [ -0.30, 0.00]  -0.0186  -0.0352  -0.0178 

12 vN    [ -0.50, 0.00]  -0.2009  -0.2019  -0.1952 

13 rN    [ -0.20, 0.00]  -0.0243  -0.0173  -0.0222 

14 vvvN    [ -1.00, 0.00]  -0.1318  -0.1312  -0.1315 

15 vvrN    [ -2.00, 0.00]  -0.7895  -0.7924  -0.7899 

16 vrrN    [ -0.09, 1.00]  0.0528  0.0639  0.0552 

17 rrrN 
  [ -0.30, 0.00]  -0.0001  -0.0157  -0.0012 

18 rl
   [ -1.50, -0.70]  -0.9429  -0.9417  -0.9431 

19    [ 1.00, 1.70]  1.0003  1.0061  1.0000 

20 xm   [ 0.01, 0.10]  0.0105  0.0104  0.0100 

21 ym
  [ 0.01, 0.40]  0.2895  0.2747  0.2866 

22 zJ    [0.0095, 0.0195]  0.0095  0.0127  0.0101 

23 Rt   [ 0.15, 0.40]  0.3880  0.3864  0.3897 

24 Ha   [ 0.30, 0.50]  0.4084  0.4114  0.4062 

25 Hx   [ -0.50, -0.30]  -0.4556  -0.4533  -0.4557 

26 Pt   [ 0.10, 0.40]  0.1960  0.2074  0.1910 

27 0Pw   [ 0.15, 0.55]  0.3525  0.3487  0.3559 

28 
upperR   [ 0.50, 0.90]  0.5279  0.5268  0.5286 

29 
lowerR   [ 0.40, 0.70]  0.4334  0.4322  0.4374 
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A.2 Prediction errors for car carrier and KVLCC2 

The prediction errors obtained from the identified models used for KVLCC2 were analysed. Table A.4 

shows that the IV 101 and IV 102 models are more appropriate than the IV 103 model based on Akaike's 

information criterion. However, Fig. 6 suggests that IV 103 model was found to be better in predicting the 

heading angle of KVLCC2.  

Table A.4  Identified model selection scores (AICc, BIC, and FPE) on training data of Manoeuvre No. 1.a with varying bounds 

for KVLCC2 

IV # AICc BIC FPE 

101 -1.5521E+05 -1.5509E+05 1.3424E-18 

102 -1.5521E+05 -1.5509E+05 1.3426E-18 

103 -1.3237E+05 -1.3225E+05 2.1957E-16 

It can be seen that there are no significant differences between the IV 101 and IV 102 models of 

KVLCC2, only yaw NRMSE value is different, as shown in Table A.5.  

Table A.5  MSE and NRMSE of ship motion (Surge and sway velocity as well as yaw rate) prediction responses on training data 

of Manoeuvre No. 1.a with varying search method with bounds for KVLCC2 

IV # MSE Surge velocity u [-] 

NRMSE 

Sway velocity v [-] 

NRMSE 

Yaw rate r [-] 

NRMSE 

101 0.0000 0.0009 0.0020 0.2287 

102 0.0000 0.0009 0.0020 0.2285 

103 0.0001 0.0092 0.0074 0.0841 

The prediction errors obtained from various identified models for the car carrier are presented in Tables 

A.6 and A.7. Despite the model with the lowest value of AICc and BIC indicating that model IV 212 was the 

optimal choice among the alternatives, model IV 215 demonstrated a very close match to the free manoeuvring 

data of Manoeuvre 1.b. This is in line with the results of the NRMSE value for the yaw rate for model IV 215. 

Table A.6  MSE and NRMSE of ship motion (Surge and sway velocity as well as yaw rate) prediction responses on training data 

of Manoeuvre No. 1.b with varying search methods with bounds for the car carrier 

IV # MSE Surge velocity u [-] 

NRMSE 

Sway velocity v [-] 

NRMSE 

Yaw rate r [-] 

NRMSE 

201 0.0009 0.1015 0.2403 0.0820 

202 0.0015 0.1440 0.2696 0.1510 

203 0.0030 0.1927 0.4396 0.1043 

204 0.0052 0.2463 0.5462 0.2428 

205 0.0078 0.5067 0.2788 0.1066 

211 0.0011 0.1114 0.2607 0.0753 

212 0.0012 0.0908 0.2930 0.0825 

213 0.0012 0.0869 0.3092 0.0920 

214 0.0011 0.1133 0.2656 0.0745 

215 0.0011 0.1041 0.2807 0.0695 
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Table A.7  Identified model selection scores (AICc, BIC, and FPE) on training data of Manoeuvre No. 1.b with varying search 

methods with bounds for the car carrier 

IV # AICc BIC FPE 

201 -8.2599E+03 -8.1308E+03 9.0569E-12 

202 -7.2109E+03 -7.0819E+03 9.9879E-11 

203 -7.1160E+03 -6.9814E+03 1.2570E-10 

204 -5.8786E+03 -5.7496E+03 2.1063E-09 

205 -6.5036E+03 -6.3746E+03 5.0395E-10 

211 -8.1399E+03 -8.1025E+03 1.1919E-11 

212 -8.3901E+03 -8.2610E+03 6.7244E-12 

213 -8.3168E+03 -8.1877E+03 7.9516E-12 

214 -8.1172E+03 -7.9881E+03 1.2556E-11 

215 -8.3361E+03 -8.2070E+03 7.6080E-12 

 

A.3 Comparison of identified models with regularization option for car carrier 

Velocity components were estimated utilising TRR models with regularisation options created with 

candidate   and R  values, which were then tested and compared with validation data as shown in Fig. A1. 

 

Fig. A1  Boxplot of the fits for Manoeuvre 1.b of car carrier 

 


