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A ROBOT PATH-PLANNING METHOD BASED ON AN IMPROVED
GENETIC ALGORITHM

Summary

When solving path-planning problems, a traditional genetic algorithm has some
drawbacks such as being prone to falling into premature convergence, a relatively slow
convergence rate, and generating multiple invalid paths during crossover and mutation
operations. It also depends heavily on the initial population and empirical core parameters. In
this paper, a robot path-planning method based on an improved genetic algorithm is proposed.
The crossover and variation probabilities of the genetic algorithm are given by an adaptive
function during the population iterations, and deletion and optimisation operators are proposed
to improve the performance of the algorithm. The reference population is introduced for those
inferior individuals eliminated by the main population, and the high-quality gene fragments
among them are extracted and added to the main population to speed up the search procedure
and to avoid missing the optimal solution. The simulation results show that the adaptive
function speeds up the convergence of the algorithm and ensures the searching ability. The
addition of the deletion and optimisation operators shortens the length of the optimal path. The
reference population significantly accelerates the convergence speed of the algorithm and
ensures the stability of the population throughout the process.

Key words: path planning; genetic algorithm, optimisation operator, reference
population

1. Introduction

In recent years, as research on robotics has intensified, the role of robots in modern
industrial technology has become increasingly important [1], and the requirements for robot
interaction with the outside world have increased [2]. Path planning is one of the most basic
and important requirements for robots. It is about how to find a path from the starting point to
the target point in the space where the robot is working by using sensors and computers to
obtain information about the external environment and to avoid any obstacles effectively. The
traditional path-planning algorithm is Dijkstra's algorithm from 1959 [3]. In 1966, graph theory
was introduced by Doran and Michie to the problem of path planning [4]. In 1968, the famous
Grid Method was used to solve the robot path planning problem. In response to the low
efficiency of Dijkstra's algorithm, Hart and Nilsson designed an A* algorithm [5] to help solve
the problem. However, in a complex environment, because of the large amount of memory
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space required, the algorithm takes longer to solve the optimal value, and the performance
deteriorates. Therefore, numerous scholars have made improvements based on traditional
algorithms. Song et al. [6] used image processing methods to build raster maps and added three
smoothers to increase the continuity when the A* algorithm generates collision-free paths, and
this method is superior in both turns and paths. In Dijkstra's algorithm, the presence of some
nodes in the deterministic environment reduces the algorithm’s speed. Fusic et al. [7] consider
the nearest nodes to find the optimal path, which reduces the time needed. Hliwa et al. [§]
combine the Firefly Algorithm [9] with Tabu Search, introducing the TS algorithm in short
segments to optimise the path and improve the algorithm’s robustness by avoiding local optima.
Although improved traditional algorithms have greatly enhanced the efficiency and
performance of mobile robot path planning, they still show shortcomings in adaptability, high
computational requirements, and low optimisation efficiency in complex environments.

Since the 1990s, intelligent algorithms have also been successfully introduced into robot
path-planning problems [10], resulting in significant accomplishments. Cao et al. [11] improved
the Ant Colony Optimisation (ACO) algorithm by increasing the amount of pheromone on short
paths in each cycle and dynamically adjusting its evaporation rate to enhance the probability of
transitions. The results showed that this algorithm improved global optimisation capability and
significantly increased search speed. Kamalova et al. [12] proposed a new multi-objective Grey
Wolf Optimisation (GWO) algorithm to address the problem of mobile robot route planning.
Brand et al. [13] employed the Firefly Algorithm to solve the path-planning problem for mobile
robots in dynamic environments. The results indicated relatively low path lengths and
computational costs. Additionally, Saraswati et al. [14] combined the Cuckoo Search and Bat
Algorithm. The Cuckoo Search algorithm was used to search for local optimal solutions, and
the obtained optimal solution was then used as an input for the Bat Algorithm to obtain a global
optimal solution.

Genetic algorithms employ a population-based search strategy and possess strong global
search capability, parallel processing ability, and strong adaptability [15-17]. Therefore, they
are widely used in path-planning problems. However, traditional genetic algorithms have
certain dependencies on the generation of the initial population, are prone to getting stuck in
local optima, and can generate a large number of invalid paths during crossover and mutation
operations, thereby increasing computational complexity. Therefore, to overcome the
shortcomings of traditional genetic algorithms in path planning, algorithmic improvements and
optimisations need to be made according to specific problems. Luan et al. [18] provided a
dynamic mutation rate and switchable global-local search method based on the mutation
operator of traditional genetic algorithms. Through these improvements, the premature
convergence of genetic algorithms and the long computation time of fitness calculations in
meme algorithms were reduced. By utilising segmented cubic Bezier curves with continuous
curvature, smooth paths were provided for differential wheeled robots. Mohamed et al. [19]
also combined genetic algorithms with Bezier curves to improve the smoothness of paths by
using genetic algorithms to search for the control points of Bezier curves. Lopez-Gonzalez et
al. [20] utilised parallel genetic algorithms to achieve artificial distributed skills and shared the
best method that converges to the desired distance while avoiding collisions, ultimately
reaching consensus on the solution. Lee et al. [21] proposed combining genetic algorithms with
directional guidance factors to achieve obstacle avoidance, reduce unnecessary computations,
and accelerate convergence speed. Han et al. [22] introduced a one-time transformation
crossover algorithm to generate optimal offspring and applied the minimisation of dual-path
constraints to obtain the shortest path. Lee [23] suggested combining the initialisation
population with directed acyclic graphs to generate initial paths and continuously optimise them,
allowing the algorithm to obtain the optimal path in a short period. However, these
improvement methods are prone to generating many invalid paths during crossover and
mutation operations, relying on the initial population, and requiring core parameters to be given
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based on experience. To solve this problem, this paper proposes an initial population generation
method based on midpoint interpolation. In addition, the design of the fitness calculation
function for the algorithm model has always been a key point in genetic algorithms. This study
designs a new fitness function that achieves a reduction in computational complexity while
satisfying the condition of finding the shortest path. To prevent the algorithm from being limited
by the initial population and to reduce the decrease in the algorithm’s global search capability,
a reference population is introduced to enhance the efficiency of global search. Additionally,
deletion operators are included to remove duplicate paths in individuals, and optimisation
operators are added to improve path length and smoothness.

2. Environmental modelling

The grid-based method constructs the environmental space as a two-dimensional plane,
considering only the length and width dimensions of obstacles to simplify the environment
model. The two-dimensional map is divided into small matrix blocks of equal size using the
grid-based approach. Each matrix block is assigned a feature value, representing the state of
that block. Thus, the grid map can be represented in the form of a numerical matrix. If a matrix
value in the grid is “1”, this indicates that the corresponding area is an obstacle region, while a
value of “0” signifies that the area is an obstacle-free space.

Assuming that the two-dimensional plane created by the raster method is 10 x 10, the
numerical matrix is given in Fig. 1(a), and the created grid map is shown in Fig. 1(b).
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(a) Environmental Map Number Matrix (b) Environmental Map1

Fig. 1 Environmental Map representation

The white areas in the diagram represent obstacle-free spaces, while the shaded squares
indicate obstacles. When the robot is moving, it needs to avoid the black-shaded areas and
choose the path represented by the white squares. The robot’s position in the environment can
be described using coordinates (x, y), which represent the position in the x-th row and y-th

column. The path taken by the robot from the starting point S to the end point E can be
represented as a set of path points (x, y).

3. Path-planning model based on an improved genetic algorithm
3.1 Individual coding

In this algorithm, a decimal encoding method is used, which represents the complete path
of a mobile robot moving in a grid map from the starting point to the destination. The encoding
set consists of grid indices, where each element represents a grid block that the robot traverses
along the complete path.
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First, let us assume that each matrix block in the grid map has a side length of 1. The
index of the bottom-left grid block is defined as 1. Then, the grid blocks are sorted in a left-to-
right, bottom-to-top order. The midpoint of the matrix block with index 1 is defined as (0.5,0.5).
Therefore, the matrix block at coordinates (0.5,1.5) is represented by the index 2. The
coordinate relationship between grid coordinates (x;,y;) and grid index N is given by the

equation as follows:
N;i=(x; =Dx Gy +(y; =1
x; =int(N—1/G,,)+1 (1)
y;=mod(N -1/Gy,)+1

size

where N, is the raster serial number, and G;_, denotes the dimensionality of the map G, and mod
is the remainder of the result of the equation, and int denotes rounding the result of the equation.

ize

3.2 Initialising the population based on midpoint interpolation

In path-planning problems, traditional genetic algorithms often generate the initial
population by restricting the values of the first and last components of each individual. These
values represent the coordinates of the starting and end points, respectively. The other
intermediate points are randomly generated between the starting and end points. This random
method of generating the initial population is convenient and efficient as it generates the entire
population at once. However, it may also yield a significant number of unfeasible solutions.
Due to the random nature of point generation, there is a high possibility of generating line
segments between consecutive points that intersect with shaded areas on the map. This leads to
a large number of invalid calculations and reduces the efficiency of the algorithm.

To address this issue, this algorithm utilises an interpolation operator for the initialisation
of the population. The specific steps of this operation are as follows:

Step 1: Select one grid cell per row.

Based on the assumption that the robot can only move one grid cell at a time on the map,
each robot needs to explore step by step from the starting point towards the destination,
eventually creating a complete path. Based on this assumption, we can infer that on the grid
map, except for the rows containing the starting point and the destination, there must be at least
one white grid cell that the robot passes through in each row. Therefore, for any individual, one
can select any white grid cell index in each row as its path. Refer to Fig. 2 for an illustration:
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Fig. 2 Path diagram before initial individual interpolation
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In Fig. 2, the individual with the starting point at the lower left corner numbered 1 is
the starting point, and the grid cell numbered 80 is the destination. In between, a random
grid cell was chosen as a path point in each row. The resulting initial path is (1, 12, 23, 36,
47, 59, 70, 80).

Step 2: Check whether adjacent path points are consecutive.

Fig. 2 shows that in the selected path (1, 12, 23, 36, 47, 59, 70, 80), some adjacent path
points cannot be directly connected. The line would pass through a shaded area. Therefore, it
is necessary to check the continuity of each adjacent pair of path points in the selected path:

B 0 T<1 )
YT s
T =max{abs(x,,, —x;),abs(y;,; —=»;)} 3)

where y=0 indicates that the two path points are continuous and can be connected directly, and
y=1 denotes a discontinuity between two path points and requires interpolation. abs denotes an
absolute value operation, and x; and x;,; denote the line coordinates of the i-th path point and
the line coordinates of the i+1-th path point, respectively. y; and y;,; denote the column
coordinates of the i-th path point and the column coordinates of the i+1-th path point,
respectively.

Step 3: Midpoint interpolation

When the discontinuity between two path points is judged as disjoint after Step 2, the path

between the two disjoint points is made continuous by using the midpoint interpolation method,
as in equation (4):
o X X
X,y = 1Nt (—” 5 : j
. 4
Ynew = int (—yi+12 Yi ]

where x,,,,, and y,,, are the coordinate value of the new coordinate point inserted between the
non-adjacent points.

Step 4: Generate the entire initial population

Steps 1 to 3 are completed to generate the first individual in the initial population. Next,
Steps 1 to 3 are repeated until the population reaches the desired size.

3.3 Fitness function
In this algorithm, the fitness function is defined as:

fi= ! +C 5)

l;
Z \/ (0=, )"+ (v =y

Jj=2

C is a large positive number, which is used to prevent the small fitness of an individual
in the population from leading to errors in the calculation and to avoid the fitness of a poor
individual in the population differing too much from that of a high-quality individual. This is
influenced by the optimal value in the subsequent selection process, which makes its probability
of being selected too low, thus reducing the diversity of the algorithm.
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3.4 Adaptive crossover and mutation operators

1. Adaptive crossover and mutation probability functions

In traditional genetic algorithms, the probabilities for crossover and mutation are typically
set by the user based on their empirical experience. This approach can have negative effects on
the efficiency and convergence of the algorithm. Therefore, it is beneficial to have an adaptive
probability function for each individual in the population to control their crossover and mutation.

The adaptive crossover probability function proposed in this paper is as follows:

f - f;lvg % favg
fmax

X(P, =P ) ['2 fug
f'< favg

where P, is the crossover probability of paired individuals, and P, _and P, are the lower and

P =

c

P, +sinc
(6)

max favg

Cmax

upper bounds of the given crossover probability range, respectively. /' denotes the largest
fitness value of the two individuals to be crossed. f,;, is the mean of the sum of the fitness of

all individuals, and £, is the fitness value of the best individual in the population.

The proposed adaptive mutation probability function is as follows:

'_
Pmmin +Slnc( f —£ ]X j(;lvg ><(ljmmax _Pmmin) f'Z f;zvg
ma:

P =

m

f x_favg fmax
Pmmax f'<favg

(7)

sinc(x) = sinz-x)

(8)

X
where P,, is the probability of the mutation of an individual, and P,, and P,,  are the lower

and upper bounds of the given range of mutation probabilities, respectively. /' denotes the
fitness value of an individual, and f,,, is the mean of the sum of the fitness of all individuals in

the population, and f,,, is the fitness value of the best individual in the population.

From the practical problem, we know that the range of /* and /. 1s [0, /nay]. When f* takes
the value of £, , then:

sine| L T | _gin c(0) =1 (9)
fmax B fan
When f* takes the value of f,,, , then:
sine| L —Jms =sinc(1)=0 (10)
fmax - favg

'

avg
max fan
is [0,1]. When the new species and the mutated population collide with obstacles, f* is less than the
average of the population. To promote individual evolution, the crossover and mutation

probabilities are set to their maximum values, aiming to make individuals converge towards
fitter individuals and improve the average fitness of the population.

From equations (9) and (10), we can conclude that the value range of sinc
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When " is greater than the average fitness of the population, it is important to consider
the overall average fitness of the population. The higher the ratio of the average fitness of all
individuals in the population to the fitness of the best individual, the higher the level of
evolution in the population. Therefore, individuals in the population should be assigned higher
crossover and mutation probabilities to explore a larger search space. Additionally, the
crossover and mutation probabilities of individuals in the population should be weighted based
on their individual fitness /'. A higher /' value indicates a higher-quality individual or
chromosome that should be preserved. Therefore, relatively lower probabilities should be
assigned until f reaches the fitness of the best individual in the population, minimising the
mutation and crossover probabilities. Conversely, if /' is smaller, higher probabilities should
be assigned. This approach implements an adaptive genetic algorithm that considers the overall
average fitness, the optimal level, and the individual level within the population.

2. Crossover operation

In this algorithm, the crossover operation searches for the common gene points between
paired chromosomes as crossover points. If there are multiple common gene points, one of them
is randomly chosen as the crossover point. Then, the structure of the chromosome is exchanged
after the crossover point.

3. Mutation operation

The mutation operation in this algorithm utilises the midpoint interpolation method used
during the population initialisation process. When an individual needs to undergo mutation, two
points on the chromosome are randomly selected as mutation points. The path between these two
points is removed, and a continuous path between the mutation points is regenerated using the
midpoint interpolation method. This method overcomes the drawback of traditional mutation
operators randomly mutating to an unfeasible solution at a specific point, thereby increasing the
computational efficiency of the algorithm and reducing the computational overhead.

3.5 Deleting operator

During the iterative search process of the algorithm, the path followed by the robot is
likely to contain detours, where it goes in a circle and returns to a specific point before moving
forward. In the individual encoding, this is reflected as having repeated path points. By using a
deletion operator, the paths between the repeated path points, as well as one of the repeated
path points, can be removed. This eliminates unnecessary paths, not only reducing
computational complexity but also increasing the fitness of the individual. This is because the
removal of redundant paths results in a shorter total path length.

3.6  Optimisation operator

The optimisation operator is applied to each path, where every three points are considered
as a group. Let us assume that the i-th path point in path D is denoted as D(7). The optimisation
operator makes a judgement on D(i-1) and D(i+1), and if the connecting line of D(i-1) and
D(i+1) does not pass through the obstacle, then D(i) is deleted and only D(i+1) and D(i+1) are
left. If the connecting line passes through the obstacle, continue to check the next point D(i+1)
as the centre point until all path points in all paths are checked.

According to the grid map, if a line passes through an obstacle, the distance from the

centre point of the obstacle to the line must be less than 2 . Therefore, the formula for
determining whether the line between D(i-1) and D(i+1) passes through the obstacle is:

dl:|(J’2_J’1)xk+(x1_x2)J’k+(x2)ﬁ—x1y2)| (11)
\/(J’2 _y1)2 +(x —x2)2
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where y, and y,; denote the row coordinates of D(i+1) and D(i-1), respectively, and x, and x;,
denote the column coordinates of D(i+1) and D(i-1), respectively. x; and y, are the column

coordinates and row coordinates of the obstacle. When d/ is less than \/E , it means that the line of
D(i-1) and D(i+1) crosses the obstacle, otherwise the line does not pass through the obstacle,
and D(i) can be deleted.

3.7 Reference populations

During the process of the genetic algorithm, all operations are based on the initial
population generated before the algorithm starts. Selection, crossover, and mutation all act upon
the initial population. It can be said that the quality of the initial population largely determines
the efficiency of the entire algorithm. If the initial population contains more high-quality
information that is closer to the optimal solution, the algorithm can quickly approach the
optimal solution and converge at a fast rate. However, this is only a rare occurrence, as most of
the time the initial population generated is far from the optimal solution and requires multiple
iterations to make progress. Additionally, the initial population to be generated is near a local
optimum, causing the algorithm to linger around the local optimum for a considerable amount
of time. It relies on crossover and mutation operators escaping premature convergence and
approaching the next optimal solution. Therefore, generating the initial population with a higher
probability can significantly improve the efficiency of the algorithm.

In the proposed algorithm, this article introduces the concept of a reference population.
When the initial population A is generated, a second initial population is simultaneously
generated as a reference population, referred to as population B. Both populations evolve and
iterate together, and all genetic operators act both on population A and population B. Every t
generation, population B undergoes crossover with population A. The fittest n individuals in
population B are transferred to population A, replacing the n individuals with the lowest fitness
values in population A. At the same time, population A replaces the n individuals with the
lowest fitness values in population B. Fig. 3 illustrates the specific process of interchanging
individuals between the two populations.

Population A Population B

Genetic Genetic
Evolution Evolution

Iteration is
Multiple of t ?

Iteration is
Multiple of t ?

Crossover
Aand B

Meet stopping
criterion?

Meet stopping
criterion?

Fig. 3 Flow chart of crossover between reference and main populations

4. Simulation experiments and results analysis

In this paper, the crossover and mutation probabilities are designed as an adaptive
function according to the population fitness based on the traditional genetic algorithm for the
path-planning problem, and the deletion operator, optimisation operator and reference
population are added to the iterative process of the algorithm.
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To verify the performance and practicality of the proposed improved genetic algorithm
for path planning problems, simulation experiments are conducted on Map 1 for each step of
improvement in the improved genetic algorithm, and a comparison and analysis are made with
the previous step of improvement, respectively. Fig. 4 shows that the bottom-left corner is the
starting point, and the top-right corner is the end point.

GOAL

Fig. 4 Map 1 for Simulation and Analysis

4.1 Adaptive genetic algorithm simulation analysis

The population size of the traditional genetic algorithm is set at 300, the number of
iterations at 150, the crossover probability at 0.8, and the mutation probability at 0.05. The
population size of the genetic algorithm containing the adaptive operators is set at 300, the
number of iterations at 150, the crossover probability at [0.5, 0.8], and the mutation probability
at [0.01, 0.1]. Figure 6 shows the simulation results of the algorithms on Map 1.
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Fig. 5 Plot of path variation between adaptive GA and traditional GA under specified parameters

From Fig. 5, it can be inferred that the application of the proposed adaptive probability model
in the genetic algorithm leads to a faster convergence speed. Additionally, in the adaptive genetic
algorithm, the average fitness level of the population is closer to the optimal solution. This
observation suggests that utilising the adaptive probability model improves the performance of the
genetic algorithm. By dynamically adjusting the crossover and mutation probabilities based on the
fitness of individuals within the population, the algorithm can adapt more effectively to the problem
at hand, resulting in quicker convergence and a population that is closer to the optimal solution.
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4.2 Simulation analysis of improved GA with deletion and optimisation operators

The deletion and optimisation operators are incorporated into the genetic algorithm based
on the adaptive crossover and mutation simulated in Section 3.1, and the simulation results are
compared with the adaptive algorithm in Fig 6 and Fig 7.
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Fig. 6 Comparison of path changes after two operators with the adaptive algorithm (Map 1)
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Fig. 7 Plot of the mean values of the two algorithms run one hundred times (Map 1)

Among them, Fig. 6 shows the curve of the change in the population path length for the
adaptive genetic algorithm and the genetic algorithm with the addition of deletion and
optimisation operators, which are both based on Map 1 and vary with the number of iterations.
In Fig. 6, it can be observed that after adding deletion and optimisation operators to the adaptive
genetic algorithm, the path length of the obtained optimal solution becomes shorter. The stand-
alone adaptive genetic algorithm yields an optimal path length of 14.3 in Map 1, while the
addition of deletion and optimisation operators reduces the optimal path length to 13.8, a
decrease of 4%. Fig. 7 represents the average performance of both algorithms after running 100
times separately. The deletion and optimisation operators reduce the optimal path length by 6%
and lead to faster convergence.
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Fig. 8 Adaptive genetic algorithm path diagram Fig. 9 Path diagram of genetic algorithm with

deletion and optimisation operator

Fig. 8 and Fig. 9 show that the optimal path curve obtained by the regular adaptive genetic
algorithm is not smooth enough. It contains multiple corners along the path. However, after
adding the two operators, the smoothness of the path is significantly improved. This
characteristic is more evident in areas of the map with fewer obstacles.

4.3 Comparison of improved GA based path planning with traditional GA

In this section, a comparative simulation experiment is carried out in the path-planning
problem using a randomly generated 20*20 2D raster map (as shown in Fig 10:(a)) using an
improved Genetic Algorithm(IGA, Genetic algorithm(GA), Particle Swarm Algorithm,
Artificial Fish Swarm Algorithm(AFSA) and Grey Wolf Optimisation(GWO).

The population size for the traditional genetic algorithm is set at 300, the number of
iterations at 150, the crossover probability at 0.8, and the mutation probability at 0.05. For the
proposed improved genetic algorithm, the population size is set at 300, the number of iterations
at 150, the crossover probability is set between 0.5 and 0.8, and the mutation probability
between 0.01 and 0.1. Additionally, let t=3, and the inter-population crossover operation is
stopped when t>100.

Fig. 10 (a) Random map (20x20 2D), (b) IGA, (c) GA, (d) PSO, (¢) AFSA, (f) GWO
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planner path length(m) time(s) success rate(%)

IGA 28.0122 4.203 99.8

GA 31.1782 6.952 93.5

PSO 31.8821 6.125 92.4
AFSA 30.3541 6.224 90.6
GWO 30.9512 5.549 94.5

Figure 10 shows the trajectory of the five algorithms running on the map Fig 11 (a), and
Table 1 shows a comparison of the average path length, running time, and success rate of the
five algorithms after running 100 times. It can be seen that the performance of the improved
genetic algorithm is significantly better than the other algorithms. Compared with the other
algorithms, IGA reduces the average path length by about 10%-14%, the running time by 23%-
38%, and the success rate by 8%-10%.

To further verify and improve the performance of the genetic algorithm, Random maps
Nathan Sturtevant/HOG2 (15% obstacles) of Nathan Sturtevant's Moving Al Lab public data
set were selected, and 2D grids of 40x40 were selected as the experimental map (Fig 11:(a)).
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Fig. 11 (a) Random map (40x40 2D grids), (b) IGA, (c) GA, (d) PSO, (e) AFSA, (f) GWO

Table 2 Results of classical algorithms

planner path length (m) time (s) success rate
(%)
IGA 54.2362 10.624 99.7
GA 68.8209 16.257 89.8
PSO 59.6826 14.354 91.2
AFSA 61.2684 15.349 90.1
GWO 60.8209 15.756 92.4

Figure 11 shows the trajectory of the five algorithms running on the public dataset excerpt
map Fig 11 (a), and Table 2 shows a comparison of the average path length, running time, and
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success rate after 100 runs of the five algorithms. Compared with the other algorithms, IGA
reduces the average path length by about 10%-21%, the running time by 28%-38%, and the
success rate by 8%-11%.

5. Conclusion

The present study employs a grid-based method to establish an environment model for
the robot’s workspace. By satisfying the constraint of avoiding all obstacles, the path-planning
problem is investigated using a genetic algorithm. Through the use of the proposed improved
genetic algorithm in this study, an optimal path for the robot’s movement is obtained.

The proposed model incorporates an adaptive crossover and mutation probability model.
It also introduces the deletion and optimisation of genetic operators, significantly improving
the generation of the initial population. Furthermore, the concept of reference population is
introduced to avoid unnecessary computations and premature convergence, which are
commonly associated with traditional genetic algorithms. The simulation results demonstrate
that the performance of this algorithm is significantly superior to that of the traditional genetic
algorithm. The existence of optimisation operators promotes smoother paths. The reference
population greatly accelerates the convergence speed of the algorithm, while enhancing its
stability. However, this algorithm still has room for improvement, particularly regarding the
calculation aspect of the proposed reference population. The parameter ¢ currently requires
careful analysis based on the specific problem at hand and cannot adapt autonomously to
changes in the population.
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