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Abstract

Background and purpose: The increase in diabetes cases has become a major concern in the healthcare
sector, necessitating the development of efficient and minimal diagnostic methods. This study aims to
provide a comprehensive examination of electrochemical biosensors for detecting diabetes mellitus
biomarkers, with a special focus on the utilization of carbon-based electrodes. Review approach: A detailed
analysis of electrochemical biosensors incorporating various carbon electrodes, including screen-printed
carbon electrodes, glassy carbon electrodes, and carbon paste electrodes, is presented. The advantages of
carbon-based electrodes in biosensor design are highlighted. The review covers the detection of several key
diabetes biomarkers, such as glucose, glycated hemoglobin (HbA1c), glycated human serum albumin (GHSA),
insulin, and novel biomarkers. Key results: Recent developments in electrochemical biosensor technology
over the last decade are summarized, emphasizing their potential in clinical applications, particularly in
point-of-care settings. The utilization of carbon-based electrodes in biosensors is shown to offer significant
advantages, including enhanced sensitivity, selectivity, and cost-effectiveness. Conclusion: This review
underscores the importance of carbon-based electrodes in the design of electrochemical biosensors and
raises awareness for the detection of novel biomarkers for more specific and personalized diabetes mellitus
cases. The advancements in this field highlight the potential of these biosensors in future clinical
applications, especially in point-of-care diagnostics.

©2024 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http.//creativecommons.org/licenses/by/4.0/).
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Introduction

Diabetes mellitus (DM) is a chronic metabolic condition marked by elevated blood glucose levels [1]
resulting from impaired insulin secretion, insulin action, or both [2]. The International Diabetes Federation
(IDF) reports that in 2021 [3], the death rate caused by DM reached 6.7 million individuals aged 20-79 years.
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About 44.7% of the world's diabetes population were living with undiagnosed diabetes. Therefore, DM is also
called the silent killer disease because of the unawareness of having diabetes by the person with diabetes
and when it is known that it has severe complications, making treatment difficult.

Biological markers (biomarkers) are objective indicators that can be used to interpret normal biological
processes, pathologies, or responses to certain interventions, including hyperglycemia [4]. Various
biomarkers have been used to detect diabetes mellitus, such as glucose, HbAlc, GHSA, and insulin [5], with
various methods developed, such as ion exchange chromatography [6,7], affinity chromatography [8,9],
capillary electrophoresis [10-13], enzymatic assay [14,15], and immunoassay [16-18]. Methods that use large
instruments are not suitable for on-site monitoring, and they have high costs and take a long time to obtain
results [19]. Among the different methods, the electrochemical biosensor method has attracted much
attention as a disease detection tool because it can produce rapid analysis, use small samples, portability,
and miniaturization of the system. Besides, the use of biological compounds as target receptors makes it a
more specific detection method with greater sensitivity than electrochemical sensors [20].

The fundamental principle of sensing in electrochemical biosensors is based on the oxidation and
reduction reactions of analytes occurring on the surface of the working electrode [21,22]. The working
electrode is an important factor affecting sensor performance [23]. Various materials have been developed
for use in electrochemical sensors, such as metal materials, metal-organic frameworks, hybrid materials,
organic polymers, and carbon-based materials [24]. Carbon-based materials are currently receiving
significant attention as working electrodes in the preparation of electrochemical sensors or biosensors due
to their wide potential range, non-toxicity, relatively low cost, good electrical conductivity, ease of surface
modification, and high electrochemical activity for various redox reactions [24-26]. The sensitivity, specificity,
and other capabilities of carbon-based electrodes can be improved or established through modification of
the electrode surface using unique materials and characteristics in typical electrochemical systems [27].

Differences in electrode fabrication and modification affect the performance of electrochemical biosensors.
Modification with materials such as nanomaterials or polymer coatings can also provide greater availability of
active sites for electrochemical reactions and facilitate more efficient immobilisation of bioreceptors [28,29].
The process typically begins with cleaning and chemically activating the sensor surface to introduce functional
groups like carboxyl, amine, or hydroxyl groups, which can interact with the polymer. A polymer solution, often
comprising biocompatible polymers like polyethylene glycol (PEG), polyvinyl alcohol (PVA), or polypyrrole, is
then applied to the activated surface through techniques such as dip-coating, spin-coating, or layer-by-layer
assembly [30,31]. The polymer adheres to the surface, forming a stable, uniform layer, and may undergo cross-
linking to enhance stability. The polymer layer contains functional groups that facilitate the covalent bonding
of bioreceptors. For instance, a polymer with carboxyl groups can react with amine groups on proteins through
chemical reactions like EDC/NHS (1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide/N-hydroxysuccinimide)
coupling. This covalent bonding ensures a robust attachment of bioreceptors [32], although physical adsorption
through hydrophobic interactions, van der Waals forces, or hydrogen bonding can also be employed for less
stable applications. Meanwhile, nanoparticles (e.g., gold, silver, silica) are functionalized with reactive groups
using linking agents, allowing for the covalent attachment of bioreceptors such as enzymes, antibodies, or
nucleic acids [33]. Such as thiolated compounds to gold nanoparticles [32].

Selecting appropriate bioreceptors is crucial for minimizing interference from non-targeted molecules.
Enzymes catalyse specific biochemical reactions, antibodies bind to specific antigens, and nucleic acids
hybridize with complementary sequences, all of which enhance sensor specificity and accuracy by reducing
false positives and ensuring detection of only the target molecules [34,35]. By considering the right
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combination, electrochemical biosensors can be improved to detect diabetes mellitus biomarkers more
effectively and accurately.

Comparison with literature

The development of biosensors has become increasingly important in the healthcare field, particularly
with regard to diabetes mellitus. Laghlimi et al. [36] explored the application of electrochemical biosensors
in various applications, particularly drug and metabolite detection, with emphasis on carbon-based
electrodes such as screen-printed carbon electrodes (SPCE), glassy carbon electrodes (GCE), and carbon paste
electrodes (CPE) as key components in constructing electrochemical biosensors and playing an important
role in the detection of target molecules. In line with the review by Hovancova et al. [37], they discussed the
use of carbon electrodes for glucose and insulin detection through electrochemical sensors, with sensor
performance that can be improved through modification with nanomaterials.

In their study of recent advancements in the development of electrochemical biosensors for the diagnosis
of diabetes mellitus, Pavla and Miroslav [38] emphasized new developments in the use of glucose, HbAlc,
GHSA, and insulin biomarkers to monitor diabetes more effectively. Similarly, Yazdanpanah et al. [39] and
Rescalli et al. [40] discussed the importance of biomarkers in the diagnosis and management of diabetes by
highlighting the role of HbAlc and GHSA as biomarkers by examining the use of electrochemical biosensors
to detect these biomarkers. On the other hand, Sabu et al. [41] discussed the development of biosensors for
glucose and insulin monitoring in diabetes management by exploring the different types and detection
mechanisms developed and providing prospects where device calibration and quality control should be
performed to achieve good performance. A comparison of the related reviews is summarized in Table 1.

Scope of the review

In this review, we will discuss the development of electrochemical biosensors to diagnose diabetes
mellitus through their biomarkers using carbon-based electrodes that have been developed in the last
decade. The layout of this review is designed as follows: Introduction gives the background and comparison
with other literature to the scope of review of this article. Section Diabetes mellitus biomarkers discuss DM
biomarkers that have a strong relationship with diabetes, such as glucose, HbAlc, GHSA, and insulin, as well
as novel biomarker. Section Electrochemical biosensors discuss the electrochemical biosensor method in
general and its potential for application in clinical applications. Section Carbon-based electrode provides
insights into the selection of carbon-based electrodes for electrochemical biosensor development. Section
Electrochemical biosensor for diabetes biomarkers based on carbon-based electrode presents electro-
chemical biosensors that have been developed for the detection of diabetes biomarkers based on widely
used carbon-based electrodes (i.e. SPCE, GCE, CPE, BDD, graphene electrode, and graphite electrode).
Operational principles, electrode modification strategies to improve sensitivity and specificity, and biosensor
performance are discussed. Section Open research issues identifies opportunities and areas for further
research. Lastly, Conclusion concludes the review with the summaries of the previous sections.

Table 1. The comparison of the related reviews

Diabetes mel- Carbon-based Electrochemi Biosensor Biosensor Biosensor Biosensor Open research

Ref. Year litus biomarker  electrode cal biosensor for glucose for HbAlc for GHSA for insulin issue
[37] 2017 - v - v - - v v
[36] 2023 - v v v - - - -
[38] 2022 v - - v v v v -
[39] 2015 - - v v v - - -
[40] 2022 v v v - v v - v
[41] 2019 - - v v - - v v
Our report v v v v v v v v
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Diabetes mellitus biomarker

Diabetes mellitus (DM) is a global epidemic disease, currently affecting around 537 million people in 2021,
and is expected to continue to increase to around 783 million by 2045 [3]. Various factors can lead to the
development of prediabetes, such as genetic abnormalities, glucotoxicity, insulin secretion abnormalities,
impaired incretin release, amylin accumulation, lipotoxicity, oxidative stress, inflammation, and decreased [3-
pancreatic cell mass [42].

In general, DM can be classified into two main types: (i) insulin-dependent diabetes mellitus (IDDM) or
type 1 DM, and (ii) non-insulin-dependent diabetes mellitus (NIDDM) or type 2 DM. Type 1 diabetes is
primarily caused by the autoimmune destruction of insulin-producing beta cells in the pancreas, leading to
insulin deficiency. Additionally, rare mutations can produce abnormal insulin molecules, and receptor
abnormalities can impair insulin binding and glucose uptake, further influencing the disease [19,43].
Meanwhile, type 2 DM can arise from a complex interplay of factors, including insulin resistance, dysfunction
of beta cells, chronic inflammation, adipocyte hormones, and genetic predisposition [44].

According to the American Diabetes Association (ADA) (2014) and World Health Organization (WHO) (2016),
diabetes and prediabetes can be diagnosed by measuring fasting plasma glucose (FPG) and oral glucose tolerance
test (OGTT) or by HbAlc concentration. On the other hand, several studies are currently looking at the
performance of GHSA, insulin, and other biomarkers associated with type 2 diabetes mellitus and its
complications. The ability to determine blood glucose over different time intervals and various influencing effects
provides access to early diagnosis for more accurate diabetes prevention and treatment [45]. Each currently used
diabetes mellitus biomarker diagnostics has its advantages and disadvantages, summarized in Table 2.

Table 2. Characteristics of traditional biomarkers diabetes mellitus.
Duration of Prediabetes Abnormal

Biomarkers Normal range Advantages Limitations Ref.
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Blood glucose

The carbohydrate monomer, blood glucose, is a crucial energy source for the body, typically stored as
glycogen in the liver and skeletal muscles after assimilation. Through metabolic processes like glycolysis, glucose
fuels various physiological functions. However, individuals with diabetes mellitus (DM) experience elevated
blood sugar levels due to insulin dysfunction or resistance, impairing glucose uptake by cells [19]. Consequently,
high blood glucose levels serve as a key biomarker for diabetes mellitus, contrasting with the normal range
recommended by WHO (2016) and ADA (2020), which typically falls between 70-100 mg/dL during fasting and
remains below 140 mg/dL two hours postprandial in healthy individuals. In DM, blood glucose levels exceed
these thresholds, highlighting the significance of glycemic control in managing the condition.

Various diagnostic tests for diabetes rely on measuring blood glucose concentration, a fundamental and
primary diagnostic procedure. Proper management of blood glucose levels is essential for preventing compli-
cations associated with diabetes mellitus [41]. Effective monitoring of glucose levels is crucial to diabetes
management. In the past few decades, glucose biosensors have become an excellent tool to monitor glucose
levels in real-time. Glucose biosensors have undergone several generations of development over time, in
general, glucose biosensors can be divided into three generations [46]. The first-generation glucose bio-
sensors use the enzyme glucose oxidase (GOx) to catalyse the oxidation reaction of glucose into gluconic acid
and hydrogen peroxide. This reaction is then converted into an electric current by a transducer element [47].
This first-generation biosensor has been the cornerstone for the development of glucose biosensors. The
second generation involved the use of electron mediators, such as ferrocene, to enhance electron transfer
between the enzyme and the electrode, thereby improving the sensitivity and response of the biosensor [48].
The third generation introduced the use of nanomaterials, such as carbon nanotubes or metal nanoparticles,
to improve electron transfer efficiency. This generation seeks to eliminate the use of artificial mediators and
even enzymes themselves [49].

Glucose levels, which reflect the blood sugar balance, are a very important reflection in the effort to
manage diabetes. The test results obtained help adjust therapy and provide early insight into the risk of
diabetes. However, fluctuations in glucose levels can occur due to external factors such as changes in lifestyle
and diet. Despite this, blood glucose monitoring remains crucial.

Glycated hemoglobin (HbA1c)

Hemoglobin is a protein in red blood cells that acts as a transporter of oxygen from the lungs to body
tissues and facilitates its return from tissues to the lungs. Hemoglobin (Hb) has a high affinity with oxygen
due to its iron content. Each Hb molecule consists of four heme groups surrounding globin groups, forming
a tetrahedral structure. Heme consists of iron ions in the centre of the organic compound porphyrin ring [50].

In normal adult humans, hemoglobin generally consists of 97 % adult hemoglobin (HbA) consists of two
types of polypeptide chains, (a and B), hemoglobin A2 (HbA;) which contributes about 2.5 % with a and &
polypeptide chains as constituents; then about 0.5 % fetal hemoglobin (HbF), which is the main Hb in the
fetus, is composed of a and y polypeptide chains [51,52]. Hemoglobin A has a molecular weight of 64,458
Daltons [50].

Hemoglobin that undergoes a glycosylation process (HbAlc) is formed when the aldehyde group of
glucose binds to the valine residue at the N-terminal of the B chain of the hemoglobin molecule to form an
aldimide bond (Schiff base or labile HbA1lc), this reaction is reversible then at a later stage an Amadori
rearrangement occurs which produces an irreversible and more stable ketoamine [53]. The HbA1lc formation
reaction is shown in Figure 1.
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Figure 1. lllustration of HbA1lc formation reaction (Redraw from [54] Copyright © 2023 by the authors).

Normally, glycolization reactions in adult hemoglobin (HbA) occur in 6 % of hemoglobin and 94 % of non-
glycosylated hemoglobin (Hb). The 6 % of glycosylated HbA is also called HbA1, consisting of HbAla and HbA1b,
which are the minor components (1 %) and the major component, HbAlc (5 %) [55]. HbAlc has a stable hexose,
glucose covalently bound to a valine residue at the NH,-terminal [56]. While HbAla has fructose-1,6-diphos-
phate or glucose-6-phosphate, HbAlb has pyruvic acid. Each binds to a valine residue on the NH,-terminal of
the B-chain [57]. Hemoglobin glycation reactions can also occur at sites other than the B-chain end, such as at
the NH,-terminal valine residue of the a-chain as well as lysine residues at the a-chain or B-chain end [58].

The HbAlc level serves as a reliable indicator of the average plasma glucose level over two to three
months, with a target of 6.5 % or less to reduce the risk of complications in diabetes mellitus [52]. According
to the American Diabetes Association classification, HbAlc levels between 4 to 5.6 % are considered normal,
5.7 to 6.4 % indicate prediabetes, and levels above 6.4 % are indicative of diabetes [2]. Maintaining normal
HbAlc levels is crucial for reducing the risk of microvascular complications and heart attacks in diabetic
patients [59]. However, blood glucose monitoring using HbAlc still has limitations, which is inaccurate for
patients with disorders that affect hemoglobin conditions such as hemoglobinopathy, iron deficiency,
anemia, and other chronic kidney diseases and cannot reflect postprandial glycemia [60].

Glycated human serum albumin (HbA1c)

One of the abundant proteins in the blood, albumin, has various functions, such as regulating osmotic
pressure, playing a role in transportation binding, and having antioxidant properties [61]. Albumin can be a
biomarker for blood sugar control in the form of glycated albumin (GHSA). Of the total blood protein, about
50% is human serum albumin (HSA) with a concentration of 35-50 g/L. This protein has a molecular weight
of 67 kDa [62].

The formation of GHSA is directly related to hyperglycemia, the life span of albumin is about 2-3 weeks,
making GHSA a biomarker of medium-term blood glucose control [63]. The formation of glycated albumin is
reported to be 4.5 times faster glycated than hemoglobin [64]. Through non-enzymatic Maillard reactions
such as HbAlc (Figure 1), albumin undergoes binding with glucose spontaneously on the amine groups of
several residues such as arginine, lysine, and cysteine to form reversible Schiff base intermediate products,
which then form ketoamine products through amadori rearrangement [63].

Early-stage glycation products, which undergo subsequent modifications such as oxidation, polymeri-
zation, cleavage, or rearrangement, are commonly referred to as advanced glycation end products (AGEs).
The formation of AGEs from albumin is directly linked to the onset and progression of diabetic complications.
Therefore, measuring glycated albumin not only provides information on blood glucose values but also
indicates the progression of diabetes [65].
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Diagnosis of diabetes becomes more reliable with the GHSA biomarker than HbAlc in patients who have
kidney failure, anemia, or blood transfusion. GHSA measurement is based on the ratio of GHSA to total
albumin [5]. There is no definite prediabetes cut-off level for glycated albumin, but one study used a level of
>13.35 %, corresponding to an HbA1lc level of 5.7 % (39 mmol/mol) to detect prediabetes. Meanwhile, the
cut-off value for diabetes is 215.5 %. The combination of GHSA and HbAlc measurements for the diagnosis
of prediabetes and diabetes can increase sensitivity compared to only HbAlc, besides that, GHSA can be an
alternative biomarker in clinical conditions when HbAlc is inaccurate [66]. A limitation of glycated albumin is
that it may lose its accuracy as a biomarker when there is a disturbance in albumin. In obese patients, glycated
albumin levels can be lower due to higher albumin catabolism and low albumin production rates due to the
effects of obesity-related inflammation [67].

Insulin

Insulin, an essential hormone in glucose metabolism, consists of two chains totalling 51 amino acid
residues, with 21 in chain A and 30 in chain B. These chains are linked via disulfide bonds from the N-helix in
chain A to the B-centre and C-terminus connecting chain A to the centre of chain B [68,69]. Insulin molecular
weight is 5.8 kDa and has an isoelectric point at pH 5.5 [19]. The structural and functional integrity of insulin
relies on specific amino acid residues in three regions of the A chain (positions 1-3, 12-17, and 19) and within
the B chain (positions 8-25) (Figure 2) [70].

Insulin is produced within the pancreatic beta cells. Initially, it emerges as a signal peptide, undergoing
synthesis into preproinsulin within ribosomes. Preproinsulin comprises the A and B chains alongside two
additional domains—the signal domain and the C-peptide. The signal domain is eliminated in preproinsulin
within the endoplasmic reticulum, transforming it into proinsulin. Proinsulin is then transported from the
endoplasmic reticulum to the Golgi apparatus, where zinc and calcine are added, forming proinsulin
hexamers. Outside the Golgi apparatus, enzymes cleave this proinsulin hexamer into insulin and C-peptide.
Insulin is stored within B cell granules and secreted into the bloodstream when needed in response to
elevated blood glucose levels [71,72].

Ley HiS Gin
Cys Asn
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Cys Cys NH;
J Gln
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. Cly "Phe Phe B AL A2

Figure 2. The structure of insulin with the active part of insulin is in red (Redraw [70] from Copyright © 2023
by the authors).

Insufficient insulin secretion plays a pivotal role in the onset of diabetes. The normal fasting blood level
of insulin is 25 mIU/L (0.86 ng/mL or 150 pM) [73]. Pre-diabetes occurs from the coexistence of insulin
resistance and beta-cell dysfunction, which manifests before the onset of elevated blood glucose levels and
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eventually leads to diabetic complications [73]. Therefore, the detection of insulin levels is crucial in clinical
diagnosis for the surveillance of pre-diabetes and diabetes, as well as the prevention of its complications.

Novel biomarker

Nowadays, alongside traditional biomarkers, there's a growing focus on exploring novel ones. Numerous
studies on DM biomarkers have highlighted the importance of novel biomarkers to gain a more
comprehensive understanding of the DM condition. These novel biomarkers are crucial as they provide
deeper insights into the complexity of factors influencing DM, thus enabling a more personalized approach
to patient management. By leveraging these new biomarkers, therapies can be more precisely targeted,
opening up opportunities for more effective DM control and prevention of associated complications.

One particular form of type 2 diabetes is mitochondrial diabetes, which accounts for 0.5 to 3 % of the overall
diabetic population [74]. Mitochondrial diabetes is a condition caused by a genetic abnormality due to
mutations in the mitochondrial DNA (mtDNA) gene that codes for a protein involved in the respiratory chain.
High glycemia levels also increase the concentration of adenosine triphosphate (ATP) in pancreatic B-cells. This
leads to the closure of K* channels and causes membrane depolarization. The depolarization triggers the
opening of Ca?* channels. A sufficiently high level of Ca%" in the cytosol activates insulin release through
exocytosis (Figure 3). In patients with DM, ATP deficiency will inhibit insulin secretion and cause hypergly-
cemia [75]. Therefore, ATP can be used as a biomarker of DM, providing information on hyperglycemia
occurring due to impaired insulin secretion caused by genetic disorders. Patients with this type of diabetes
should avoid general diabetes medications like metformin, which inhibits mitochondrial respiration [76].

In understanding complications, sorbitol can be used as a biomarker where this sugar alcohol is formed
through a reduction reaction by the enzyme aldose reductase. This enzyme is particularly active when glucose
concentrations are high, as indicated by its high Ky, value. Accumulation of sorbitol occurs predominantly in
various bodily tissues, notably in the eyes, nerves, and kidneys. Due to its limited ability to escape these
tissues, sorbitol can lead to the development of diabetic retinopathy, neuropathy, and nephropathy [77].

B & Mutation in mitochondria
) GlucoseTransporter Blood
£ ' inhibits ATP production
Glucose ' Sel B panreas
b ) Channel K* l
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\ K* o i) K* ions remain open and Ca**
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Ca? : Ca?
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Figure 3. Mechanism of insulin secretion disruption in mitochondrial diabetes due to mtDNA mutations and
ATP deficiency (Reprinted from [19] Copyright © 2023 by the authors).

Another form of glucose, 1,5-anhydroglucitol (1,5-AG), is suggested as a marker for postprandial hyper-
glycemia, with its serum levels decreasing as serum glucose rises above the renal threshold for glucose [45].
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Low concentrations of 1,5-AG in diabetes are indicative of hyperglycemic excursions over the prior 1-2 weeks.
Furthermore, 1,5-AG is recognized as a biomarker for short-term glycemic control. Studies have indicated
that 1,5-AG may serve as a valuable biomarker for prognosis related to microvascular outcomes in diabetes.
Additionally, 1,5-AG has been proposed as a biomarker closely associated with decreasing functional B-cell
mass before the onset of diabetes [78]. Research has explored the clinical advantages of combining serum
1,5-AG with fasting plasma glucose to identify diabetes in populations with hypertension, demonstrating its
potential diagnostic value [79].

In individuals with type 2 diabetes, CRP (C-reactive protein) levels tend to be higher due to inflammation in
certain tissues associated with insulin resistance and other complications of diabetes, such as the risk of cardio-
vascular disease, a serious complication among people with diabetes. Moreover, CRP has been associated with
diabetic retinopathy, suggesting its potential role in monitoring diabetes-related complications [5].

Apart from insulin, other hormones, such as adiponectin, have been implicated in diabetes, particularly
type 2 DM. Adipose tissue produces adiponectin in relatively small quantities, limiting its effectiveness in
improving insulin sensitivity. This can contribute to insulin resistance, the main characteristic of type 2
diabetes, and adiponectin deficiency, which has been reported to be involved in gestational DM [80].
MicroRNAs have gained attention as biomarkers for diabetes, with specific microRNAs showing promise in
predicting disease onset and progression. Studies have highlighted the role of microRNAs in the pathogenesis
of chronic diseases, including diabetes, and their potential as diagnostic tools [81].

Electrochemical biosensors

Generally, chemical sensors comprise two crucial functional components: a receptor or recognizer of
chemical molecules and a transducer or mechanism that translates chemical reactions into a measurable
signal using instrumentation [87]. On the other hand, biosensors are devices integrating biological elements
with transducers to identify and quantify biochemical targets present in a sample. Of the various types of
transducers, i.e., optical, piezoelectric, and thermal, used for biosensors, electrochemical transducers
provide a simple yet efficient detection platform due to their ease in fabrication and integration of
electrochemical cells. With this capability, electrochemical biosensors can provide fast response, high
selectivity and sensitivity [88].

In electrochemical analysis, an electrochemical cell typically consists of two electrodes submerged in an
electrolyte solution. There are two main types of electrochemical cells: galvanic (voltaic) cells and electrolytic
cells. However, in electrochemical sensor or biosensor applications, a three-electrode configuration is often
used [89] (Figure 4). This configuration includes the working electrode, which acts as the transducing element
where the redox reaction occurs. The potential of the working electrode depends on the concentration of the
analyte being measured. The reference electrode maintains a constant potential, independent of the analyte
concentration, serving as a comparator to measure the potential at the working electrode. Lastly, the counter
electrode ensures the passage of all the current necessary to balance the current at the working electro-
de [90,91]. This setup allows for more accurate potential measurements and better control of the reactions
occurring within the electrochemical cell, which is crucial in various analytical and industrial applications.

Electrochemical biosensors detect the current produced by reduction or oxidation reactions, which is direct-
ly proportional to the concentration of electroactive species present [93]. Techniques such as voltammetry,
amperometry, and chronoamperometry are employed to investigate electrochemical behaviour [94]. These te-
chniques generate data based on changes in current, potential, impedance, and conductivity, which are then ana-
lyzed to elucidate reaction mechanisms at the electrode surface and calculate specific reaction constants [95]
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Figure 4. Electrochemical three-electrodes cell and its relative cell circuit (Reprinted from [92] Copyright ©
2022 by the authors).

Understanding the reaction mechanisms at the electrode surface typically involves concepts such as
diffusion, adsorption, and reversibility of the system. The reaction rate is controlled by mass transfer
(diffusion) [96]. In diffusion-controlled processes, the peak current (ip) is proportional to the square root of
the scan rate (v*/?) as described by the Randles-Sevéik equation (1) [97]:

ip = (2.69x10%)n*2ADY2Cv/? (1)

where n is the number of electrons transferred, A is the electrode area, D is the diffusion coefficient, Cis
the concentration, and v is the scan rate.

For adsorption-controlled processes, the peak current of a quasi-reversible system can be described by
Equation (2) [98,99]:

ip = N2F?VAT/4RT (2)
based on this equation, the surface concentration of the electroactive species (I) can be determined from
the slope of the linear plot of i versus v.

Laviron's theory is commonly applied to determine electron transfer rate constants for electron transfer
between the electrode and surface-deposited layer, facilitated by parameters like standard rate constant (ko)
and transfer coefficient (). The theory relates the peak potential of an electrochemical reaction to the kinetic
parameters of the system, such as the scan rate (v) [98,100]. The Laviron equation relates the peak potential
of an electrochemical reaction to the kinetic parameters of the system, such as scan rate. It can be written
by the Bard-Faulkner equation as follows for an irreversible system, Equation (3) [22]:

E, = E° + (2.303RT/anF) log(RTk®/anF) + (2.303RT/anF) log v (3)

The key element in electrochemical sensors lies in the presence of specific receptors capable of promoting
the formation of complexes, enabling interactions to occur solely with the target and generate electrical
signals, which are subsequently converted by electronic devices into an output. Biosensors utilize the
specificity of biological recognition mechanisms by employing analyte recognition compounds such as
enzymes, DNA probes, antibodies, aptamers, or proteins. Bioreceptors will form specific interactions with
targets on the inter-surface, causing signal changes [101]. Subsequently, transducers capture signal changes
from these interactions, converting them into continuous signals directly correlating with the number of
molecules reacting or binding to the sensor surface. These signals can then be linked to a reading device for
further analysis [102]. The concept of an electrochemical biosensor is shown in the schematic in Figure 5.
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Figure 5. Schematic representation of an electrochemical biosensor.

Electrochemical biosensor methods hold great promise for clinical applications due to their simple instru-
mentation, user-friendly operation, rapid measurement time, portability, and relatively lower cost. Currently,
there is a significant focus on developing instruments for detecting biomarkers of diabetes mellitus, aiming
to achieve the lowest possible detection limits while requiring only small sample volumes [103]. This focus
on clinical applications underscores the importance of understanding and optimizing the electrochemical
properties and reaction mechanisms at the electrode surface, as detailed through the aforementioned equa-
tions and techniques. By refining these methods, electrochemical biosensors can provide highly sensitive,
accurate, and rapid diagnostic tools essential for effective disease management and monitoring [104].

Carbon-based electrode

Carbon-based electrodes are commonly used in various electrochemical applications. Its main strengths
include inert properties, chemical stability, and good compatibility with chemical and biological compounds.
Moreover, good conductivity, affordable cost, and the ability to be functionalized in various ways to meet
different application needs [100]. The inert nature of carbon makes it unreactive with various chemicals or
harsh environments. As a result, it can be used under extreme conditions or for extended periods without
undergoing significant degradation [105]. This makes carbon-based electrodes suitable for applications
where high chemical stability is required, such as in environmental or pharmaceutical analysis. In addition,
the biocompatibility of carbon-based electrodes makes them acceptable to the human body and can be used
in medical equipment without causing any unwanted biological reactions [24,106].

Carbon-based electrodes offer several advantages over metal-based electrodes, such as gold and
platinum. The production cost of carbon-based electrodes is relatively low compared to noble metal-based
electrodes while maintaining good conductivity. Types of carbon-based electrodes, such as glassy carbon and
diamond electrodes, match the conductivity of noble metals and offer a wider potential range, enabling a
diverse array of electrochemical reactions [107-109]. Moreover, carbon electrodes demonstrate good
biocompatibility, causing minimal toxic reactions in biological tissues and showing reduced susceptibility to
biofouling, which can impede electrode functionality. In contrast, while metal materials also have good
biocompatibility, they can cause allergic reactions or irritation in some individuals and are more susceptible
to biofouling [110]. Carbon-based electrodes are ideal in healthcare applications due to their high
biocompatibility, ease of sterilization, and lower risk of contamination, making them suitable for single-use
applications. Meanwhile, noble metal electrodes are often more expensive and less practical for disposable
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applications due to their higher cost and limited availability [111,112]. For a detailed comparison between
carbon-based electrodes and other electrode materials, see Table 3.

In addition, carbon-based electrodes can also be functionalized in various ways to suit different appli-
cation needs. They can be functionalized by electrochemical film deposition methods, the use of carbon
nanomaterials, or other surface modifications to improve electrode functionality [26]. With these advan-
tages, carbon-based electrodes continue to be a highly desirable material in the development of sensors,
biosensors, and various other electrochemical applications.

Table 3. Comparison of carbon-based electrodes with other material-based electrodes.

Material Advantages Limitations Ref.
Low cost, flexibility, compatibility, and biocom-

Carbon patibility with various chemical or biological Less precision in some applications, prone to [24,112]
substances, good conductivity, inert, good cathodic contamination, and low mechanical strength. !
potential range, ease of use and maintenance.

Biocompatible, stable in various conditions, high  Expensive, not suitable for some applications,
Gold conductivity, larger cathodic potential range, high reactive to some chemical compounds in [112,113]
corrosion resistance. biological samples
. High .chem.lcal stability, high condt,!ctlwty, non- Expensive, not suitable for all sensor
Platinum reactive with many compounds, high corrosion - . . - [114]
. applications requiring high precision
resistance.
. Lightweight, high strength, corrosion resistance, Limited elect.r!callconductlwty., may require
Titanium . - surface modification for certain sensor [115]
biocompatibility. L
applications.
. High electrical conductivity, antibacterial Prone to tarnishing, may react with sulfur
Silver . ! . [116,117]
properties. compounds, not suitable for all environments.
Susceptible to oxidation, may not be suitable
Copper Good electrical conductivity, relatively low cost.  for long-term sensor applications without [118]
protective coatings.
Nickel Corrosion resistant, good temperature stability. Potential toxicity, not biocompatible, may not [119,120]

be suitable for biomedical sensor applications.

Electrochemical biosensor for diabetes biomarkers based on carbon-based electrode

In electrochemical applications, the electrode plays a crucial role as the site where reactions occur,
particularly in electrochemical biosensors, where it serves as the interface between biological and electronic
systems [112]. Carbon electrodes are commonly preferred for such applications due to several compelling
reasons mentioned in the previous section. Furthermore, their capacity for chemical modification enables
customization according to specific application requirements, including enhancing the sensitivity, specificity,
or lifetime of the biosensor [24,25]. In this section, we explore the development of electrochemical biosen-
sors for the detection of diabetes biomarkers based on widely used carbon-based electrodes, which are GCE
and SPCE, and also other electrodes that are less commonly used in electrochemical biosensors for the
detection of DM biomarkers but have been reported. It delves into operational principles and electrode

modification strategies to enhance biosensor performance.

Glassy carbon electrode

Glassy carbon electrodes (GCE) have been developed for electrochemical sensors since around the
1960s [95]. This electrode is one of the most widely used and applied electrode types in electroanalysis due
to its advantages of electrochemical inertness over a wide potential window, chemical stability, ease of
surface modification, and robustness [107]. Additionally, glassy carbon (GC) has some interesting physico-
chemical properties, including minimal thermal expansion, excellent biocompatibility, very low gas and liquid
permeability [121], excellent thermal (0.7 to 4 W/m K) and electrical (10 to 10000 S/m) conductivity [122].
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Synthesized via a bottom-up approach involving the pyrolysis of specialized polymers at extreme
temperatures. This carbonization process produces a carbon-based material that does not produce graphite.
The high density and low porosity of the GC structure provide strong and durable mechanical properties. Its
three-dimensional graphene structure also offers high thermal and electrical conductivity, making GC a
common choice in electrochemical sensor applications. Furthermore, the amorphous and non-porous glass-
like structure of GC enhances its resistance to corrosion and chemical reactions [123,124].

In recent advancements, Li et al. [125] have developed glucose biosensors using modified GCE by incor-
porating a blend of glucose oxidase (GOx) with hydroxy fullerene (HF), bovine serum albumin (BSA), and
multi-walled carbon nanotubes (MWCNT) shielded by glutaraldehyde (GA)/Nafion (NF) composite mem-
brane to prevent enzyme damage. The HF-GOx complex can enhance the electron conductivity and catalysis
of glucose oxidation reaction, with BSA improving the low biocompatibility and balancing the hydrophobicity
of MWCNTs-HFs. Modification of GCE with carbon in the form of MWCNTSs enhances electrical conductivity
and provides a large specific surface area, facilitating enhanced interaction with GOx [126]. This glucose
biosensor exhibits remarkable sensitivity (167 uA/mM cm?) and a low detection limit (17 uM) with a resulting
Michaelis-Menten constant of 119 uM. Validation tests on human blood plasma samples confirm its efficacy
in detecting glucose concentrations with satisfactory recovery rates [125].

Karasalli et al. [127] developed an innovative electrochemical immunosensor for label-free detection of
HbA1c using reduced graphene oxide (ERGO). HbAlc antibody was immobilized on ERGO/GCE via physical
adsorption with van der Waals interactions and electrostatic forces. Physical adsorption allows the antibody
greater flexibility and mobility to move and adapt to the structure of the HbAlc antigen. This immunosensor
has a detection range between 1 to 25 %, with high sensitivity in detecting HbAlc in human serum samples.

The electrochemiluminescence (ECL) method in biosensors works by involving a chemiluminescence process
initiated by electrochemical methods. This process involves the use of electrodes to initiate a chemical reaction
that results in photon emission. The ECL method offers sensitivity, a wide linear range, and excellent selectivi-
ty [128]. Zhang et al. [129] developed an ECL biosensor for HbA1c detection using Ru(bpy)s** modified GCE as a
chemiluminescence reagent encapsulated in mesoporous polydopamine (MPDA) (Figure 6), forming a
substrate capable of conjugating HbAlc aptamer through amidation reaction. This aptamer-based biosensor
showed a wide linear range from 0.1 to 18.5 % with a low limit of detection (LOD) of 0.015 %.

[ LG Nafion
Oﬁ\/ + F127+ TMB+ Ru(bpy)s** > B —
HCl

Ru(bpy);** |
Ru(bpy)s*" |
@MPDA @MPDA |
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No target * .P)
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e €
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Figure 6. Schematic of ECL immunosensor based on Ru(bpy)s** @MPDA to detect HbAlc
(Reprinted from [129] Copyright © 2020 Elsevier B.V.).
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Nanozymes possessing enzyme-like properties have been applied to GHSA biosensors using GCE electrodes
by Li et al. [130]. In their study, GCE was modified with copper oxide (Cu,O) modified reduced graphene oxide
(rGO) nanocomposite, functioning as a nanozyme akin to GOx.

In the presence of the target, GHSA will be captured by methylene blue-labeled DNA tripods (MB-tDNA),
resulting in a decrease in the MB-tDNA reduction current and an increase in the oxidation current due to
enhanced exposure of the catalytic surface to nanozymes. Measurement of GHSA from serum samples was
monitored from the ratio of glucose oxidation and methylene blue reduction currents (iGlu/iMB) using
differential pulse voltammetry (DPV), the linear range and limit of detection offered from this biosensor are
0.02-1500 pg/mL and LOD 0.007 pg/mL, respectively.

Liu et al. [131] developed an electrochemical aptasensor for insulin detection, employing a modified
'sandwich' structure system on the electrode. In this context, 'sandwich' refers to the complex structure
formed between insulin with one side bound to the aptamer deposited on AuNP/GCE, and the other side
bound to gold nanoparticles-aptamer (AuNPs-Apt) (Figure 7). This 'sandwich' structure enables amplification
of the electrochemical signal from methylene blue (MB) intercalated into the guanine base of the aptamer.
Employing this strategy resulted in high insulin sensitivity, evidenced by the remarkably low detection limit
of 9.8 fM and a wide linear range from 0.1 pM to 1.0 pM.

b

® Y
a. Ins target ) s b. Exo I cleavage
recognifion
c. AuNPs-Apt
probe addition
without
target
E)
;“ with target ¢ -

e. DPV readout d. Methylene blue

E/V
e W ?‘i AuNPs-Aptprobe { mcH
2
S Insulin " Exonucleasel(Exol) @ Methylene blue

Figure 7. Construction of a 'sandwich' structure in a biosensor for insulin detection using aptamer,
exonuclease |, and AuNP-Apt probe (Reprinted from [131] Copyright © 2021 Elsevier B.V.).

From the limited number of studies, a few researchers have developed DM detection methods using novel
biomarkers with electrochemical biosensors that employ carbon-based electrodes. Among these studies,
some have reported using GCE. ATP is a novel biomarker for DM, specifically mitochondrial diabetes. Maksum
et al. [132] explained that mtDNA mutations disrupt protein respiration function and decreased ATP
production. This insufficiency or absence of ATP affects the insulin secretion process.
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Figure 8. Schematic illustrating the fabrication process of the ATP aptasensor
(Reprinted from [133] Copyright © 2021 Elsevier B.V.).

Meng et al. [133] developed a highly sensitive and anti-fouling electrochemical aptasensor for detecting
ATP. The electrode was modified by electrodeposition of poly(glutamic acid) (p-L-Glu), followed by the
immobilization of aptamer and peptide (Figure 8). The p-L-Glu serves multiple purposes: enhancing electrode
conductivity through its conductive groups, providing a matrix for ATP aptamer immobilization, and
increasing the hydrophilicity of the electrode interface to prevent non-target molecules (particularly
hydrophobic ones) from interfering, thus improving anti-fouling ability. The aptasensor demonstrated
excellent selectivity and sensitivity, with a linear detection range from 0.01 pM to 1.0 uM. This range
encompasses the concentration of ATP typically found in the human body (nanomolar to micromolar).

C-peptide, a by-product of proinsulin cleavage, serves as a biomarker of DM. Unlike insulin, C-peptide is not
influenced by external factors such as insulin injections. Therefore, detecting C-peptide can offer more precise
information about pancreatic beta cell function. Using an electrochemical biosensor based on electro-
chemiluminescence, Wang et al. [134] used GCE-modified hairpin DNA probes containing dopamine that
function to increase signal sensitivity. Dopamine reduces the ECL signal by inhibiting the Ru-PEI-ABEI complex,
which is a strong signal source. Glucose detection relies on decreasing ECL signal with increasing C-peptide. This
biosensor has a detection limit of 16.7 fg/mL.

The electrochemical biosensors utilizing GCE developed in the last decade for detecting DM biomarkers
are summarized in Table 4.

Table 4. Electrochemical biosensors for diabetes biomarkers using glassy carbon electrodes.

Biomarkers Electrode modification Redox probe Detection Results Sample  Ref.
methods
e Linear range: 0.01-3.5 mM
o LOD: 17 pM
NF-GA/MWCNTs-BSA-HFs- '\égsrit'\‘;lr?,t;: oy sensitivity: Human o,
-GOx/GCE 167 pA/mM cm? plasma
(pH 6.0) bility: d
Glucose e Storage stability: 120 days
e Recovery: 95.9 ~ 103.9 %
« LOD: 0.3 mmol/L
50 mmol/L PB e Sensitivity: Human
PEI/PVA/GOX/GCE (pH 7.1) DPV 11.79 pA/mM cm? serum [135]

e Recovery: 95.9 ~ 107.5 %
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Detection

Biomarkers Electrode modification Redox probe Results Sample  Ref.
methods
e Linear range: 0.05-20 mM
0.1 M PBS ¢ LOD: 0.02 uM D-
CHIT/GO/GOx/GCE (pH 7.4) cv e Sensitivity: glucose [136]

1006.86 uA/mM cm?
e Linear range: 0.01-1.5 mM

GOx/CoS- 0.1 M PBS . Human
CV e Sensitivity: 18.7 mA/M cm? [137]
MWCNTs/NF/GCE (pH 6.0) « LOD: 0.005 mM serum
Glucose NF/GOx/IL/mPEG- 50 mM PBS (pH " Lhear range: 2.0 1o Human
MWCNTs/GCE 7.0) v 0.95mmol/L plasma (1381
’ ¢ LOD: 0.2 umollL
e Linear range: 0.02-30 mM
« LOD: 6.2 pM
thf_*,\'ﬂgzﬁ\%n/ﬁé//t’éph' bi?fe”:'z" JR7'S4) CV o Sensitivity: 3.1 pgA/mM cm? i‘;maa” [139]
pr 7. « Stability: 90 % (20 days)
e Recovery: 95.0 ~97.4 %
Anti-HbA1c/rGO/GCE [Fe(CN)e]*/3- CV/EIS e Linearrange: 1to25% sgtr)\g:rzd [127]
e Linearrange: 0.1t0 18.5% Human
Aptamer/Ru(bpy)s* [Fe(CN)s]*/3 L . lF_iggc):v%? 1-59? 82~102.69% S¢TUM& [15]
HbA1c @MPDA/ GCE ¢ y: 25 77 \whole
(human serum); 96.43 %- blood
100.85 % (whole blood)
01M PB ¢ Detection range: 9.4 to Human
PBA-PQQ/rGO/GCE (' H 8.0) DPV 65.8 pg/mL whole  [140]
pr S, « LOD: 1.25 pg/mL blood
e Detection range: 2 to Svnthetic
Aptamer/rGO-AuNP/GCE [Fe(CN)e]*/3- SWvV 10 pg/mL yGHSA [141]
« LOD: 0.07 pg/mL
GHSA MIG/AuNP-OPPy/GCE [Fe(CN)s]*/3 DPV  «LOD: 1.2 mg/mL Hs:rmuf;‘ [142]
e Linear range: 0.02 to
MB-tDNA/Cu O-rGO/GCE;  [Fe(CN)s]*/3 DPV 1500 pg/mL Hs:rmufn” [130]
¢ LOD: 0.007 pg/mL
MB-Apt-AuNP//insulin/ 4/3- * Linear range: 0.1 pM to Bovine
/Apt/AUNP/GCE [Fe(CN)e] DPV- 1.0uM Insulin 1131
¢ LOD: 9.8 fM
e Linear range: 10-350 nM .
Insulin Apta/nl\]/leszlc:?cli\lé\E/GA/ [Fe(CN)e]**" PV +LOD: 3.0nM zzlrt?: [143]
e Recovery: 96.28 to 108.05 %
e Linear range: 0.0005 to Insulin
Anti-insulin/CdS: Eu 5 50 ng/mL antigen,
NCs-rGONRs/MWCNT/GCE 5208 ECL . LOD: 0.00040 ng/mL human  [144]
e Recovery: 98.2 ~104 % serum
e Linear range: 0.5 to
Apt/Fe30:@Cu@Cu.0/ 24 2500 nmol/L Human
/GCE [Ru(bpy)2(dppz)] ECL « LOD: 0.17 nmol/L serum [145]
ATP e Recovery: 98.2 to 108 %
e Linear range: 0.01 pM to Human
Apt/p-L-Glu/GCE [Fe(CN)s]*/> DPV  1.0pM soru [133]
« LOD: 0.01 pM
. /3 e Linear range: 10 nM-10 fM .
4-/3
MicroRNA DNA/NSA/GCE [Fe(CN)s] cv « LOD: 20 fM Urine  [146]
e Linear range: 50 fg/mL to Human
C-peptide DNA/DA/GCE Ru(bpy)2(mcbpy)?®*  ECL 16 ng/mL serum [134]

« LOD: 16.7 fg/mL

GOx: Glucose oxidase; NF: Nafion; GA: Glutaraldehyde; MWCNT: Multi walled carbon nanotube; BSA: Bovine serum albumin; HF: Hydroxy fullerene;
PBS: Phosphate Bovine Serum; PEIl: Poly(ethyleneimine); PVA: Poly(vinyl alcohol); CHIT: Chitosan; GO: Graphene oxide; CoS: Cobalt sulfide; IL: lonic
liquid; mPEG: Aminated polyethylene glycol; CtCDH C291Y: Corynascus thermophilus; 4-APh: 4-aminothiophenol; 4-MBA: 4-mercaptobenzoic acid;
rGO: Reduced graphene oxide; MPDA: Mesoporous polydopamine; PBA-PQQ: Phenylboronic acid- Pyrroloquinoline quinine; MIG: Miglitol; OPPy; MB:
Methylene blue; MSTF: Mesoporous silica thin-film; CdS:EU NCs: CdS nanoclusters loaded with europium(lll); rGONR: Reduced graphene oxide
nanoribbon; DA: Dopamine; CV: Cylic voltammetry; DPV: Differential pulse voltammetry; ECL: Electrochemiluminescence; EIS: Electrochemical
impedance spectroscopy; SWV: Square-wave voltammetry.
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Screen-printed carbon electrode

In clinical settings, the utilization of disposable devices has become commonplace to uphold stringent
hygiene protocols, prevent cross-contamination, maintain consistency of performance, and ensure safety for
patients and medical staff. Screen-printed carbon electrode (SPCE) is widely used for disposable sensor
fabrication. Its simplicity, ease of operation, portability, and mass production make SPCE a suitable candidate
for clinical diagnostics. SPCE comprises three electrodes used in electroanalysis: a working electrode,
reference electrode, and counter electrode constructed as a miniaturized electrochemical cell [111]. Any type
of carbon is possible to be deposited by a screen-printing technique, commonly used carbons are carbon
black and graphite. Other carbons have also been examined for use, such as carbon nanotubes, carbon
nanofibers, and graphene [147].

Fabrication of screen-printed carbon electrodes (SPCE) relies on screen-printing technology, where carbon ink
is deposited onto a thin, flat substrate using a layer-by-layer deposition technique to create the desired electrode
pattern [148]. However, reproducibility is hindered by variability in the moulding process, including factors like
molding pressure, humidity, or temperature. Differences in material batches and contamination during fabrication
may also contribute to variations in electrode performance and electrochemical properties [149]. Nonetheless,
the combined simplicity and miniaturization capabilities in these electrodes render them ideal for various
electrochemical applications, including the detection of various biomarkers of diabetes mellitus.

Fiérrez et al. [150] developed an electrochemical biosensor for the enzymatic detection of glucose using
GOx with SPCE modified with poly(azure A) (PAA) to immobilize GOx and enhanced electrodeposition of
platinum nanoparticles (PtNP) on the electrode surface. Platinum catalyses the oxidation of H,0, generated
during glucose oxidation, contributing to the stability and reproducibility of the biosensor [151]. GOx coated
on the SPCE surface will oxidize glucose by involving O, and flavin adenine dinucleotide (FAD), producing
gluconolactone and the intermediate product H,O,, which will release electrons and transferred to the
electrode, generating a measurable electric current [141]. This biosensor exhibits an excellent sensitivity of
42.7 uA/mM cm? with a low detection limit of 7.6 uM and a wide linear range [150].

Eissa et al. [27] developed an electrochemical aptasensor for HbAlc detection. The biosensor was fabri-
cated by electrodeposition of gold nanoparticles (AuNPs) on SPCE. AuNPs serve to immobilize biomolecules
and enhance the current response due to gold's high conductivity and electrocatalytic properties [152].
The thiolated aptamer interacts with AuNPs, forming a covalent bond. Aptamers as bioreceptors are single-
stranded oligonucleotides with a specific affinity to target molecules due to their 3D structure [153]. This
aptasensor was tested on diluted blood samples, the presence of HbAlc in the sample causes the oxidation
current [Fe(CN)s]*/>~ to be blocked. The detection limit value was shown to be very low at 0.2 ng/mL [154].

Hatada et al. [155] developed a biosensor for detecting GHSA using fructosyl amino acid oxidase (FAOx)
enzyme and hexaammineruthenium(lll) chloride (2[Ru" (NHs)s)*>*) modified on SPCE. GHSA measurement
involves a degradation reaction by proteases on GHSA to release e-fructosyl lysine (e-FK). The Ru complex is
reduced simultaneously with the oxidation of e-FK by FAOx, and the amount of reduced 2[Ru™ (NH3)¢]** is
measured using chronoamperometry (CA) to determine the concentration of GHSA in the blood sample
(Figure 9). This biosensor has a wide detection range from 0 to 100 pg/mL with a detection limit of 0.1 pg/mL.

Recent advancements in GHSA biosensors have also been made by Dastidar et al. [156], utilizing thiolated
aptamers bound to gold nanoislands (AuNI) to increase the detection sensitivity of biomolecules. The
irregular structure and large surface area of AuNI provide more functionalization sites and interaction with
the aptamer, then MCH and ethanolamine use for double blocking of the free sites (Figure 10). The
immobilized aptamer reduces the redox current due to the electrostatic repulsion between the [Fe(CN)]*/*
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anion and the phosphate backbone of the negatively charged DNA aptamer [27]. This biosensor is capable of
detecting GHSA and HSA simultaneously in biological samples with a clinically relevant concentration
detection range of 1-40 mg/mL for GHSA and 20-60 mg/mL for HSA.

Z[RUIII(NH3)6]3+

Enzyme (FAOx)

Cofactor
AD

Protease
Digestion

@
=

S
=

S
=
3

Glycated Human LGll}cosge(,)
i ysine, H»
ey 2ARUT(NH )

Figure 9. Principle of GHSA measurement via fructosyl lysine (e-FK) oxidized by FAOx and Ru-complex
(Redraw using © 2024 BioRender from [155] Copyright © 2016 Elsevier B.V).
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Figure 10. Schematic representation of aptasensor for GHSA detection by looking at the HSA/GHSA ratio
using two aptamers that are selective for each of them (Reprinted from [156] Copyright © 2023 The Authors).

A screen-printed carbon electrode modified with ordered mesoporous carbon (OMC) and 1,3,6,8-pyren-
etetrasulfonate (TPS) showed aptamer-based insulin detection with good sensitivity and selectivity. Modi-
fication of the electrode with OMC can increase the contact area between the electrode and the sample, while
TPS facilitates the immobilization of aptamer on the electrode surface by binding the aptamer to TPS sulfonate
through the cross-reaction of aryl sulfonate chloride. The detection mechanism of insulin relies on the change
of MB signal. Following the interaction of insulin with the aptamer probe on the SPCE surface, MB desorbs from
the electrode surface, leading to a decrease in the signal detected through DPV. Insulin measurements can be
performed on human serum samples, albeit with 10,000-fold dilution. The detection range offered by this
insulin biosensor is very wide, from 1.0 fM to 10.0 pM, with a very low detection limit of 0.18 fM [29].

Besides GCE, the SPCE electrode has also been prominently utilized in developing electrochemical biosen-
sors for detecting novel biomarkers such as ATP, CRP, microRNA, and 1,5-AG. This indicates that SPCE is general-
ly used among the various electrodes available. Recently, Mulyani et al. [152] developed an electrochemical
biosensor that selectively detects ATP using an aptamer from Kashefi-Kheyrabadi's research [157]. The thiolated
aptamer was immobilized on SPCE through bonding between thiol groups and gold groups deposited by the
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drop-casting method. The voltammograms from characterization using DPV showed selective results between
ATP and UTP, CTP, and GTP. Furthermore, Rustaman et al. [158] employed an in silico method to demonstrate
that this aptamer also exhibits selectivity towards ADP and AMP. The developed biosensor has a limit of detec-
tion and limit of quantification of 7.43 and 24.78 uM, respectively, with a linear range of 0.1 to 100 uM [152].

Figure 11. Illustration of an antibody-based electrochemical biosensor for detecting CRP using SPCE/GQDs
(Reprinted from [159] Copyright © 2021 The Authors. Licensed under CC-BY-NC-ND 4.0)

CRP is an inflammatory biomarker that can indicate inflammation in the body associated with various
conditions, including type 2 diabetes. Detection of CRP can help in monitoring the body's inflammatory state
and response to treatment or lifestyle changes in individuals with diabetes to reduce the risk of serious
complications such as heart disease and stroke. Lakshmanakumar et al. [159] have fabricated SPCE with
graphene quantum dots (GQD) to improve the sensitivity of CRP detection compared to using carbon
nanotubes and gold nanoparticles, which are reported to be less sensitive for label-free CRP detection. This
immunoassay-based biosensor utilizes EDC:NHS to form a stable amide bond between the carboxyl terminal
group of GQDs and the amine group of anti-CRP (Figure 11). Electrochemical detection of CRP was performed
by amperometry and DPV in artificial blood solution. Results showed that the biosensor has a high sensitivity
of 2.45 pA/ng mL cm? with a linear range of 0.5-10 ng/mL, and a detection limit of 0.036 ng/mL.

MicroRNAs are involved in the regulation of glucose metabolism, inflammation, oxidative stress, and
diabetic nephropathy complications. These small RNA molecules have been detected by Daniel et al. [160]
using DNA strand immobilized on diazo sulphonamide modified SPCE from 4-amino-3-hydroxy-1-napthalene
sulfonic acid (ANSA) solution. ANSA will turn into sulfonyl chloride (ANSCI) to form sulphonamide bonds with
oligonucleotides (Figure 12). The samples used in this biosensor are urine samples from diabetic kidney
disease (DKD) patients. This study was able to detect both miR-192 (associated with DKD) and miR-21
(associated with oxidative stress) with a detection limit of 17 fM.

1,5-AG is a deoxyglucose form that can reflect postprandial glucose levels dynamically. The normal con-
centration of 1,5-AG ranges from 12-40 pug/mL, but may decrease in patients with DM. Recently, Li et al. [161]
developed an electrochemical biosensor using SPCE electrode modified with Persimmon-Tannin-Reduced
Graphene Oxide-PtPd (PT-rGO-PtPd) nanocomposite to detect 1,5-AG. The 1,5-AG detection mechanism
involves the enzyme pyranose oxidase (PROD) bound to the modified electrode to catalyse the oxidation of
1,5-AG to 1,5-anhydrofructose (1,5-AF) and H,0,. The measurement results by DPV showed a detection range
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of 0.1-2.0 mg/mL and a detection limit of 30 ug/mL. Table 5 summarizes the electrochemical biosensors
developed in the past decade that employ SPCE for detecting DM biomarkers.
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Figure 12. Illustration of fabricating an miRNA biosensor from SPCEs, involving hybridization with a target
miRNA (Reproduced from [160] with permission from the Royal Society of Chemistry)

Table 5. Electrochemical biosensors for diabetes biomarkers using screen-printed carbon electrodes.
Detection
methods

Biomarkers Electrode modification = Redox probe Results Sample Ref.

e Linearrange: 0.1-1.4 mM

GOx/NF/Mn0O2-GNR/SPCE ?'1Hl\g S? cv ¢ LOD: 50 uM D-glucose [162]
pR 7. « Sensitivity: 56.32 pA/mM* cm?
0.1 M PBS e Linear range: 0.25 - 6 mM
Glucose  GOx/Pt/rGO/P3ABA/SPCE ( H7.4) Amp « LOD: 44.3 uM D-glucose [163]
PR 7. o Sensitivity: 22.01 pA/mM cm?
0.1 M PB e Linear range: 20 uM-2.3 mM
GOx/PtNP/PAA/SPCE (.pH 7.0) Amp ¢« LOD: 7.6 uM D-glucose [150]

« Sensitivity: 42.7 uA/mM cm?
e Linear range: 0.1-1000 ng/mL Human

- a-/3-
SH-Aptamer/AuNP/SPCE  [Fe(CN)s] SWvo LOD: 0.2 ng/mL whole blood [154]
. /3 e Linear range: 20-200 pg/mL HbA1lc
; 4-/3
AL anti-HbA1c/AuNP/SPCE  [Fe(CN)s] DPV/CV «LOD: 15.5 pg/mlL standard [164]
Aptamer/TBO/ 0.1 M PBS Am o Linear range: 0.006 - 0.74 umol/L  Human [165]
/pTBA@MWCNT/SPCE (pH 7.4) P .LoD:3.7nM whole blood
. Potentio- . Human
- - 4-/3- . . o,
Anti-HbA1c/STV/SPCE-PET [Fe(CN)e] metry Linear range: 5.6 to 10.6% whole blood [166]
/e * Linear range: 0.001-10 mg/mL Spiked
B, 4-/3
Apt/GO-NHS/SPCE [Fe(CN)s] SWv LOD:0.031 pg/mL serum [167]
« Linear range: 2x10°° to
/3 16 mg/mL Human
- 4-/3
SH-Apt/STV/SPCE [Fe(CN)e] SWY 10D 2.6 ng/mL olasma  L168]
o Sensitivity: 10° to 1 mg/mL
Apt/AuNI/SPCE [Fe(CN)s]*/>  DPV e Linear range: 1-40 mg/mL ';"e‘:t‘:;f [156]
GHSA Fructosamine 4-/3 . . Synthetic
6-kinase/SPCE [Fe(CN)e] Amp e Linear range: 20 to 100 uM GHSA [169]
34/2+ e Linear range: 0.1 to 100 ug/mL  Human
FAOx/SPCE Ru(NH3)s CA 0D 01 pg/mL wholeblood 115!
/3 e Linear range: 0.01 to 50 ug/mL  Human
4-/3
Aptamer/GO/SPCE [Fe(CN)e] SWV «LOD: 8.7 ng/mL Serum [170]
e Linear range: 0.001 to Human
Aptamer/GO-Pb/SPCE  [Fe(CN)e]*’*>~  SWV 10 pg/mL cerum [171]

¢ LOD: 0.77 pug/mL
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Biomarkers Electrode modification = Redox probe Detection Results Sample Ref.
methods

e Linear range: 25 to 150 pM
Aptamer/Au/SPCE 0.1 M PBS SWV  «LOD: 18.5 pM

« Stability: 10 days (92 %)

e Linear range: 0.05-15 nM

Human
whole blood [172]

) Spiked
Insulin Apt-MB/AUNP/SPCE  [Fe(CN)e]*/*- C;’de :é?a%”%ffgg"gays 57.52%) hurlpan [173]
« Recovery: 92.0 ~ 98.8 % saliva
0.1M PB e Linear range: 1 fM to 10 pM Human
apt-MB/ OMC-TPS/SPCE 5 ) DPV  «LOD:0.18 fM serum  [29]
PR 7. « Stability: 21 days (92.8 %) spiked
e Linear range: 0.1 to 100 uM ATP
ATP Apt/AuNP/SPCE [Fe(CN)s]*/3*  DPV  «LOD: 7.43 uM standard 152!

¢ LOQ: 24.78 uM
e Linear range: 0.5 to 10 ng/mL
CRP Anti-CRP/GQDs/SPCE  [Fe(CN)e]*/3 cv e LOD: 0.036 ng mL™*

Artificial  [159]

o Sensitivity: 2.45 pA/ng mL cm? serum
ol 1091014

microRNA DNA-ANSAM/SPCE  [Fe(CN)g]*/>*  ¢CV .tgg?rl;afﬁe' 107107 M Urine  [160]
* Linear range: 0.1-2.0 mg/mL Human

1,5-AG  PROD/PT-rGO-PtPd/SPCE [Fe(CN)s]*/>~  DPV  * LOD: 30.0 pg/mL oo [161]

» Recovery: 99.8 to 106.8 %
GOx: Glucose oxidase; NF: Nafion; MWCNT: Multi-walled carbon nanotube; PBS: Phosphate Bovine Serum; GO: Graphene oxide; rGO: Reduced
graphene oxide; GNR: Graphene nanoribbons; Pt: Platinum; P3ABA: Poly(3-aminobenzoic acid; TBO: Toluidine blue O; pTBA: Poly(2,2":5",5"-tert-
hiophene-3’-p-benzoic acid); PET: Polyethylene terephthalate; AuNI: Gold nanoisland; FAOx: Fructosyl amino acid oxidase; OMC: Ordered mesoporous
carbon; TPS: 1,3,6,8-pyrenetetrasulfonate; GQDs: Graphene quantum dots; PROD: Pyranose oxidase; PtPd: Platinum-Palladium; CV: Cylic
voltammetry; DPV: Differential pulse voltammetry; SWV: Square-wave voltammetry. Amp: amperometry.

Others carbon-based electrodes

Carbon paste electrode

Carbon paste electrode (CPE) is one of the promising electrodes in electrochemical sensors and can be
widely applied due to its advantages of chemical inertness, low background current (compared to solid
graphite or rare-earth metal electrodes), low ohmic resistance, environmentally friendly, non-toxic and
adaptability to various detection applications. Moreover, the passivation problem encountered with CPEs
can be resolved swiftly and easily renewing the electrode surface [26,173]. However, despite these benefits,
CPE has certain limitations when used in electrochemical sensors, including lower reproducibility and
sensitivity, as well as the requirement for higher overpotentials for electrocatalytic processes and slower
electron transfer. Nevertheless, these challenges can be overcome through electrode modification [173]. The
fabrication of CPE involves blending carbon powder with a binder like paraffin oil or silicon oil, with the
resulting soft carbon paste being filled into an electrode holder or container and then solidified [174]. In
biosensor development, CPEs can be chemically modified with specific target recognition materials to
enhance target detection specificity [175].

Donmez et al. [176] studied the utilization of poly L-aspartic acid (PAA) modified CPE electrodes for
glucose detection. The modification process involved immersing the electrode in a PBS solution containing
poly L-aspartic acid, followed by cyclic voltammetry (CV) to polymerize PAA. The immobilization of GOx on
PAA/CPE relied on the covalent binding of GOx to the carboxyl group of N-hydroxysuccinimide (NHS) and
1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-activated PAA. The amperometry use to measure
glucose within a concentration range of 0.01-1.0 mM, demonstrating good selectivity by disregarding
interfering species such as dopamine, ascorbic acid, and uric acid, with the time required to achieve 95 %
steady-state current being less than 4 seconds.

An activated carbon-based CPE electrode was developed for glucose biosensor by Fatoni et al. [28] with a
modified NiFe,04 nanoparticle composite. The use of activated carbon aimed to enhance characteristics such

doi: https://doi.org/10.5599/admet.2361 507



https://doi.org/10.5599/admet.2361

S. Zuliska et al. ADMET & DMPK 12(3) (2024) 487-527

as large surface area and high electrical conductivity. This modified CPE exhibited optimal performance with
the inclusion of 8% NiFe-NPs, enhancing the conductivity and catalytic properties of the biosensor. Compared
to the standard hospital method of detecting glucose in blood samples, this biosensor yielded values that
were not significantly different, indicating precise results suitable for medical applications, with a linear
response ranging from 2 to 10 mM.

Boron-doped diamond

Boron-doped diamond (BDD) has gained attention in the development of electrochemical sensors. As a
variant of carbon (sp® hybridization) modified by doping boron atoms into the diamond structure, BDD is
reportedly 'metal-like' as it offers high conductive properties, different from the insulating properties of
diamond [109]. This unique characteristic, along with its high chemical stability, wide potential window, and
corrosion resistance, positions BDD as a highly promising electrode material for biosensor applications [177].
The fabrication of BDD electrodes using the chemical vapor deposition (CVD) method enables precise control
over their structure and composition. This process involves decomposing carbon- and boron-containing
precursor gases on a hot substrate, creating a BDD layer with the desired conductive properties [109]. The
BDD electrodes can be efficiently reused for various applications through surface treatment. This unique
characteristic allows them to restore their surface to its original condition through treatment under extreme
conditions, such as using extremely high acidity (e.g. aqua regia) and electrocleaning with very high potentials
(reduction/oxidation). Unlike BDD electrodes, aggressive or complex treatment processes may potentially
damage or alter the properties of other types of carbon electrodes [178].

In glucose detection applications, BDD electrodes can be employed directly or indirectly for oxidation
through functionalization with specific enzymes. Their high sensitivity and long-term stability make BDD
electrodes an ideal choice for developing reliable electrochemical biosensors to monitor glucose levels in
diabetes [179]. Fachrurrazie et al. [180] successfully developed an enzymatic glucose biosensor with a BDD
electrode modified to be nitrogen-terminated and coated with AuNPs. The formation of a bond between NH,
and AuNPs covalently resulted in a more stable immobilization of GOx on the electrode. The reduction peak
on the GOx/AuNP/BDD electrode showed a linear response to glucose concentration with R? of 0.99.

To create a sensitive and minimally interfered glucose detection method using a BDD electrode, Yoon et al.
[181] recently combined a modified BDD electrode with H0,/NH4,OH and the electron mediator menadione.
This approach utilized the oxidation reaction of glucose by FAD-GDH for the electrochemical-enzymatic (EN)
method and DT-D enzyme with NAD-GDH for the electrochemical-enzymatic-enzymatic (ENN) method. The
biosensor demonstrated a detection limit of about 20 and 3 pM in redox cycling of EN and ENN, respectively.
Due to the slow redox reaction between menadione and interference species such as ascorbic acid, uric acid,
and acetaminophen, this biosensor can selectively detect glucose with high sensitivity.

Graphene

Graphene is a two-dimensional material with a single layer of carbon atoms arranged in a hexagonal
structure. Graphene has unique properties such as high electrical conductivity (64 mS/cm), good mechanical
strength (Young's Modulus, E = 1.0-1.02 TPa), good chemical stability, large surface area (2600 to 2630 m?/g),
and high mobility of biomolecules (10,000-15,000 cm?/V), make it highly attractive for various applications,
including biomedical sensors [182,183]. Recent advancements in graphene electrode fabrication include
laser-induced graphene (LIG) and laser-scribed graphene (LSG) technologies. These methods utilize laser
writing to transform carbon substrates into 3D graphene structures. By optimizing parameters like laser
speed and power, these techniques can produce graphene electrodes with precise properties and large

508 (co) X



ADMET & DMPK 12(3) (2024) 487-527 Carbon-based electrodes for detection of biomarkers

surface areas due to their porous structure. These characters enable good adhesion of target biomolecules
and increase the sensitivity of biomarker detection [184,185].

Luo et al. [186] developed a biosensor focusing on enhancing the electrochemical performance of the LSG
electrode for sensitive glucose detection. In this study, the LSG electrode was modified with the GOx enzyme
using 1-pyrenebutyric acid N-hydroxysuccinimide ester (pyNHS) as a heterobifunctional linker attach GOx to
the working electrode surface (Figure 13). Detection of H,0, formed from the glucose oxidation reaction by
GOx was performed by amperometry, resulting in a detectable concentration range of 0.04 to 4.0 mM with
a sensitivity of 16.35 pA/mMcm?.
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Figure 13. Illustration of laser-scribed graphene fabrication (left) and schematic of enzymatic glucose
biosensor using pyNHS (right) (Reprinted from [186] Copyright © 2023 Elsevier B.V.).

Besides LSG, the LIG electrode has also been used in enzymatic electrochemical biosensors for glucose de-
tection. Liu et al. [187] developed a GOx/Fc/LIGE electrode that exhibited high sensitivity (11.3 pA/mMcm?), a
wide linear range of detection (0-11 mM), and a low detection limit (0.04 uM). This electrode is flexible, capable
of bending up to 60° without a significant change in conductivity and demonstrates good repeatability in
detecting glucose in serum samples. For insulin detection, Liu et al. [131] employed LSGE to develop an
electrochemical aptasensor, modifying the electrode surface to form a 'sandwich' structure (AuNP-Apt/insulin/
/aptamer) based on optimization results on GCE. The detection limit for LSGE in insulin detection is 22.7 fM.
This biosensor was designed as a disposable electrode platform to reduce the risk of cross-contamination
between different samples and showed good consistency (RSD = 1.80 %) in the modified results.

Graphite

Graphite is a versatile crystalline carbon material widely used in various electrochemical biosensor
applications. Similar to graphene, graphite possesses a layered structure. Various forms of graphite
electrodes, including graphite fibre microelectrodes (GFE), graphite rods (GR), pencil graphite electrodes
(PGE), and graphite sheets (GS), have been applied in biomarker detection. GFE, with its large surface area
and high electrical conductivity, offers optimal sensitivity in the detection of target molecules in very small
solutions [188]. On the other hand, graphite rods that are commonly used provide good mechanical stability
and are easily modifiable to enhance the specificity of biomarker detection [189]. Then PGE, known for its
affordability and accessibility, exhibits good sensitivity [190], while GS allows for intricate design possibilities
and integration with advanced sensor technologies [191]. The advantages of graphite electrodes include high
electrical conductivity, mechanical stability, and flexibility in design and application. The synthesis of graphite
electrodes involves methods such as pressure-controlled deposition, CVD, the redox method (Hummer's
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method), and thermal decomposition of graphite [192], depending on the desired application. In biomarker
detection, graphite electrodes have been successfully used in the diagnosis of diseases such as diabetes and
neurological diseases [191,193].

uopisodapoagoapy
PIcD

Figure 14. Aptasensor for HbAlc detection using GS as the substrate for aptamer adsorption (Reprinted from
[191] Copyright © 2019 Elsevier B.V.).

Jaberi et al. [191] developed a GS-based electrochemical biosensor modified with reduced graphite-gold
(rGO-Au) nanocomposite to detect glycated hemoglobin (HbA1c) levels in blood samples (Figure 14). The rGO-
Au nanocomposite increases the surface area and electron transfer on the electrode surface, facilitating the
binding of the thiolated DNA aptamer bioreceptor to form a self-assembly monolayer (SAM) with gold. The
presence of HbAlc caused a decrease in current detected by DPV using the redox probe Fe(CN)s>/*. This label-
free biosensor showed high sensitivity (269.2 mA/cm) and a wide linear range (1 nM to 13.83 mM). However,
the HbAlc concentration in the blood sample needs to be diluted as it exceeds the linear range of the biosensor.

The sensitivity of the GR electrode-based glucose detection biosensor can be improved using dendritic
gold nanostructures (DGN). Sakalauskiene et al. [189] studied the immobilization method of GOx by cross-
link method using glutaraldehyde (GA). The surface of the DGN/GR electrode was converted into a carboxylic
acid layer using 11-mercaptoundecanoic acid, which can form a SAM on top of DGN. Subsequently, GOx was
covalently immobilized onto the modified SAM with GA as a cross-linking agent. GA helped enhance the
repeatability of the current response and reduce the damage or detachment of DGNs from the electrode
surface along with the enzyme under inappropriate experimental conditions. This study gave the highest
Almax of 384.20 + 16.06 pA using GA-GOx-SAM/DGNs/GR electrode and linear dynamic range from 0.1 to
10 mM in serum samples.

Low levels of adinopectin have been linked to insulin resistance, obesity and cardiovascular disease.
Adiponectin has an important role in regulating lipid and glucose metabolism and has anti-inflammatory and
antioxidant properties. Adiponectin can improve insulin sensitivity, reduce inflammation in the blood vessel
wall, and inhibit the proliferation of smooth muscle cells in blood vessels. Therefore, increasing adiponectin
levels in the body may be a potential strategy to prevent and treat diabetes and its complications. One of the
recent studies by Ozcan and Sezgintiirk [194] has proposed an innovative biosensor system to detect
adiponectin in human serum. This biosensor uses a graphite paper (GP) electrode as the working electrode,
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with antiadiponectin as the bioreceptor of adiponectin. The system using the GP electrode produces sensitive
detection with measurement methods using electrochemical impedance spectroscopy and CV. This biosensor
is able to detect adiponectin levels at the picogram level with a wide detection range (0.05 to 25 pg/mL) and
low detection limit (0.0033 pg/mL). Besides that, the electrode used shows the ability to be regenerated up to
18 times. A summary of electrochemical biosensors developed over the last decade using CPE, BDD, graphene
electrodes, and graphite electrodes to detect DM biomarkers is presented in Table 6.

Table 6. Electrochemical biosensors for diabetes biomarkers using other carbon-based electrodes.

. Electrod Detecti
Biomarker Electrode e'c'ro 'e Redox probe etection Results Sample Ref.
modification method

Linear range: 0.05-1.0 mM
GOx/PAA 0-1M PBS cv LOD: 69 uM D-glucose [176]

(pH 7.0) Sensitivity: 5.3 pA/mM cm?
Linear range: 0.05-3.00 mM
Goﬁl‘i/t Fec/'g\a' 0.5MNaCl Amp  LOD: 0.0240 mM D-glucose [195]
P Sensitivity: 0.290 PA/mM
Linear range: 2-10 mM
.1MPB BI
GOx-NiFe04/AC O( H7 O)S Ccv LOD: 1.1 mM Ia(;(r):a [28]
pr 7 LOQ: 3.7 mM P
CPE Linear range: 0.01 to 2 mM
0.05 M PB LOD: 0.1 mM
GOx/Se-MCM-41 (pH 7.0) cv Kon: 0.02 mM D-glucose [196]
Stability: 91 % (10 days)
Linear range: 0.5-9 mM Glucose
.1MPB V
GOx/Si02/lignin 0( 4 0)5 ¢ Cj_\”d LOD: 145 uM infusion  [197]
pr /. Sensitivity: 0.78 uA/mM solution
0.2 M PBS Linear range: 2.0-18.2 mM
F BA-1 A D-gl 1
c/GOX/SBA-1S  ~ 117 0) MP " sensitivity: 1.5 pA/cm? mM glucose  [198]
0.1 M PBS Linear range: 40 to 380 pM
GOx/ZnO (oH 7.0) cv LOD: 8 uM D-glucose [199]
.1 MPB
GOx/AuNP O(pH - O)S cv Linear range: 0.1to 0.9 M D-glucose [180]
) . D-glucose;
Glucose Nafion/GOx/ 0.01 M PBS Linear range: 35 uM to 8.0 mM ’
BDD Amp human  [200]
APTE H7. LOD: M
electrode / S (pH 7.0) OD:30 serum
NAD-GDH/DT-D 0.1 mM cv LOD: 20 uM & 3 uM D_hgllj::grie; [181]
Menadione i H
serum
Linear range: 0-8 mM
LOD: 0.431 mM
Graphene 0.05 M PBS Sensitivity: 1.39 to
clectrode GOx/CHIT/LIGE (oH 7.0) CA 1.81 pA/uM cm? D-glucose [201]
Stability: 90 % (10 days);
72-85 % (>10 days)
Linear range: 25 to 300 uM D-glucose
A B
G/g;ﬁé';/ 0( HM7F;)S CV  LOD: 9.6 uM & artificial [202]
pr /. Sensitivity: 457 nA/ pM cm? sweat
Linear range: 0-11 mM
0.01 M PBS H
GOX-BSA/FC/LIGE — ") Amp  LOD:0.04 M S;‘rmuf: [187]
Graphene pr /- Sensitivity: 11.3 pA/UM cm?
lectrod i : 0. -2.
Clectiod®  Gox/PtNP/ 0.1 M PBS A tg‘;f"gr:”g'\j 0.0003-2.1mM 1, iucose 03]
/acetic acid-LIGE (pH 7.4) P i & sweat

Sensitivity: 65.6 HA/UM cm?
Linear range: 0.04 to 4.0 mM
GOx/pyNHS/LSGE PBS Amp LOD:19.8 uM D-glucose [186]
Sensitivity: 16.35 uA/uM cm?
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Electrode Detection

Biomarker Electrode - Redox probe Results Sample Ref.
modification method
GOx/AuNP/ N -saturated LOD: 1.2 uM
JGO/GEME  PBS(pH7.0) “™P  Stability: 90.22 % (10days) D 8lucose [188]
6 mmol/L Linear range: 0.99 to D-glucose:
Ppy/GOx/ phenazine Am 19.9 mmol/L hguman ! [204]
/AUNPs/GRE metho- P LoD: 0.2 mmol/L e
sulfate Sensitivity: 21.7 pA/UM cm?
Graphite 6.0 mM . .
Glucose electrode  GA-GOX/SAM)/ Phenazine Linear range: 0.1 to 10 mM D-glucose,
/DGNs/GRE metho- Amp LOD:0.019 mM Human [189]
Stability: 73.25 % (12 days) serum
sulfate
Linear rang: 0.0.169 to 10 mM
GOx/AuNP/ 0.1 M PBS LOD: 0.008461 mM
cv D-gl 1
/o(EDOTBN)/PGE  (pH 6.5) Sensitivity: 38.365 wA/uM cm? D-8lucose  [190]
Stability: 4 weeks
Linear range: 1 nM to 13.83 uM
Graphite , LOD: 1 nM Human
_ 4-/3- :
HbAlc electrode APt/rGO-AU/GS  [Fe(CN)e] DPV Sensitivity: 269.2 pA/cm? \g|:?)|§ [191]
Recovery: 94.0 to 109.5 %
MB-Apt-AuNP/ Linear range: 0.1 pM to 1.0 uM .
Insulin S{:&:‘jg: Jinsulin/Apt/  [Fe(CN)e]*/> DPV  LOD:22.7 fM ?nifﬂﬁ [131]
/AUNP/LSGE Stability: 90.93 % (20 days)

GOx: Glucose oxidase; PAA: Poly L-aspartic acid; Fc: Ferrocene; SE-MCM-41: Mesoporous silica: Mobil Composition of Matter No. 41; SBA-15: Mesoporous
silica: Santa Barbara Amorphous-15; NAD-GDH; Nicotinamide adenine dinucleotide-Glucose dehydrogenase; DT-D: DT-diaphorase; CHIT: Chitosan;
LIGE: Laser-induced graphene electrode; BSA: Bovine serum albumin; pyNHS: pyrenebutyric acid N-hydroxysuccinimide ester; LSGE: Laser-scribed
graphene electrode; GFME: Graphite fiber microelectrode; Ppy: Oxidized polypyrrole; GRE: Graphite rods electrode; SAM: Self-assembly monolayer;
PGE: Pencil graphite electrodes; p(EDOTBN): Polymer (4-(dihexylamino)-9,12-bis(2,3-dihydrothieno(3,4-b][1,4]dioxine-5-yl)-7H-benzo[de]ben-
z0[4,5]imidazo[2,1-a]izoknolin-7-one); GS: Graphite sheets; MB: Methylene blue; PtNP: Platinum nanoparticle; CV: Cylic voltammetry; DPV: Diffential pulse
voltammetry; Amp: amperometry; CA: Chronoamperometry.

Open research issues

In current clinical practice, the early diagnosis of diabetes often relies on blood glucose concentration due
to its simplicity in measurement using a glucometer. However, this measurement does not always provide a
fully accurate diagnosis of diabetes. Other highly correlated biomarkers such as HbAlc, GHSA, and insulin are
now becoming important research subjects in the diagnosis and monitoring of diabetes. These biomarkers
can provide more in-depth information about the duration of hyperglycemia, the risk of complications, and
the insulin-related causes of diabetes, which are impaired insulin secretion or insulin production and insulin
resistance.

Electrochemical biosensor methods offer a formidable alternative for disease diagnosis and monitoring.
Compared to gold-standard methods like HPLC and ELISA for biomarkers, electrochemical biosensor methods
excel in developing point-of-care diagnostics due to their simplicity, speed, portability, and reliability. Carbon-
based electrodes are highly suitable for clinical applications due to their cost-effectiveness, making them
potentially accessible to the general public. Additionally, these electrodes are inert and biocompatible. Their
inert nature ensures that the resulting signal originates from a specific interaction with the target
biomolecule, which is necessary for accurate diagnosis. However, carbon-based electrodes may lack
sensitivity, improving sensitivity and electrocatalytic activity can be addressed by electrode modification
strategies, such as metal nanoparticles or reduced/oxidized carbon. Yet, this modification can lead to other
challenges, such as electrode stability. Nevertheless, it has been reported that stability can be resolved,
similar to polymeric membranes [37]. Improving the biosensor's specificity is crucial to avoid false signals,
especially in the presence of interfering molecules like uric acid, ascorbic acid, bilirubin, and certain drug
compounds found in blood. Enhancing specificity remains a key focus area in biosensor development [167].

512 (co) X



ADMET & DMPK 12(3) (2024) 487-527 Carbon-based electrodes for detection of biomarkers

In addition to well-known traditional biomarkers, research has started to explore new biomarkers for DM
diagnosis, including ATP, C-peptide, sorbitol, 1,5-anhydroglucitol, CRP, microRNA, and adiponectin [45]. Since
DM is a complex disease with diverse factors affecting its onset, detecting multiple biomarkers from the same
patient can help to increase the accuracy of detection and overcome weaknesses that may be present in each
biomarker [205]. Moreover, investigating the interrelationship among different biomarkers can clarify
disease dynamics and help distinguish between different types of DM. This novel biomarker detection
method is still under-researched, including the use of carbon electrode-based electrochemical biosensors.
Detection of specific biomarkers using this method can provide more information so that treatment can be
personalized better for each individual. In addition, this method is also easy for medical practitioners to
operate, enabling wider application in daily clinical and point-of-care practice.

Strict clinical validation is also important to ensure the accuracy of the biosensor in a clinical setting by
being tested on diabetic patients. In addition, the demand for continuous monitoring is increasing, leading
to the development of biosensors that can perform continuous monitoring of diabetes biomarkers. There is
a need to integrate electrochemical biosensors using carbon-based electrodes with technologies such as the
Internet of Things (loT) and artificial intelligence (Al) to expand the potential of electrochemical biosensors
for transferring real-time monitoring data to healthcare professionals.

However, there are several challenges to overcome, such as variations in the production process of
disposable carbon electrodes, decreased stability over time, and loss of detection sensitivity for continuous
use of carbon electrodes, as well as the ability to detect diabetes biomarkers directly in blood samples
without the need for preparations such as dilution or complex extraction. Therefore, further research is
needed to overcome these obstacles and ensure that electrochemical biosensors can become effective,
accurate, and user-friendly tools in the diagnosis and management of diabetes mellitus.

Conclusion

The global surge in diabetes cases has raised urgent concerns in public health, underscoring the need for
more effective diagnostic tools. Enter electrochemical biosensors with carbon electrodes—a solution
teeming with potential. A thorough examination of the use of these biosensors in detecting diabetes mellitus,
focusing on pivotal biomarkers like glucose, HbAlc, GHSA, and insulin, provides invaluable insights. Various
types of carbon-based electrodes, when modified with different materials, have been shown to enhance
biosensor performance. The important role of aptamers, antibodies, and enzymes as bioreceptors play a key
role in enabling specific and selective detection of diabetes biomarkers. Significant progress has been
achieved in harnessing carbon electrode-based electrochemical biosensors for detecting HbAlc, GHSA, and
insulin, with particular emphasis on glucose detection. This serves as a foundational framework for further
exploration into detecting other biomarkers that can explain specific pathologies, such as ATP, C-peptide,
1,5-AG, sorbitol, CRP, microRNA, and adiponectin. Of the various types of carbon electrodes, GCE and SPCE
are still the electrodes most popular among researchers, GCE is preferred for its high sensitivity, stability, and
reproducibility, ensuring precise and accurate results, whereas SPCE is particularly promising for clinical
applications due to its disposability, portability, cost-effectiveness, and high sensitivity despite its compact
size. Overall, carbon-based electrochemical biosensors represent a promising avenue for developing point-
of-care methods, aiming to improve the accuracy, efficiency, simplicity, and rapidity of diabetes diagnosis
and disease management.
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List of abbreviations
1,5-AG 1,5-anhydroglucitol GCE Glassy carbon electrode
AA Ascorbic acid GDH Glucose dehydrogenase
AGE Advanced glycation end GFE Graphite fiber microelectrodes
Anti-HbA1lc Antibody HbAlc GFME Graphite fiber microelectrode
AuNPs Gold nanoparticles GHSA Glycated human serum albumin
Apt Aptamer GO Graphene oxide
ADP Adenosine diphosphate GOx Glucose oxidase
AMP Adenosine monophosphate GTP Guanosine triphosphate
ATP Adenosine triphospate HbAlc Glycated hemoglobin
BDD Boron-doped diamond HSA Human serum albumin
BSA Bovine serum albumin Km Michaelis-Menten constant
CA Chronoamperometry LIG Laser-induced graphene
CHIT Chitosan LOD Limit of detection
CPE Carbon paste electrode LSG Laser-scribed graphene
CRP C-Reactive Protein MB Methylene blue
CTP Cytidine triphosphate MWCNT  Multi walled carbon nanotube
cv Cyclic voltammetry NAD Nicotinamide adenine dinucleotide
CvD Chemical vapor deposition NF Nafion
DGN Dendritic gold nanostructures NHS N-hydroxysuccinimide
DKD Diabetic kidney disease PGE Pencil graphite electrodes
DM Diabetes mellitus PtNP Platinum nanoparticles
DNA Deoxyribonucleoic acid rGO Reduced graphene oxide
DPV Diffential pulse voltammetry SAM Self-assembly monolayer
ECL Electrochemiluminescence SPCE Screen printed carbon electrode
EDC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide ~ SWV Square-wave voltammetry
EIS Electrochemical impedance spectroscopy UA Uric acid
FAD Flavin adenine dinucleotide uTpP Uridine triphosphate
FAOx Fructosyl amino acid oxidase e-FK e-fructosyl lysine
GA Glutaraldehyde
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