
Građevinar 6/2024

489

Primljen / Received:

Ispravljen / Corrected:

Prihvaćen / Accepted:

Dostupno online / Available online:

Authors:

GRAĐEVINAR 76 (2024) 6, 489-501

DOI: https://doi.org/10.14256/JCE.3886.2023

20.10.2023.

22.5.2024.

19.6.2024.

10.7.2024.

Modal deflection method for bridge load 
testing: a practical alternative to static  
load tests

Original research paper

Shukun Li, Sheng Qi, Ruofan Zhao, Xingjun Qi, Sanpeng Cao

Modal deflection method for bridge load testing: a practical alternative to 
static load tests

This study investigated the effectiveness of modal deflection testing as a substitute for 
static load tests, focusing on the separation of the Ji-Jiao railway separated overpass. 
The designed load test schemes for both the central and eccentric loading conditions 
were used to measure the real-time static deflections of the bridge to assess its bearing 
capacity. Modal testing based on ambient excitation was employed to capture the 
acceleration vibration responses and identify the key modal parameters of the bridge. 
The Kriging interpolation method was utilised to extend the mode shapes along both 
the longitudinal and transverse directions of the bridge deck. The flexibility matrix of the 
main beam was computed, the modal deflections of the bridge under static test vehicle 
loads were predicted, and a comparative analysis was conducted using the measured 
static deflections from the static load test. The results showed that the modal deflections 
at the midspan section closely matched the static deflections, with errors consistently 
below 10%. This suggests that modal testing can effectively replace static load tests, 
providing a viable method for assessing the bridge load-bearing status and enabling 
real-time health monitoring. This achievement has practical engineering value and opens 
up prospects for future research.
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Izvorni znanstveni rad

Shukun Li, Sheng Qi, Ruofan Zhao, Xingjun Qi, Sanpeng Cao

Metoda modalnog progiba za ispitivanje mosta: praktična alternativa ispitivanju 
statičkim opterećenjem

U radu je prikazano istraživanje učinkovitosti određivanja modalnog progiba kao zamjene 
za ispitivanje statičkim opterećenjem, s fokusom na željeznički nadvožnjaka Ji-Jiao. 
Projektirane sheme simetričnog i nesimetričnog opterećenja upotrijebljene su za mjerenje 
statičkih progiba mosta u stvarnom vremenu kako bi se procijenila njegova nosivost. 
Provedena su dinamička ispitivanja s ambijentalnom pobudom kako bi se zabilježilo 
ubrzanje i odredile modalni parametri mosta. Kriging metoda interpolacije upotrijebljena 
je za proširenje modalnog oblika u uzdužnom i poprečnom smjeru mosta. Određena je 
matrica fleksibilnosti glavne grede, predviđeni su modalni progibi mosta pod statičkim 
opterećenjem vozila i provedena je usporedba s izmjerenim statičkim progibima. Rezultati 
su pokazali da su modalni progibi na srednjem dijelu raspona dobro usklađeni sa statičkim 
progibima, s učestalošću pogrešaka nižom od 10 %. To pokazuje da dinamičko ispitivanje 
može učinkovito zamijeniti ispitivanja statičkim opterećenjem, pružajući održivu metodu 
za procjenu stanja nosivosti mosta, omogućavajući praćenje u stvarnom vremenu. Ovo 
postignuće ima praktičnu vrijednost i otvara prilike za buduća istraživanja.

Ključne riječi:

dinamičko ispitivanje, matrica fleksibilnosti pomaka, modalni progib, Krigingova metoda interpolacije 
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1. Introduction 

Bridges serve as crucial and central facilities that facilitate 
interconnection and communication between transportation 
systems. The safety, usability, and durability of these structures 
have consistently been the focal points of civil engineering 
research. Throughout the life cycle of bridge structures, 
the cumulative impacts of factors such as material ageing, 
environmental erosion, long-term load effects, fatigue, and 
severe vehicle overloading inevitably result in structural damage. 
This damage significantly diminishes the load-bearing capacity of 
the bridge, posing a significant threat to its safe operation [1-4]. 
An accurate and scientific assessment of the structural bearing 
conditions of in-service bridges is essential to ascertaining their 
actual safety margins, thereby effectively mitigating potential 
catastrophic consequences during operational phases.
Traditional methods for assessing the load-bearing state of 
bridges include the load test method, synthetic evaluation 
approach, and influence line method [5-9]. Among them, 
the load testing method is the most accurate and objective 
approach and plays a crucial role in the safe maintenance of 
bridges. However, owing to the large-scale and lengthy traffic 
control required for static load tests, their economic feasibility is 
relatively poor. Therefore, conducting systematic assessments 
of the load-bearing capacities of numerous small- to medium-
sized bridges on a large scale is unsuitable. With ongoing 
technological advancements in computing and data acquisition 
systems, the application of advanced sensors and structural 
dynamic testing for condition assessment has seen significant 
developments in recent years [10].
In practical bridge dynamic testing, particularly when the ambient 
excitation is considered, only the fundamental modal parameters 
of a bridge can be obtained [11]. Accurately evaluating the bearing 
capacity of bridge structures is challenging when relying solely on 
these fundamental modal parameters. The utilisation of modal 
parameters, particularly the modal flexibility of bridge structures, 
has emerged as a focal point in global research. Zhou et al. [12, 13] 
introduced a substructure modal shape splicing method to calculate 
the flexibility matrix of a structure, thereby enhancing the efficiency of 
modal testing using the multireference point pulse hammer method. 
Tian et al. [14, 15] conducted multireference impact and static tests 
on long-span bridges and demonstrated good agreement between 
the predicted and calculated deflections. Qi et al. [16] applied an 
additional mass method to obtain the modal deflection of a bridge 
and used it to assess the actual bearing capacity of a simply 
supported hollow slab bridge and a continuous beam bridge based 
on ambient excitation and bridge load test results.
In practical engineering applications, owing to the constraints 
stemming from testing method, experimental equipment, and 
testing conditions, the assessment method for the load-bearing 
capacity of real bridges still requires continuous expansion and 
refinement. This study introduces a method for evaluating the 
load-carrying capacity of bridges based on non-interrupted traffic 
using modal deflection testing. The effectiveness and feasibility of 
the proposed method were validated through static and dynamic 

tests on an assembled, simply supported T-beam bridge at a 
separated-grade junction on the Ji-jiao Railway. This method does 
not require prolonged traffic interruptions or the utilisation of 
traffic gaps for bridge testing and is both convenient and efficient, 
offering significant practical engineering value for a multitude of 
small- and medium-sized highways and urban bridges.

2. Theoretical background

The mode shape reflects the inherent characteristic of the 
structure and represents the ratio of the modal deflection 
of the structure in different modal orders. According to the 
orthogonality of the mode shapes [17, 18]:

diag(Mi) = ϕTMϕ

diag(Ci) = ϕTCϕ (1)

diag(Ki) = ϕTKϕ

where M denotes the mass matrix, C is the damping matrix, and 
K is the stiffness matrix. ϕ is the displacement mode matrix, ϕ = 
ϕ1ϕ2ϕ3 .... ϕi, and ϕiis the corresponding ith mode shape vector.
Eq. (1) shows that the identified arbitrary displacement mode ϕi 
of the structure satisfies the orthogonality condition. The mass 
and stiffness matrices of the structure can be diagonalised, as 
shown in Eqs. (2) or (3):

ϕTMϕ = diag(mi)
 (2)
ϕTKϕ = diag(ki)

ϕTMϕ = mi

 (3)
ϕTKϕ = ki 

where: i = 1, 2, 3, 4 .... n

For the i-th mode, when there exists a displacement mode  that 
satisfies M  = mi = 1,  is referred to as the mass-normalised 
displacement mode, and the corresponding mode shape matrix  
is the mass-normalised displacement mode shape matrix.
The mass matrix of a structure is certain, and its corresponding 
mass-normalised displacement mode shape for a certain mode 
is determined. The displacement mode ϕi obtained from the 
modal eigenvalue analysis or modal analysis identification may 
not necessarily be the exact mass-normalised displacement 
mode shape. A proportional coefficient ai exists between this 
and the corresponding mass-normalised displacement mode 
shape , as shown in Eq. (4):

 (4)

Substitute Eq. (4) into M  = 1 to get the proportional 
coefficient ai.
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 (5)

By substituting the mass-normalised displacement mode 
shapes matrix into Eq. (2):

TM  = diag( ) = I
 (6)
TK  = diag( ) = I

In the case that  is a square matrix with full rank, for both 
sides of the second Eq. (6), multiply ( T)-1 by left and ( )-1 by right 
simultaneously to obtain the stiffness matrix of the structure 
as follows:

 (7)

The flexibility matrix Fd of the structure is the inverse of the 
stiffness matrix K, as shown in Eq. (8):

  (8)

where d indicates that this parameter belongs to displacement.
The relationships among the natural 
frequency wi, modal mass i, and modal 
stiffness i are as follows:

 (9)

The modal mass i = 1 corresponding to 
the mass-normalised mode shape  is 
equal. Therefore,

 (10)

Substituting these values into Eq. 
(8) yields the following formula for 
calculating the flexibility matrix:

 (11)

Where  is the ith order mass-normalised mode shape, wi
2 is 

the ith order natural frequency, and n is the total number of 
identified modes.
Finally, the flexibility matrix is calculated using Eq. (11) can be 
substituted into Eq. (12) to obtain the modal deflection.

∆ = Fdf (12)

where ∆ is the modal deflection and f is the static load vector.

3. Field test

3.1. Project overview

The Ji-jiao railway separated overpass is a dual-carriageway 
bridge that allows bidirectional travel, with a bridge span 
combination of 25 m + 30 m + 25 m. Each carriageway consists of 
seven precast prestressed concrete simply supported T-beams 
laterally. The substructure was composed of column piers, 
gravity-type U-shaped abutments, and bored pile foundations. 
A simply supported T-beam bridge span of 25 m was selected 
as the experimental subject. The bridge is illustrated in Figure 1, 
and its dimensions are shown in Figure 2.

Figure 2. Bridge dimensions (mm): a) Longitudinal view of the bridge

Figure 1. Studied bridge
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3.2. Bridge finite element model

To accurately correlate the theoretical modeshapes of the bridge 
with the identified mode shapes, determine the minimum order 
required to capture the predicted modal deflections, and extract 
the mass matrix from the finite element model, finite element 
modelling of the bridge must be conducted. The finite element 
software ANSYS was used to establish a bridge model. Owing to 
the large width of the bridge deck, a single-beam model could not 
accurately simulate the lateral response of the bridge structure 
under an experimental load. Therefore, this study adopted a beam 
grid model for the finite element simulation. The main beam, 
virtual transverse beam, solid transverse beam, and guardrail 
were modelled using BEAM4 elements. The concrete levelling 
layer was represented by SHELL63 elements. The asphalt layer 
was simplified as a concentrated mass and integrated into the 
bridge body, with COMBIN14 elements employed to simulate 
the vertical support action of all beam-end bearings. The main 
beam, solid transverse beam, and guardrail have an elastic 
modulus of 1.55×104 MPa, a density of 2500 kg/m3, a Poisson’s 
ratio of 0.2, and the element length of the finite element model 

is 0.4 m. The virtual transverse beam has a density of 0 kg/m3. 
The elastic modulus of the concrete levelling layer is 3.25×104 
MPa, with a density of 2500 kg/m3 and Poisson’s ratio of 0.2, and 
the thickness of the concrete levelling layer is 0.08 m. Because 
of the small ratio of the steel reinforcement area to the main 
beam area in the main beam section and the bridge being in an 
elastic state, no steel reinforcement elements were established 
in the constructed bridge models. The finite element model of the 
bridge is depicted in Figure 3, and the first four theoretical modal 
shapes are illustrated in Figure 4.

Figure 3. Finite element model of the bridge

Figure 2. Bridge dimensions (mm): b) Bridge cross-section; c) Beam cross-section

Figure 4. First four theoretical modal shapes: a) First modal shape; b) Second modal shape; c) Third modal shape; d) Fourth modal shape
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4. Static load test

Before performing a static load test on 
a bridge, the loading efficiency of the 
test must be calculated in accordance 
with the Load Test Methods for Highway 
Bridges (JTG/T J21-01—2015) [19]. This 
calculation is essential to fully elucidating 
the structural characteristics under an 
applied load. The loading efficiency (ηq) 
was determined using Eq. (13).

 (13)

where Ss refers to the maximum 
calculated effect value of internal forces 
or displacements within the loading 
section for a specific loading test project 
under a static loading test load, S 
represents the most adverse calculated 
value of internal forces or displacements 
within the loading section generated 
by the load, and µ represents the shock 
coefficient value. The impact coefficient 
of automobiles varies between 0.05 and 0.45, depending on the 
fundamental frequency of the structure. According to [19],the 
impact coefficient is calculated as follows:

when  f < 1,5 Hz, µ = 0.17671 · lnf - 0.0157 (a)
when  1,5 Hz ≤ f ≤ 14 Hz, µ = 0.17671 · lnf - 0.0157 (b)
when  f >14 Hz, µ = 0.45 (c)

The theoretical calculation yielded a fundamental bridge 
frequency of 4.433 Hz; therefore, condition (b) was selected for 
the calculation.
To ensure the accuracy of the test results, it is imperative to 
adhere to the specifications outlined in the Specification for 

Inspection and Evaluation of Load-bearing Capacity of Highway 
Bridges (JTG/T J21—2011) [20]. According to this code, the 
loading efficiency of a bridge should ideally range between 
0.95 and 1.05. Four three-axle load vehicles were used for this 
purpose: a front axle load of 76 kN, a middle axle load of 148 kN, 
and a rear axle load of 148 kN. The arrangement of the loading 
vehicles on site is shown in Figure 5. A schematic depicting the 
dimensions of the loaded vehicles is shown in Figure 6.
The static load test of the Ji-jiao railway separated overpass was 
divided into two loading conditions: the central and eccentric 
load conditions. To verify the proper functioning of the testing 
system and the organisation of the experiment, the preloading 
holding time should not be less than 20 min, during which 

Figure 7.   Load test conditions: a) Central load condition [mm]; b) Eccentric load condition [mm] (First-level loading condition: ①+②, Second-
level loading condition: ①+②+③+④)

Figure 5.  Phase of static testing of the bridge with 4 trucks 

Figure 6. Schematic of the loading vehicle dimensions (mm) and axle load  [kN]
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the load is gradually reduced to zero and the structure has 
sufficient time to recover to zero load. Once the structure has 
fully recovered to zero load, the formal loading can commence.
The test employed a step-by-step loading approach, and all 
procedures were conducted using a two-step loading method. 
The first-level loading condition involves Vehicles ① and ②, 
while the second-level loading condition involves Vehicles 
①,②,③, and ④. The locations of the loading vehicles are 
shown in Figure 7.
Each loading procedure and reading should be measured 
immediately after loading or unloading, and stable readings 
should be taken after the loading or unloading has stabilised. A 
sign of relative stability in the structure is when, within the last 
5 min of each load level, the incremental displacement is less 
than 15 % of the incremental displacement within the preceding 
5 min or less than the minimum resolution of the measuring 
instrument used. The readings taken after stabilising the first-
level loading condition are referred to as the first-level stable 
deflections, whereas those taken after stabilising the second-

level loading condition are referred to as the second-level stable 
deflections. Because the midspan is the most critical location 
on a bridge, each midspan of the main beam was chosen as the 
measurement point. The measurement points were designated 
as CN1–CN7. The layout of the measurement points is shown 
in Figure 8. Supports were installed underneath the bridge to 
secure the TST-100A displacement sensors (sensitivity: 48,60 
µε/mm). Bridge deflection data were collected using a data 
acquisition system. The onsite test setup is shown in Figure 
9. The recorded deflection values at the mid-span section of 
the main beam of the bridge under central and eccentric load 
conditions are presented in Tables 1 and 2, respectively.
Observation of the data in the table indicates that under both 
central and eccentric loading conditions, the relative residual 
deformation of the measurement points after unloading was 
significantly less than 20 %, meeting the requirements of the 
Technical Code for Test and Evaluation of City Bridges (CJJ/T 233-
2015) [21]. The elastic working states of the rehabilitated and 
reinforced bridges were satisfactory.

Figure 8.  Layout of the deflection measurement points

Figure 9.  Setup for deflection measurement under the bridge: a) Setup method of displacement sensor; b) Layout of data acquisition system
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5. Modal testing of interchange bridge

5.1. Modal testing

With the enhanced sensitivity of sensors and progress in 
internet technology, the environmental vibration test method 
has become widespread in bridge modal testing. This method 
relies on ambient excitations, such as ground motion, wind 
load, and vehicle load, to induce bridge vibrations. The vibration 
response of a bridge can be recorded using high-sensitivity 
vibration sensors, data acquisition systems, and computers. 
Modal analysis methods such as peak picking, empirical mode 
decomposition, and the random subspace method [22, 23] are 
then employed to identify the modal parameters of the bridge 
structure.
Comparing this ambient excitation method with the traditional 
approach, which simultaneously uses input and output 
information to identify bridge modal parameters, offers several 
advantages. First, it eliminates the need to measure the 
structure’s excitation information and directly identifies the 
modal parameters using the vibration response data, thereby 
reducing the workload and enhancing practicality. Second, 
the environmental vibration testing method does not require 

interruption of the normal operation of bridge structures, 
whereas traditional manual excitation requires complex 
excitation equipment, which is expensive, and the excitation 
process requires traffic control, making it less suitable for 
bridges with heavy traffic flow.
The modal test described in this study adopts the ambient 
random excitation testing method. The BY-S07 accelerometer 
sensors (sensitivity: 0,3 v/(m/s2) were strategically positioned 
at eight equidistant points on each main beam. An appropriate 
amount of organic mud was evenly spread into thin sheets and 
adhered to the bottom of the accelerometer. Tight adhesion 
between the mud and the bottom of the sensor securely fastens 
the accelerometer with mud to the bridge deck, ensuring 
that the sensor remains stable during testing. A single-point 
moving test technique was used by fixing one accelerometer 
at a measuring point, referred to as the reference point, and 
moving the other sensor points in three batches to collect data. 
This is combined with the modal synthesis technique to obtain 
full-bridge modal information. To fully capture the vibration 
response of the bridge structure, the sampling time for each 
batch was set to 20–30 min with a sampling frequency of 500 
Hz. The on-site bridge testing is depicted in Figure 10, and the 
layout of the measurement points is illustrated in Figure 11.

Number First-level stable 
deflection [mm]

Second-level stable 
deflection [mm]

Unloading deflection
[mm]

Elastic deformation
 [mm]

Relative residual 
deformation [%]

CN1 -0.25 -1.08 0.04 -1.12 3.70

CN2 -0.73 -2.07 -0.04 -2.03 1.93

CN3 -1.09 -2.73 -0.04 -2.69 1.47

CN4 -1.41 -3.06 -0.04 -3.02 1.31

CN5 -1.70 -2.98 -0.16 -2.82 5.37

CN6 -1.43 -2.17 -0.02 -2.15 0.92

CN7 -1.13 -1.49 0.00 -1.49 0.00

Note: CN1–CN7 are control points corresponding to the mid-span of the seven main beams.

Table 1. Deflection value for the central load control sections

Table 2. Deflection values for the  eccentric load control sections

Number First-level stable 
deflection [mm]

Second-level stable 
deflection [mm]

Unloading deflection
[mm]

Elastic deformation
[mm]

Relative residual 
deformation [ %]

CN1 -1.52 -2.38 0.00 -2.38 0.00

CN2 -1.34 -2.74 0.00 -2.74 0.00

CN3 -1.15 -2.81 0.00 -2.81 0.00

CN4 -0.71 -2.27 0.00 -2.27 0.00

CN5 -0.49 -1.68 -0.02 -1.66 2.67

CN6 -0.02 -0.75 -0.02 -0.73 1.19

CN7 0.00 -0.36 0.00 -0.36 0.00

Note: CN1–CN7 are control points corresponding to the mid-span of the seven main beams
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5.2.  Bridge modal parameter 
identification

When assessing the load-carrying 
capacity state of bridges using the 
ambient excitation-based modal 
deflection testing method, the 
displacement flexibility matrix exhibited 
rapid modal convergence. Consequently, 
the higher-order modal parameters 
contribute only minimally to the 
displacement flexibility matrix. Thus, 
only modal parameters of the first few 
orders are typically required to obtain 
a sufficiently accurate displacement 
flexibility matrix [24].

By identifying the displacement flexibility matrix, the modal 
deflection of the bridge was predicted, and the predicted 
results quickly converged to the actual static deflection of 
the structure. Consequently, for this simply supported beam 
bridge, it is only necessary to identify the modal parameters 
of the first four modes for predicting the deflections at the 
midspan control section to satisfy the precision requirements. 
The modal parameters of the simply supported T-beam bridge 
were identified using the SSI modal identification method. The 
frequency identification results are listed in Table 3.
During the bridge construction process, to ensure bridge 
stability, a certain safety margin was incorporated, resulting in 
a higher stiffness K, which caused the measured identification 
frequency to be greater than the theoretical frequency. The first 
four modal shapes of the bridge are shown in Figure 12.
When the modal test point layout does not coincide with the 
positions of wheel loading during static load tests, failure to 
conduct load distribution leads to a mismatch between the 
displacement flexibility matrix acquired from modal testing and 
the load vector from static load testing. There are significant 
errors in the modal deflections calculated using Eq. (11) 
compared with the static deflections measured from the static 
load tests. Distributing the wheel loads to nearby measurement 
points and considering only the vertical load distribution failed 
to accurately reflect the effects of the loaded wheels on the 
bridge structure.
The modal shapes identified from the modal testing at 49 
measurement points were subjected to interpolation processing 
in both the transverse and longitudinal directions of the bridge. 
Using this method, the mode shape data at the wheel load 
application points can be obtained, allowing the calculation of 
the displacement flexibility matrix corresponding to the actual 
wheel load vector. This process facilitates the prediction of 
modal deflections and eliminates the need for a specific wheel-
load distribution.
Common interpolation methods include inverse distance 
interpolation, radial basis functions, and kriging interpolation 
[25-27]. Compared to traditional modal extrapolation methods, 

Figure 10.  Field photograph of the modal test

Figure 11. Layout of the measurement points (dimensions in mm)
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Kriging interpolation imposes fewer restrictions and exhibits 
wider applicability. It fully considers the spatial correlation of 
variables, reflects the spatial structure of the variables, and 
provides a minimum variance estimation of unknown data 
within the estimation area, thus demonstrating excellent 
smoothing effects. These advantages give the Kriging method 
superior simulation performance compared to other common 
interpolation methods.
Therefore, this study utilised the Kriging method to interpolate 
and extend the measured mode shapes. During modal testing, 
the measurement points were positioned at every eighth point 
along each beam. Virtual measurement points were introduced 
at the wheel locations, and the mode shape values at these 
virtual points were obtained by interpolation using the actual 
measurement point values. The extended modal shapes for the 

first four modes of the bridge after interpolation are illustrated 
in Figure 13, and the determination of Modal Assurance Criterion 
(MAC) values is presented in Table 4.
The MAC is used to assess the correlation of modal vibration 
vectors in the modal space. The computed scalar value falls 
between zero and one, with a value closer to one indicating a 
better modal correlation. From Table 4, it is evident that under 
both central and eccentric load conditions, the MAC value of the 
extended modes of vibration ranges from 0.85 to 0.99. Notably, 
the accuracies of the first and second vertical modes of vibration 
exceeded 0.85, indicating the highest precision among all modes 
of vibration. The results underscore the reliability of using Kriging 
to interpolate the modes of vibration at the wheel positions, 
effectively addressing the challenge of misalignment between 
the mode-shape measurement points and the loading points.

Figure 12.   Identification results for the first four modal shapes: a) First modal shape; b) Second modal shape; c) Third modal shape; d) Fourth 
modal shape

Table 4. Identification of Modal Assurance Criterion (MAC) values

Load condition First mode of the first 
modal shape

Second mode of the 
second modal shape

Third mode of the third 
modal shape

Fourth mode of the fourth 
modal shape

Central load 0.9947 0.8578 0.8887 0.9480

Eccentric load 0.9930 0.8608 0.8623 0.9395

Modal order First mode of the first 
modal shape

Second mode of the 
second modal shape

Third mode of the third 
modal shape

Fourth mode of the 
fourth modal shape

Theoretic frequency [Hz] 4.433 6.988 12.959 17.748

Identification frequency [Hz] 6.475 7.575 13.381 20.581

Table 3. Frequency identification results
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5.3. Displacement flexibility matrix

Flexibility represents the displacement of a structure under 
a unit force, which is the reciprocal of stiffness, and can 
characterise the deformation ability of a structure in its elastic 
state [28, 29]. The element in the displacement flexibility matrix 
represents the deflection at the node caused by the application 
of a unit force at the node. A flexibility matrix is used to predict 
the deflection of a bridge under a known load.
In this study, a refined finite element model was used to 
normalise the experimental modal shapes, and the normalised 
modal parameters were used to calculate the flexibility matrix. 
The first four modal shapes of the bridge were normalised and 
substituted into Eq. (11) to obtain the displacement flexibility 
matrix, as follows: To observe the flexibility matrix of the bridge, 

a three-dimensional plot was drawn, as shown in Figure 14.
The three-dimensional graph of the flexibility matrix evidently 
shows that it essentially reflects the deformation of the structure 
under loading. The peak points in the graph correspond to the 
midspan sections of the bridge edge beam. This result aligns 
with the physical significance of the overall vertical deformation 
of the simply supported beam bridge structure.

6. Bridge bearing capacity evaluation

Displacement is one of the most critical parameters in structural 
design or evaluation assessment because it provides an intuitive 
reflection of the basic performance and stiffness state of a 
structure. Consequently, the displacement of bridge structures 
has consistently been the focus of engineers and researchers. 

Traditionally, the vertical displacement 
measured directly during a static load 
test serves as the primary criterion for 
evaluating the bearing capacity of a bridge. 
However, owing to the cost implications 
and time-intensive nature of static 
load tests, this method is inconvenient 
for assessing the bearing capacities of 
numerous small- and medium-sized 
bridges. The modal deflection of structures 
under static loading was predicted by 
utilising the inherent property of the 
displacement flexibility of bridges. This 
approach clearly replaces the measured 
static deflection for the assessment of the 

Figure 13.   Extended modal shapes for the first four bridge modes after interpolation:  a) First modal shape; b) Second modal shape; c) Third 
modal shape; d) Fourth modal shape

Figure 14.  3D diagram of the compliance matrix
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bridge carrying capacity, thereby effectively compensating for the 
shortcomings of traditional static loading tests.
In this study, the displacement flexibility matrix of the Ji-jiao 
railway separated overpass, combined with the load vector 
corresponding to the loaded wheel in the static load test, was 
used to calculate the modal deflection for both the central and 
eccentric loads in the static load test. The calculated modal 
deflections were then compared with the measured static 
deflections obtained from the static load test for error analysis, 
and the results are presented in Table 5.
According to the data in the observation table, under central load 
conditions, the deflection values of the beams corresponding to 
CN2 to CN6 are greater than those corresponding to CN1 and 
CN7, with an overall relative error of less than 9 % for these 
five beams. The maximum and minimum relative errors are 
8.9 % and 3.0 %, respectively. Under eccentric load conditions, 
the deflection values of the beams corresponding to CN1–CN5 
were greater than those corresponding to CN6 and CN7, with 
an overall relative error of less than 10 % for these five beams. 
The maximum and minimum relative errors are 9.7 % and 4.0 
%, respectively. The analysis indicated that despite certain 

deflection differences, the overall relative errors remained at 
relatively low levels, within 8.9 % and 10 %, respectively. The 
source of the error is attributed to the truncation of the modal 
orders; thus, the predicted modal deflections under both loading 
conditions met the engineering accuracy requirements.
Additionally, for the beams corresponding to CN1 and CN7 under 
the central load condition and the beams corresponding to CN6 and 
CN7 under the eccentric load conditions, the measurement points 
were far from the loading points, resulting in small measured 
deflection values. Moreover, inherent measurement errors exist 
in static deflection measurement values. Consequently, the 
relative errors between the modal and measured deflections 
are large for these four measurement points. However, beams 
with smaller measured deflection values had no impact on the 
assessment of the load-bearing capacity of the bridge.
The deflection verification coefficient η of each main beam was 
calculated according to [19], and η was calculated according to 
Eq. (14).

 (14)

Table 5. Error between the modal and measured static deflections

Table 6. Deflection verification coefficient

Number
Central load condition Eccentric load condition

Static deflection  
[mm]

Modal deflection  
[mm]

Relative error
[%]

Static deflection  
[mm]

Modal deflection  
[mm]

Relative error
[%]

CN1 -1.12 -1.37 22.3 -2.38 -2.47 4.0

CN2 -2.03 -2.15 6.0 -2.74 -3.00 9.5

CN3 -2.69 -2.61 3.0 -2.81 -2.54 9.7

CN4 -3.02 -2.85 5.8 -2.27 -2.11 6.9

CN5 -2.82 -2.57 8.9 -1.66 -1.51 9.0

CN6 -2.15 -2.08 3.1 -0.73 -0.94 28.8

CN7 -1.49 -1.81 21.5 -0.36 -0.45 25.0

Note: CN1–CN7 are control points corresponding to the mid-span of the seven main beams

Number
Central load condition Eccentric load condition

Ss [mm] Se [mm] η Ss [mm] Se [mm] η

CN1 / / / -3.45 -2.47 0.716

CN2 -4.26 -2.15 0.505 -4.26 -3.00 0.704

CN 3 -4.98 -2.61 0.524 -4.98 -2.54 0.510

CN 4 -5.32 -2.85 0.536 -5.32 -2.11 0.397

CN 5 -4.98 -2.57 0.516 -4.98 -1.51 0.303

CN 6 -4.27 -2.08 0.487 / / /

CN 7 / / / / / /

Note: CN1–CN7 are control points corresponding to the mid-span of the seven main beams
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where η represents the deflection verification coefficient, Se 

represents the measured elastic displacement values of the 
main measuring points under the modal test load,and Ss is the 
same as in Eq. (13). 
After accurately predicting the measured modal deflection of the 
section at the midspan of the main beam, the modal deflection 
verification coefficient of the section was calculated. This 
calculation involved using the predicted modal deflection of the 
actual bridge under central and eccentric load conditions while 
eliminating irrelevant measurement points. The calculation 
results are listed in Table 6.
The results in the table indicate that under central load or 
eccentric load conditions during load tests, the verification 
coefficients of deflection calculated using the predicted modal 
deflections obtained from actual bridge modal testing were 
all less than 1 for the mid-span section of the Ji-jiao railway 
separated overpass. This satisfies the specification [19], 
demonstrating that modal deflection testing based on ambient 
excitation can effectively assess the load-bearing capacity 
states of bridges. Furthermore, it is feasible to conduct modal 
testing on actual bridges without interrupting the traffic flow, 
indicating significant practical engineering applicability.

7. Conclusion

Given the challenges associated with measuring bridge 
deflections and the distinctive nature of modal test methods, 
this study investigated the deflection measurement, 
identification, and prediction of simply supported T-beam 
bridges. The findings are summarised as follows:
 - Based on the ambient excitation modal testing method, 

the first four modal parameters of the 49 measurement 
points on an assembled, simply supported beam bridge 
were identified. The Kriging interpolation method was used 
to extend the mode shapes longitudinally and transversely 
on the bridge deck. The modal deflections in the mid-span 
section under the static load test were calculated. Compared 
to the measured static deflections under the central load 

condition, the maximum relative errors for the five beams 
with the largest effects were all below 10 %. Similarly, 
under the eccentric load condition, the maximum relative 
errors of the five beams with the largest effects were less 
than 10 %. This essentially meets the engineering accuracy 
requirements, indicating the high accuracy of the modal 
deflection prediction based on the ambient excitation modal 
testing method. It can effectively replace measured static 
deflections to evaluate the load-bearing capacity of a bridge.

 - Using a modal test method to predict the modal deflections 
of a bridge under various load conditions in a static load test 
plan and calculating the deflection verification coefficient, 
combined with the current specification [19], the stiffness 
of existing bridges can be assessed. Therefore, the bridge 
ambient excitation modal test method can replace traditional 
static load tests for bridge load-carrying capacity evaluation.

 - The modal deflection test method based on ambient 
excitation combines the advantages of traditional static and 
dynamic load tests for evaluating the load-carrying capacity of 
bridges. It can collect the vibration information of operational 
bridges without interrupting traffic and facilitate the quick 
identification of the modal parameters of bridge structures. 
With the rapid development of testing technologies and modal 
identification methods, the accuracy of this method continues 
to improve. Therefore, they have good practical engineering 
value and broad application prospects.
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