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Abstract: Starting from the scattering amplitude in the second Born approximation an
optical potential for elastic scattering of electrons on complex atoms is obtained.
Proposed optical model gives the possibility of direct determination of the high-
-energy elastic scattering cross-section in the second Born approximation.

General theoretical results are applied to the e-IHe and e-O collisions, Results of the
calculations are compared with the experimental data as well as with the more
exact calculations. b

1. Introduction

In the theoretical treatment of the scattering of electrons on atoms at high
energies, the atomic field as seen by the incident electron can be satisfactorily
approximated by an effective potential represented by an electron-atom in-
teraction averaged over the wave function of the atom. At low energies the
atomic structure begins to manifest itself in the scattering (distortion and
exchange effects) and such an averaging becomes ineffeckive. While the
exchange effects can be taken into account by antisymmetrizing the tfotal
wave function, this is not so simple to perform with the distortion. It.is well
known ‘that in the adiabatic approximation the description of the distortion
effeots is not complete?), Variational? and Temkin’s nonadiabatic methods®
are more successful, but their application is rather restricted. In the close-
coupling method some polarization effects are included, but the results are
strongly dependent on the number of states retained in the expansion.
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Another way of taking into account these effects is to fintroduce an one-
-body non-local potential operator U into the scattering equation, known in
the nuclear scattering problems as optical-potential method. To the atomic
case this approach was applied by Mittleman and Watson and others?.
Kelly® and Pu and Chang® used Coldstone diagrammatic technique to obtain
optical potentials for e-H and e-He low-energy elastic scattering, with
remarkably good results.

In the high-energy electron-atom scattering the optical potential method
was first applied by Massey and Mohr”), using the second Born amplitude
as the stanting point. They obtained the asymptotic behaviour of the
potential only. Following their idea, Ob’edkov® constructed a complex po-
tential for the elastic scattering of the electrons from the hydrogen atom.
At k> 1.2 his cross-section fis identical with that of Kingston and Skinner?,
calculated in the second Born approximation, taking into account the 1s,
25 and 2p atomic states. Recently Amus’yal®) gave a theoretical field version
of the optical-potential method for high energy electron-atom collisions.
However, his final results contain parameters which must be determined
from the experimental data. The. generalization of the method of ref® to
the case of elastic electron scattering from an arbitrary atom sis made in
Section 2. In Section 3. as examples of application of the method we calcu-
lated the zero angle scaftering intensity, and the cross seotions for elastic
e-He and e-O colliSions, calculating the first order quantities in the Hartree -
-Fock approximation for the atomic field.

2. Optical potential for elastic electron-atom scattering

Let us consider the scattening of an electron on the atom A in his ground

- -
state. Let r, and r be the coordinates of the incident electron and all atomic
electrons, respectively. If the Hamiltonian of the (e + A) system is H, then

> -
the total wave function ¥ (r, r) satisfies the equation

- >

(H—E)¥ (ry,7) =0, (1)
H=Ha+T,+V=H,+V, )

where E is the total energy, Ha the atomic Hamiltonian, 7, is the kinetic
energy operator of the incident electron, and V represents the eleotron-atom
electrostatic interaction. Equation (1) is usually solved by expanding the total
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wave function ¥ in terms of the eigen-functions |7>> of the atomic Hamil-

>
tonian, i. e. as ¥ = 3 F,|n>>, where the coefficients F,(r)) = <n|¥>
describe the motion of the scattered electron and have standard asymptotic
behaviour:

Fn (rl) ~s | kn 151 > C’on + fn CXP (ikn 7"1) / 71

Fi— =

(3)

>
(kn is the relevant wave number of the r, electron).
The function F; describes the elastic scattering and it should be deter-

mined. The general methods of determining Fx are well known!). Here, we
are interested in F; only, and for this funotion substitution of the expansion
ZF,|n> in (1) gives

(Tl———I-U)Fo=0- 4)

where ky/2 is the kinetic energy of the indident electron, and the potential
operator U is defined as

UFy=<0|V|¥>. 5

The equation (4) describes the motion of a particle in the field U, and thus
if k£, is the momentum of the scattered electron, elastic scattering amplitude
has the form )

1 > > -
f=._2—n ko' r1|OUFy(ry) > (6)

The first approximation for f can be obtained if for ¥ we take the

eigenfunohions of the noninteracting system operator Hy, i e. Y0 =@ =

Ik,, r1>|0> This is just the first Born approximation fg, = — —l /\)

< ko 711 Voo ko 7>, Voo=<<0|VI10>. To obtain the second approxlmatlon
for f, we should calculate U Fo with the first order wave function,

PO =(1+¢g=V)D, (7)

and we obtain the second Born amplitude,

fog = — 2L <k | QF)® > (8)
JT
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The resolvent operator g~/ in the coordinate representation is expressed by
the Green’s function (ref.1?), p. 331)

G (rur|ry ) =2"|n> G, (1] ) < ', )

where

o A e alnri])

4 g |

The »prime« indicates that in the sum the » =0 term is omitted. With (7)
and (9) for (U Fy)M ome obtains

(UF)0 = (Vo + Vi) lkgr1 >, (10)

where U, is the operator

Vos [ kor1 > = 2" Voo < G (ry | 71) Vo () [ ko 7y > (11)

n

The second term iin (10) represents the correation term of the second Born
approximation, and all the above considerations are exact in frame of this
approximation.

Now we shall take into account that the incident electron energy is high
(k3>1), and assume that in the sum (11) the main contribution gives the
terms with z close to zero. This approximation was suggested by Massey and
Mohr,” and its physical meaning is that in an electron-atom collision only
the first few higher states have effect on elastic scattening. Taking this into
account, from (11) for Vs we obtain

V01=<0|V|s>, (12)
- -> - - > i
ls>kyry, >=[0> < G{Hr |r)| V7)) kyry > . (13)

Following the procedure of ref.®), the integral in (18) can be estimated by
expanding it in terms of kg! retaining the first term only. The result is

s> =—i-[0>. (14)
0
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With # in (14) we designate a slowly varying function (a sum of logarithmic

terms), which at k2> 1 does not depend on energy, and for which we shall
take to be constant. Now, using (14), (12) and (10) we obtain

~ > > ~ “®
(OF)® = Vikors > V=<1_i_k?> Vo . (15)

The expressions for the amplitude and the elastic cross-section in this optical-
potential model have the form

1 S > o~ >
fV=—2—n<k'oT1|V|koh>
X
= (1—1';0‘) fB1 , (16)
xz
ov=(1+ 43 ) ons (17)

i. e. they are expressed in terms of corresponding quantities in the first Born
approximation.

Let us now determine the constant ». For a complex potential V as in (15).
the generalized optical theorem (see, e. g. ref.!?, p. 255) gives

4alm f, (0) =koo, + kia 27 fm (Q) . (18)

Using the expressions (16) and (17) (at k2>>1) for f, and ¢, from (18) one
obtains

. k% OBy
e L (19)

where from it can be seen that at high energies x is really constant.

8. Calculation of the elastic e-He and e-O scattering cross-sections

In the existing literature several very accurate calculations of e-He and
e-O elastic scattering in the low energy region!® 1314 are given. At high
energies calculations exist only in the first Born approximation (see, e. g.,
ref.)), In this Section we shall calculate the cross-sections for these processes
in the high-energy region using the optical-potential method of Section 2.
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As it can be seen from (17) and (19), the problem of the elastic_scattering
cross-section calculation in our optical model is transfered to the calculation
of this quantity in the first Born aproximation, i. e. to the determination of the
static field Vy, of the atom. In the calculations of os; and » for e-He and e-O
elastiic collisions, for the static field V,, of the He and O atoms we used the
Hartree-Fock expressions of Strand and Bonham'). The calculation of the
scattering intensity | fa, |2 is trivial. However, the result is fairly extensive to
be done here (see, €. g., ref.!® there are two, probably typographical, errors
which can be easily noted). The cross-section for e-He scattering we calculated
also with one parameter variational wave function of the helium atom:
10 >0 = (a3/7)12, exp. L—a(rl + 7,)],@ = 27/16 f(the curve oy in Rig. 2

Comparlson of a9, and o5F shows great sensitivity of the optical model results
as regards the ch01se of the atomic wave function. It is interesting to note

that 0%, and o} are different in the second decimal place only. The corres-

ponding #? constants for V{J and V{IF have the values: [#?]© = 5,44 and
[ %2]HF = 3,98,
In Fig. 1 the curves are given (versus incident electron energy) of the e-He

scattering intensity in the forward direction, calculated in the first Born
approximation - (B1), and in the optical model (V). Curve DR represents
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Fig. 1. Zero-angle intensity of e-He elastic scattering. Bl-the first Born approximation,
D. R. - dispersion relations result of ref.!7) and. V - the optical-potential result of

this paper.

the results of Lawson, Massey and Wallace!” obtained from the dispersion
relations. At electron energies in the range of 350 eV to 700 eV, the observed
average value of I(0) is.about 0.75 (see ref. 1¥)), in accordance with the optical
model result. The Hartree-Fock value of 0.655 was taken for /s, (0).
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Fig. 2. Elastic e-He scattering cross-section, Full lines are the results of this paper. opg
and ogp are the calculations of La Bahn and Callaway20) and experimental data
of Golden and Bandel23), respectively. The open circles and crosses are the total
cross-sections of Ramsauer and Kolath2l) and Normand22), The full circles are
»experimental« results obtained in the manner explained in the text.

The curves oiF , 6y@ and ol 1n Fig. 2 represent our: cross sections for

helium. The dash-dotted o, curve in this figure is obtained from the par-
tial wave formula using the numerically calculated phase shifts of McDou-
gall¥). In the same figure the results of LaBahn and Callaway® (curve LC)
are plotted. They calculated the first three phase shifts for e-He in the
adiabatic-polarization + dynamic-exchange ‘approximation (including some
velocity-dependent terms in the distortion potential). Very close to their re-
sults are those of Pu and Chang® (in the region 1,22 to 16,4 e€V) in the mo-
dified optical-potential method. The open circles and crosses represent the
experimentally obtained total cross-sections by Ramsauer and Kollath?") and
Normand®?, respectively. The curve o, represents the experimental results
of Golden and Bandel?®), and at high energies it approaches Normand’s data
In order to make possible a comparison of our calculations with: the expe-
vimental cross-sections, we substracted the ionization cross-section of Smith?!
and the sum of the excitation cross-sections of the first nineteen singlet and
triplet states of Moussa??) from the total cross-section values of Normand at
25 eV, 50 eV, 80 eV and 100 eV incident electron energies.
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So deduced »experimental« elastic cross-section values are represented in
Fig. 2 by full circles. The close proximity of the o%F curve to these elastic
cross-seotion points and to the McDougall’s curve shows that opbical model
gives a po‘ssibil'ity of relatively simple and very effective elastic cross-section
calculatioris, whenever o, can be calculated with reasonable accuracy.

16y
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Fig. 3. Elastic e-0 scattering cross-section. The full line represents the optical model results
of this paper. The curves org, oy and oggp are the theoretical results of refs.26,27,28),
The open circles are experimental data of ref.29).

The full line in Fig. 3 represents o}~ cross-section for e-0 elastic collision.
In the low-energy region curves ore and ou represent the calculations of Ro-
binson and Geltman®), and Henry?) (Temkin’s method), respectively. The
osag curve are the results of the calculations of Smith, Henry and Burke?®)
(numerical solution of the continuum Hartree-Fock equation without polari-
zation). The open circles iin this figure are the experimental results of Suns-
hine, Aubrey and Bederson?). The optical model result seems to be quite
reasonable for this case also, since it is a satisfactory extrapolation of the
{airly good calculations of Smith et al.?®). This method also seems to be very
useful in the estimation of high-energy elastic cross-sections of other elec-
tron-atom collisions important in the astrophysical laboratory plasmas because
of its simpliaity.
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OINITUYKO-IIOTEHIIMAJIEH ITPUCTAII KOH BUCOKO-EHEPTETCKOTI'O
PACEJYBAIBE HA EJIEKTPOHUTE OJ, ATOMUTE.
IIPUMEHA HA e-He un e-O CYJAPU

P. K. JaneB
HMucTutyT 3a dhusmka, Beorpag
CoxpxEuHa

IIpu enacTMYHOTO pacejyBaibe HA EJEKTPOHMTE O aTOMMTE BO HMBHOTO OCHOBHO
cocTojaHMe, APYrMTe aTOMCKM COCTOjaHMja MMaaT 3HAYMTENHO Bi1jaHue (Pa3dMEHCKH,
MOJAapM3aIMOH M ¥ Ap. eeKTy) M NP OnpefeyBameTo Ha aMILIMTyZaTa 3a pacejy
Bame 0BOa BiMjamme TpeGa xa ce 3eMe BO mpeABuA. IIpy MamyTe eHEprUM HA CYAapOT
I10CTOAT METORM KOM 0 M3BECEH CTeleH I BKJyuyBaaT BO TeopujaTa oBue edeKTu:
HeaauabaTCKM METOAM, METOZA HAa CMJIHOTO CIPEerHyBale Ha cocTojaHujaTta uThH. Hpyr
HayMH Aa ce 3eMaT BO mpeABuA oBue eheKTM M Aa ce BOBEJe BO DaBEeHKaTa 3a pace-
jypame eieH efHOYECTMUEH HEJIOKAJMEH OIepaTop umja ImpMpoja € KOMILIEKCHA M KOj
€ HapedeH ONTU4KyM ITOTeHLMAJL

Bo 0BOj TPYZ € U3BEAEH efeH ONTHYKM HOTEHIMAN 3a BUCOKO-EHEPreTCKO eJIacTIMHO
pacejyBame Ha €JEKTPOHMTE Of IIPOMzZBOSEH aTOM BO PpaMKHUTe Ha BTopaTa BopHoBa
anpokcumaimja (dopmysnara [15] Bo Tekcror). OBOj NMOTEeHIBMaN € M3pa3eH IPeKy cTa-
TMYKOTO IIONe Ha aToMoT V00, aMImMTyAaTa 3a aroil © =0 ¥ acMMNTOTMKATAa HAa
ehbeKTMBHMOT IIpeceK, IIPecMEeTHATH BO IpBaTa BopHOBa ampokcumanmja,

AMIumMTygnaTta 3a pacejyBame M €(OeKTMBHMOT MPECeK BO ONTHMUYKMOT MOZEN] CE M3-
pa3eHM MCTO TaKa NMPEeKy COOTBEHMTEe KOJAMYMHM BO NMpBaTa BopHOBa ampokcmumanyja
(dbopmysnre [16] m [17] Bo Tekcror). IlpensozkeHaTa MeToja 3a OIpefeNyBame Ha
eJIaCTMYHMOT IIPEeCEeK IIPM BMCOKIMTE E€HEPIrMM € €eKBMBAJIEHTHa Ha BToOpaTa BopHoBa
arpoKcHmMarija.

Kako unycrpaumja Ha MeTomaTa IIpecMeTHaATH ce edeKTMBHUTE Mpeceny 3a eja-
ctnyHoTo e-He m e-O pacejyBame. CTaTMYKOTO IIoJie (3Ha4M M Ogy) U KOHCTaHTAaTa
% (B. [19]) ce ompenenenn Bo XaprTpm-<POKOBCKATa anpokcmMauyja. Pesyararure ce
rnopenyBaaT CO eKCIIepMMEHTAJHUTE Mepema ¥ IIpeMceTHyBam-aTa Ha JPYTUTe aBTOPH,
¥ IPM BUCOKWUTE €Hepruy, Kajle MeTojaTa ¥Ma BarzKHOCT, AobueHa e mobpa COrjacCHOCT.





