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Abstract: Starting from the scattering amplitude in the second Born approximation an 
optical potential for elastic scattering of electrons on complex atoms is obtained. 
Proposed optical model gives the possibility of direct determination of the high­
-energy elastic scattering cross-section in the second Born approximation. 
General theoretical results are applied to the e-He and e-0 collisions. Results of the 
calculations are compared with the experimental data as well as with the more
exact calculations. 

' 

I. Introduction

In the theoretical treatment of the scaittering of electrons on atoms at high 
energ,ies, the atomic field as seen by the incident electron can be satisfactorily 
approximated by an effective potential represented by an eleotron-atom in­
teraction averaged over the wave function of the art:om. At low energies the 
atomic structure begins to manifest itself ,in the scattering (distortion and 
exchange effects) and such an averaging becomes iineffeobive. While the 
exchange effects can be taken into· account by antisymmetrizing the focal 
wave function, this is not so simple to perform with the distortion. It ,is well 
known thait in the adiabatic approxima,tion the description of the disfo111Jion 
effeots ,is not complete1l. Variationa12l and Temkin's nonadiabatic methods3l 

are more successful, but their application is rather restricted. In the close­
coupling method some polarizauion effects are iincluded, but the resulfa are 
strongly dependent on the number of states retained in the expansion. 

*Institute »Boris Kidric«, Beograd.
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Another way of faking into account these effects is to fotroduce an one­
-body non-local potenbial. operator V ,into the scattering equation, known iin 
the nuclear scattering problems as optical-potential method. To the atomic 
case this approach was applried by Mittleman and Waitson and others1>. 
Kelly5l and Pu and Chang6l used Coldstone diagrammatic technique to obtain 
optical potenllials for e-H and e-He low-energy elastic scattering, wHh 
remarkably good results. 

In the high-energy electron-atom scattering the optical potential method
was farst applied by Massey and M:ohr7l, using 1the secood Born amplii1tude 
as the stanliing point. They obtained the asymptotic behaviour of the 
potential only. Following their idea, Ob'edkov8l constructed a complex po­
tential for the elastic scattening of the electrons from the hydrogen 0/tom. 
At k >,- 1.2 h!is cross-see:tJion �s identical �th that of roingston and Skinner9l, 
calculated rin the second Born appro:x1imation, .taking Jnto account the ls, 
2s and 2P atomic staites. Recently Amus'ya10l gave a theoretical field version
of the optical-potential method for high energy electron-atom colliisions. 
However, his fiinal results contwin parameters which must be determined 
from the experimental data. The generalrization of the method of ref.8) to 
the case of elastic electron scattering from an arbitrary atom iis made in 
Section 2. In Section 3. as examples of application of the method we calcu­
lated the zero angle scattering intensity, and the cross seotions for e1astic 
e-He and e-0 collii'\ions, calculating ,the first order quantities in the Hartree ·
-Fock approximation for the atomic field.

2. Optical potential for elastic electron-atom scattering
Let us consider the scattening of an electron on the atom A in his ground 

� � 
state. Let r 1 and r be the coordinates of the 1incident electron aind aH atJom1ic
electrons, respectively. If the Hamiltonian of the (e + A) system us H, then 

� � 
the total wave funcbion rp (rv r) satisfies the equation 

� � 
(H - E) P h , r) = 0,

H = HA + 71 + V = H0 + V,

(1) 

(2) 

where E is the total energy, HA the atomic Hami1tonian, 71 is the kinetic 
energy operator of the incident electron, and V represents the eleotron-atom 
electrostatic •interaction. Equa1Jion (1) is usually solved by expanding the rt:otal 
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wave function 'I' in terms _of the eigen-funotions In> of the afomic Hamil-
-> 

tonian, i. e. as 'I' = 2 Fn In>, where ,the coefficients Fn (r1) = < n I 'I'>
describe the motion of the scattered electron and have standard asymptoo.c 
behaviour: 

� � � 
Fn (r1)"' I k,, r1 > Jon + f n exp {ikn r1) / r1

� 

� 
(kn is the relevant wave number of the r1 electron). 

(3) 

The function F0 descrti.bes the elastic scattering and it should be deter-
mined. The general methods of determining Fn are well known11>. Here, we 
are interested in F0 onLy, and for this funotion substi,tution of the expansion 
2 Fn In> in (1) gives 

(4) 

where k0 I 2 is the kinetic energy of the inaident electron, and the potential 
operator V iis deflined as 

(5 

The equation (4) descr,ibes the inotlion of a particle iin the field V, and thus 
if k � is the momentum of the scattered electron, elastic scattering ampliitude 
has the form 

1 � � � 
f=- - < ko'r1IV Fo (r1) > . 2n: 

(6) 

The f�rst approximation for f can be obtained H for 'I' we take the
eigenfunotions of rthe noninteracting system operator H0, i. e. '[f(O) = <P = 

= I k0 ;1 > I O >. This is just the first Born approximation /B
1 = - ___!_ A)� --> � � 2n: 

< ko r1 I Voo I ko r1 >, Voo = < 0 IV I O >. To obtaiin the second approximation
for f, we should calculate V Fo with the first order wave funotion • - J ' 

'[1(1> = (1 + gH V) <P , 

and we obtain the second Born ampEtude, 

1 � �
/B2 = - - < k� r 1 I (VF J(ll >

2n: 

(7) 

(8)
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The resolvent operator g<-J in ,the coordinate representa,nion is expressed by the Green's function (ref.11l, p. 331) 

where 
--'),-+ --), --+ --+ 4 G H (r1 r I r� r') = -2' In> Gn H (r1 I r�) < n' I, (9) 

The »prime« indicates that in the sum the n = 0 term is omitted. With (7) and (9) for (V F0) (lJ ooe obtaiins 
--+ ---+ 

(V Fo)(l) =Woo+ Vo,) I ko r1 >, (10) 

where V 08 is the operntor
-+ --+ --+ --+ --'), --+ Vo, I ko r1 > = -2' Von < G�+J (r1 I r�) V,.o (r�) I ko r� > 

" 
(11) 

The second term iin (10) represents the correation term of the second Born appro:x:imaibion, and all the above considerations are exact in frame of this approximation. Now we shall ,take into account that the incident electron energy is high (k� � 1), and assume that in ,the sum (11) the main cnntribution gives rthe terms with n close fo zero. This appro�imation was suggested by Massey and Mohr,7l and its physical meal1ling is that in an electron-atom coll-ision only the fiirsit few higher states have effect on elastic scatte11ing. Takiing this info account, from (11) for V0s we obtain 

' 

V0, = <olVls>, (12) 
4 --+ -+ --+ -+ ---), 

Is> k0 r1 > = I O > < Gb+l r1 I r�) I V (r1 r�) I k0 r� > (13) 
Following the procedure of ref.8l, the integral in (13) can be estimated by expanding iit in terms of k01 retaining the first term only. The result is 

(14)
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With u in (14) we designate a slowly varying function (a sum of logarithmic terms), which at Tc3 � 1 does not depend on energy, and for which we shall take to be constant. Now, using (14), (12) and (10) we obtain 

�-+
-+ 

- ( ") (V Fo)<1l = V I ko r1 > , V = 1 -i ko V oo . (15) 
The expressions for the amplitude and the elastic cross-section in this optical­potential model have the form 

1 -+-+ � -+-+ fv= -2:n <k' or1JV Jkor1>
= ( 1-i �) fo1 , 

a v = ( 1 + :; ) an1 , 

(16) 
(17) 

i. e. they are expressed in ,terms of corresponding quantities in the first Bornapprox,imation.
Let us now determine the constant u. For a complex potential V as in (15) . the genemLized optical theorem (see, e. g. ref.12l, p. 255) gives 

(18) 
Using the expressiions (16) and (17) (at k5� I) for fv and a v, from (18) oneobtains 

k3 an1 U=----2:n /Bi(O) ' (19) 

where from it can be seen that at high energies u is really constant. 

3. Calculation of the elastic e-He and e-0 scattering cross-sections

In the existing hterature several very accurate calculations of e-He and e-0 elastic scattering in the low energy region1• 6• 13• 14) are given. At highenergies calculations exist only •in the first Born approximation (see, e. g.,ref.Ul. In this Section we shall calculate the cross-sections for these processesin the high-energy region using the optical-potential method of Seotion 2.
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As it can be seen from (17) and (19), the problem of the elasiticscaMel'ing cross-seotion calculation in our optical model is transfered to rthe calculation of this quanhity in the first Born aproxima:tion, L e. to the determination of ithe static field Y00 of the atom. In the calcufations of an1 and x for e-He and e-0 elastic colLisJons, for rthe static field Y00 of the He and O atoms we used the Hartree-Fock expressions of Strand and Bonham15l. The calculation of the scattering intensity I /B1 I 2 is tniviial. However, th� result ,is fail'ly exitensive to be done here (see, e. g., ref .16) there are ·two, probably typogi:;aphica�, errorswhich can be easily no1ted). The cross-section for e:..He ·scattering we calculated also with one parameter val'iat-ional wave function of the helium a:tom: ; 0 ><0) = (a3 / :n) 1/2, exp. [- a (r1 + r2)] ,a = 27 /16 (the curve av tin Fiig. 2). Comparison of a} and a�F shows great sensitivity of the optical model results .is regards the choise of the atomic wave function. It ls iinteres,ting to note
thait ai1 and o rt are different in the second decimal place only. The corres­
ponding x2  constants for v�i and v:i�r have the values: [ x2] (O) = 5.44 and[ x2 ] HF = 3,98.

In Fig. 1 the curves are g1iven (versus iincident electron energy) of the e-He sca:tter.ing intensity •in the forward diirection, calculated tin the fiirst Born approximaJtion · (Bl), and in the opti.cal model (Y). Curve DR represents 

0 

81 
0 100 200 300 400 Ee! [ev] 

-

Fig. 1. Zero-angle intensity of e-He elastic scattering, Bl-the first Born approximation, D. R. - dispersion relations result of ref ,17) and. V - the optical-potential result of
this paper.

the results of Lawson, Massey and Wallace17l obtained from the dispersion rehvtlions. At electron energies in the range of 350 eY to 700 eV, the observed average value of /(0) is about 0. 7 5 (see ref. 18l), ,in accordance with rthe optical model resu1t. The Hartree-Fock value of 0.655 was taken for ln1 (0). 
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Fig. 2. Elastic e-He scattering cross-section. Full lines are the results of this paper. aLc 
and aoB are the calculations of La Bahn and Callaway20) and experimental data 
of Golden amd Bandel23), respectively. The open circles and crosses are the total 
cross-sections of Ramsauer and Kolath21) and Normand22). The full circles are 

»experimental« results obtained in the manner explained in ·the text.

The curves a;[ , a v<O) and a;F in Fig. 2 represent our cross secbions for 
hdium. The dash-dotted a MD curve in this figure ,is obtatined from the par­tial wave formula using the numerically calculated phase shifts of McDou­gall19l. In ,the same f,igure the results of LaBahn and Callaway20l (curve LC) are ploiflted. They calculated the first three phase shifts for e-He iin the adJiababic-polarfaal:lion + dynamic-exchange ·approx•imaition (1includ1ing some velooity-dependent terms ,in the .distortion potential) . Very close to their re­sults are those of Pu and Chang6l (in the reg,ion 1 ,22 to 16,4 eV) iin the mo­dified optical.-potential method. The open circles and crosses represent the experimentally obtained total cross-sections by Ramsauer ,and Kollath21J and Normand22l, respectively. The curve o

08 
represents the expevimental results of Golden and Bandel23l, aind at high energies it approiaches Normarn;l's daita Jn  order to make possible a compavison of our calculations wJth the expe­dmental cross-scot-ions, we substracted the ionization cross-section qf Smith24l and the sum of the excitation cross-sections of the first rrineteen siinglet and triplet staites of Moussa25) from the ,total cross-section values of Normand at 25 eV, 50 eV, 80 eV and 100 eV incident electron energiies. 
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So deduced »experimental« elastic cross-section values are represented in 
Hg. 2 by foll circles. The close proximity of the aiF curve to these elas,ttic 
cross-seotion points and to the McDougall's curve shows that opt:iical model 
gives a possibillity of relatively simple and very effective elast!ic cross-section 
calculations, whenever OB1 can be calculated with reasonable accuracy. 
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Fig. 3. Elastic e-0 scattering cross-section. The full line represents the optical model results 
of this paper. The curves oRG , orr and osHB are the theoretical results of refs.26,27,28) , 
The open circles are experimental data of ref.29), 

The full }ine in F!ig. 3 represents ai"" cross-section for e-0 elastic coUisfon. 
In the low-energy region curves ORG and arr represent ,the calculations of Ro­
binson and Geltman26l ,  ·and Henry27) (Temkin's method) , respectively. The 
osrrB curve are the resulits of the calcula:uions of Smith, Henry and Burke28> 
(numer.ical solution of the continuum Hartree-Fock equauion without polarii­
zaibion) . The open circles 1in this £igure are the expe11imental results of Suns­
hine, Aubrey and Bederson20l .  The optical model result seems to be quite 
reasonable for ,this case also, since 1it is a satisfactory extrapolation of the 
fairly good calculations of Smith et al.28l. This method also seems to be very 
useful tin the esbimaition of hiigh-energy elastic cross-sections of other elec­
tron-atom colhlsiions !important in the astrophysical laboratory plasmas because 
of its simpliaity. 
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OilTJifqKQ-IIOTEH�HAJIEH IIPHCTAII KOH BHCOKO-EHEPrETCKoro 

PACEJYBAI-bE HA EJIEKTPOHHTE O,D; ATOMHTE. 

IIPHMEHA HA e-He :11: e-0 CY,D;APH 

P. K. JaHeB 

HHCTMTYT 38 qm3MKa, Beorpa,i; 

C o ,l( p >K H H a  

Ilp:11: eJiaCTI1'fHOTO pacejyBaH,e Ha eJieKTpOHMTe o;a; aTOMJ1Te BO HMBHOTO OCHOBHO 
cocrojamre, .l(pyrHTe aTOMCKM cocTojam1ja v1MaaT 3Ha'l:HTeJIHO BJiv1jaHHe (pa3MeHc1n1, 
noJiapH38WfOHHM :11: 'AP, eq:ieKTH) M np:11: orrpep;eJiyBaH,eTO ira aMrrJIMTyp;aTa 3a · pacejy 
BaH,e OBOa BJIMjaHMe Tpe6a ;a;a ce 3eMe ao rrpep;Bl'f'A. Ilp:11: MaJrnTe eHep= Ha cyp;apOT 
nOCTOaT MeTO)];M KOH AO J13BeceH CTerreH r:11: BKJiyqyBaaT BO Teop:11:jaTa OBMe eq:ieKTM: 
Hea,l(Ma6aTCKM MeTO,!IM, MeTOp;a Ha CMJIHOTO crrpereyBaH,e Ha COCTOjaHMjaTa MT)(. ,IJ;pyr 
HaqMH )(a ce 3eMaT BO rrpe.l(BM.zl OBMe eq:ieKTM M p;a ce BOBe,l(e Bo paBeHKaTa 3a pace­
jyaaH,e e,l(eH e,l(HO'feCTH'!eH HeJIOKaJieH orrepaTOp qv1ja npMpop;a e KOMITJieKCHa M KOj 
e Hape'leH OnTI1'1KM IlOT�MaJI. 

Bo OBoj TPY'A e M3Be,l(eH e,l(eH OnTJ1qKJ1 rrOTeH11v1aJI 3a BMCOKo-eHepreTCKO eJiaCTH'fHO 
pacejyBaH,e Ha eJieKTPOHMTe op; rrpOI1Z80J1eH aTOM BO paMKYITe Ha BTOP,aTa BopHOBa 
arrpOKCY1M811J1ja (q:iopMyJiaTa [15] BO TeKCTOT). 0Boj rroTeHWf8JI e J13P,a3eH npeKy CTa­
rnqKOTO ITOJie Ha aTOMOT Yoo, . aMITJII1TY'A8Ta 38 aroJI (9 = 0 M acMMIITOTHKaTa Ha 
eq:ieKTHBHMOT npeceK, npecMeTHaTM BO rrpBaTa BopHOBa anpoKCMMa11Hja. 

AMITJIMTy,l(aTa 3a pacejyBaH,e J1 eq:ieKTJ1BHMOT npeceK BO OITTM'fKJ10T MO,l(eJI ce J13-
pa3eHM MCTO TaKa rrpeKy COOTBeHMTe KOJIJ)!qJ,[ID'.[ BO rrpBaTa BopHOBa arrpOKCMMaQJ1ja 
(q:iopMyJIMTe [16] M [17] BO TeKCTOT). IIpe,l(JIO:lKeHaTa MeTop;a 3a onpe,l(eJiyBaH,e Ha 
eJiaCTJ1qHJ10T npeceK np:11: BJ1C0KI1Te eHepmH e eKBJ1BaJieHTHa Ha BTOpaTa BopROBa 
arrp0KCI1MaQJ1j a. 

KaKo HJIYCTpa4Mja Ha MeTo.l(aTa npecMeTHaTH ce eq:ieKTJ1BHI1Te rrpece11M 3a eJia­
CTM'fHOTO e-He J1 e-0 pacejyBaH,e. CTaTlfqKOTO IlOJie (3Ha'!H H O"B1) H KOHCTaRTaTa 
,e (B. [19]) ce onpe,l(eJieHM BO Xap,TpI1-WOKOBCKaTa anpOKCHMaQUja. Pe3yJIT8TJ1Te ce 
nopep;yBaaT co eKcrrepMMeHTaJIHMTe MepeH,a M npeMceTHyBaH,aTa Ha ,l(pyrMTe aBTOPM, 
l1 IIPH BHCOKI1Te eHeprHM, Ka;a;e MeTO,l(aTa I1Ma Ba>KHOCT, ,l(06HeHa e ;a;o6pa corJiaOHOCT. 




