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Abstract: The effect of electron-phonon interaction on electron motion has been calculated 
with_ the Green's function method. It is a_ssumed that the whole system is composed 
of electrons with screened Coulomb interaction and of longitudinal phonons with an 
energy tSq, where S is the velocity of sound. This effect has been calculated to the 
second powers in the interaction of the self energy part of · electrons. A method is 
developed which enables one to consider the convenient application of Green's func­
tions to the problem. The calculation . of Fourier transform of the Green's function 
G (k, i) has been carried out by using the ordinary perturbation method where annihi­
lation operator is expanded in power series of time. Agreement is shown with a 
theory that uses Wick's theorem. Such an application of the perturbation method 
enables us to avoid the adiabatic hypothesis. 

A. PERTURBATION CALCULATION OF GREEN'S FUNCTIONS

1 . Introduction
The problem of electron-phonon ,interaction has been investigated by many · authors, especially 1in connection with the problem of superconduotivi:ty. Bar­deen1l �tended the self con&istent field method to take -into account themotion of the iions and ,thus to determine the matrix element for electron­lattice initeracfi1ons. The electron-electron interactions were treated in theHartree approx,imaition. Froh1ich7l used perturbation theory to inves-tigate in­teraction between electrons and latJ�ice vtibrations ·in a normal metal. He con­sidered an isotrop1ic model of a metal described by the Hamtil,tonJian in whichannihrilaition and creartion operators of electrons and phonons appeared. Na­ka j ,ima2l presenited a simple f1ield-theoretical treatment of the problem usling
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aiso the Hartree approximation which gives results essentially equivalent to Bardeen's. A simplified basic Hami1tonian to desc11ibe the electron-phonon interaobion ,in metals has been derived by Bardeen ,and Pines3l. The energies of the elementary excitations i;tnd effective eleotron 1interaction for the system were determined in the random-phase approximation. The influence of elec­tron interactions to the long1itudinal phonon frequency was investigated by Staver and Bohm4l. Taking the interaction between ions to be pure Coulomb, the awthors obtai�ed simple dispersrion relatiion which was 1in good agreement wtith experimental resul,t. Migdal5l has solved the problem of an electron in­teracting with a phonon field to order m/M in the approximatlion where elec­tron-electron ,interaction was neglected. Migdal solved the self energy equa­tion which corresponded to the sum of all electron-phon�n self-energy dia­grams. F1inally, P.ines6l showed that Migdal's results may be transposed to the case tin whiich eletron-electron interaction is included. 
There :is nothing new we want to introduce to the problem of electron­phonon interaotrion, but the method developed in the present article we find of interest 1in 'Etself. In other words, ·,it seems to us to be interestiing to present the problem in somewhat different form. Our approach to the problem 0£ electron-phonon linteraotion enables one to consider the influence of the elec­tron-phonon intemotion to the electron interaction wiith methods of quantum field theory by introduoing the Green's function of electron. We work out the pedurbation theory for Fourier transform of electron Green's function 

G (k, r) by expanding annih:ilaitJion operator in power se11ies of time. This per­turbaition expansion does not res·t on W•ick's theorem and on the adiiabatic hypotheSJis. The calculation is carried out to the second order powers of in­teraotion. In result we get the self-energy ,in Feynman diagrams which are entirely equivalent to those of the general theory in which Wiick's theorem frs appLied. 
In the part B. of the present arbicle the method formufo,ted lin the part A. is applied. We start wlilth simpl1ified basic Hamiltonian to descnibe the elec­tron-phonon interaotion in metals and a number of approximations are made in order to &impl1ify the calcula-t.ions. We derive for a monatomic crystal the Hamtiltolllian expressed in the usual second quantized notation and we use it in subsequent discussion. The result of the part B. shows that the self energy of electrons to ,the second power in ·the 1interac6on consists of a contribution of screened Coulomb interaction and of the electron-phonon .interaction. An analysis of the expression we get shows that the contribution ,to the elecitron­phonon interacuion comes from absorption of phonons by electrons. On the basis of these calculations an estimate of the interaction can be done. 



GREEN'S FUNCTION . . .

2. The calculation of Green's function to the second order in theinteraction h 
We introduce the electron Green's function8l 

G (k, 1) = -i < 0 I T  [ ak (1) at(o) ] I O > 
(k = wave vector) 

and Fourier transform: 

00 

G (k, k0) = S e  i (/ex - k, r) G (x, 1) d3x d1 

- 00

00 

S . � k d �G (x, 1 )  = e - i  ( kx - k,r J G (k, ko) (2n: )"' 
- 00
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(2 . 1) 

(2.2) 

The use of perturbation method for Green's function 1is based on two assump­
tions. If Hamiltonian has a form H = H0 + h one takes that the ground
state of the Hamiltornian H0 describing bare particles (B1och electrons or
bare phonons) approaches adJiabaiticaHy to the ground state of a system with 
interaction, where the 1interaction .is introduced .in tJime adiabatically. The 
second assumptJion ,is that resulting ti.me dependence of the ground state and 
dependence on r of the function G, ·because of ,the presence of the ,interaction, 
can be expanded ,in series with respect to the interaction. H0 is siimple enough
to obtaiin corresponding Green's function explicitely. 

The adiabatic hypothesis enables us to calculate the Green's function of 
the HamHfonian H 1in terms of the Green's function of the Hamiltonian H/l.

We will take a dfff erent approach. We shall proceed with the calculation 
of Fou11ier transform of the Green's function, performing perturbation cal­
culation for the wave function in order to express ·it ,in terms of free particle 
wave functions. Therefore, we shall use Rayleigh-Schrodinger perturbation 
calculation. 

Expanding a1, (r) ait zero, we get 

' .. T2 

ak ('t) = ak (0) + a k (0) T + a k  (0) -1 + . . .  , 2 . 
(2.3) 
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where 

�� = (-i ek)2 a,. +  (-iek) i (h, Ok] + i2 [Ho, [ h, Ok ]] + i2 
[ h, [h, Ok ]] etc.

(2.4) 

H = H0 + h; the free pa11ticle Hamu1tonian has the form H0 = I, e,. at Ok,,. h 1is the 1interaction Hamiltonian. We shall work with a two paroicle ,inter­action 
h = L < k1 k2 I h (12) I ks k, > a,.+1. at; au  au , (2.5) 

111 li2 k1 k, 

so that 
[h, ak] = L I <  k1 k I h (12) I k2 k, > - < k k1 I h (12) I k:.i ka > ) · (2.6) 

li1 li2 ,., ,., 

If we 1introduce the notation: 
< k1 k I h (12) I k2 ka > - < k k1 I h (12) I k2 ka > = (lk 2 3) • (2. 7) 

(and analog,ous ,to ,it), (2.6) will be 
(2 .8) 

Analogous we have: 
[H0, [h, ak ] ] =- L ( e,.1 - e,.2 - t:1, 8

] ( lk 2 3 ) aii au ak � ,
(2.9) 
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It is easy now to get first order terms of h ,in the expansion of llk ('r) .  TheGreen's function 

G ( k,r ) = -i < O / T  [ ak (i-) ak (O)] / O> (2.10) 
can be therefore obtaiined to the first order iin h, tif we express wave functionin terms of free system wave functions9l :  

( · Po ) / 0 > = I + 
H 

h + , , , / <Po > 
Eo - 0 

Let us introduce C - function 
00 

C (x) = S e -i k N  d k ;
0 

l - e -i'"' C(x) = lim 
00 

C' (x) = S -ik e - ikx dk .·
0 

t-+OO it

(2.11) 

(2,12) 

If we now ,investJgate the matrix elements which appear Lin the Fou11ier analyS1is of G (k, i-) with respect ,to time, we shall get
G (k, k0) = -i ( ( k0 - e1c -L { ( l k  k l ) - ( l k  l k ) ) ) , k < kp

,. < k1 

G (k, k0) = i C *  ( k0 - ek -:-L 2 ( I k  k l )) , k < k,lc < ht 

,. (o) = oo g,ives poles :
ko = ek + L { (lk kl) - ( Ik Ik ) ) .

(2.13) 

(2.14) 
1& < k1 

Hence, 1if we retain only the first power of 1interaction tin the perturbation, we get elementary excitations of 1infiin1tely long Lifetime w.ith energies 
ko = ek + L 2 { < k1 k I h (12) J k k1 > - < k k1 I h (12) I k k1 > ) (2.15) 
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. So we have quasiparticles as stationary motions of system instead of free particles. 
the foHowiing commutators appear:In the second order contnibutions 1in h in the expression of operator ak ('r)

[ h, [h, ak ] ]  ,
[ [ H0, h ] , [ h, ak ] ]  , (2. 16) 
[ [ Ho, [Ho, h ] ] , [ h, ak ] ] , etc.

· If ·we calcuI1ate them, we can get the Green's function to the second. orderin h. In the expression for the second order of the Founier transform G (k, k0) ,  term multiplying (;'(k0 - ek) appears. We shall espeoia:lly concentrate on that term. It has the form: 

• ( < k2 ka I h I k1 k > - <ka k2 I h I k1 k > ) +
+ . � 2 ( < k1 k I h I k2 ka > - < k k1 I h I k2 ka > ) .� . ek + ek1-ek,-eks "• < lt.t 

ks, ks > kt 

3. Self energy ·

Let us express the function G (k, -r) 1in the form of senies :
00 00 00 

(2.17) 

� (k, k0) = S e  i k, T G (k, T) dT = S e  i k, 
T Go (k,· ;) di- + S e i "• T Gi(k, i-) di- +

00 • 

- � - 00 - 00

+ S e  i "• T G2 (k, T) dT + · · ·
- 00

G (k, ko) = Go (k, k0) + G1 (k, ko) + G2 (k, k o) + · · ·

(3. 1) 
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Here G0 , G1 , G2 , etc. are the Green's functions of zeroth, first, second etc. order, respectively, in the rinteractJ:ion h. According to -the general theoryof Green's funcftions8l, !if there are quasiparticles in the system, thelir energ,ies and l,ifetimes are given by real and iimag,inary part of poles of the Green's function G (k, k0) .  Assum1ng that there are quasiparllicles ,in the neighbour­hood of some pole, the Green's functtlon can be written in the form 
G (k, k0) = - - -- 1--­ko - o0 - Z + i'7 or 

1 G (k, k0) = --- -- ----ko-oo - (Re Z  + i lmZ) + i 17
(3.2) 

Let us nOIW expand the self energy :E in series of interaction. We expressit · as a sum of self energiies of the f-irst, second, etc. order in the ,interaction 

We get 
1 1 

(o1 + 02 + . .  , )2 + - . 3 - . . . .  = G (k; ko)(ko - oo + Z'YJ) 
Fiinally 

01 + 02 + . . .  (ko - oo + i17)2 + 

-G (k, ko) = i C (ko -oo) + ie (ko - oo) (01 + 02) + · · · 

(3.3) 

(3.4) 

(3.5) 

Now we can point out the expansion (3 .5) .  In the second order terms ofthe expansion of the Green's functiion G (k, k0) next to C' (k0 - oo) we geto1 + o2 • Therefore, the expression we have obtained next to C' (k0 - a0) inthe expansion of Green's functlion to the second order in the interaction is jus,t the self energy o2 • Since the express1ions (2. 13) for G (k, k0) can be written in the form: 
G (k, k0) = i( (k0 - ek )) +iC' (ko -ek) L {(1k 1k) -- (1 k k 1)} ,,. .;_ kt 
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G (k, ko) = i(* (ko -ek )  + i(*' (ko -e1,) L ( 1k k1 ) - (1 k  1k) ) ,
" > "t (2. 13'") 

we get the self energy of the first order ,in the ,interaction. 
Therefore: 

01 = L{ <  k1 k / h l k 1 k  > + < k k1 l h l  k1 k > ).

In Feynman diagrams self energy to the first order Jn the ,interaction is  represented by diagrams 

• e -. =:c. � - - - - - - - - -
i>o

Fig. 1 .  

0 kf k, 

I 
I 
I 
I 
0 

f"< O 
(3.7) 

The 1ines that correspond to the lower point of the second diagram are 
k - Lines. In the theory based on Wick's theorem they correspond to freepropagator wtlth energy ek . Matnix element of this dtiagram in the same theory is < kk1 I h I k1 k > ,which is the same as ,in our expression (3.6) The same applies for the second order diagram. Our o2 , represented by diagrams, gives: 



I 
I 

0 I kl I I I 
I I 
I I 

I 
I 

GREEN'S FUNCTION . . . 2 1 1
The corresponding mah-ix elements in (3.6) are: 

(I )

(2) 

(3) 

(4) 

Fig. 2. (3. 8)
The comparlison with results of the general theory where Wick's theorem is appJ.ied shows rthait our treatment gives entirely equivalent results, avoiding adiabatic hypothesis. 
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B. APPLICATION OF PERTURBATION CALCULATION

4. Hamiltonian of the system
We shall formulate the problem of electron-phonon interaction by using 

the Green's function method diiscussed ,in the previous section. We are in­
terested in the effect of the electron-phonon interaction on electron motion. 
In other words, we concentrate on the Green's function of electron containing 
in this expansion the part which corresponds to the electron-phonon interac­
tion, besides the electron-electron-in1teracbion. Therefore we start from the 
Hamiltonian which has been separnted in parts corresponding to : free elec­
trons, interactimg electrons with screened Coulomb interac1Jion, free phonons 
and effective electron-phonon interaction. Therefore, our HamiHonian has 
the following form 

H = H! + Hph + Heph + Hee 

where 

Hph = L "fi Wq b:bq ' 
q 

Hee = L < k1 k 2 I v,c I ks k4, > ak1 ak2 ak"' aka ,
A1 h, la k, 

H.P = L i { D (q) bq ak-q a,. - D* (q) bq ak-q ak )
q, k 

where 

(4. 1 )  

(4 .2)

(4.3)

W is the potential energy of electron m lattice, V ,is the volume of the 
system 
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are electron wave functions, 
a k' a/ and bq, bi 

are electron and phonon annihilation and creation operators, respectively.
S 1is the velocity of the long1itudinal sound waves which correspond to thewave vector q, since only longih.idinal waves contribute in this case. 

(4.4) 

The operator Hint has been obtained under the assumption that rthe ions in 
the lattice move as a whole, that D(q) depends of q only and that ion oscil­
lations .in the laittice are divided into longitudinal and transverse for all q. 
Therefore the •interaction H;nt takes place with the longitudinal phonons only. 
The free system ,is now represented by the HamiHonian 

H� + H,.h 

It satisfies the following equa:tion 
(4 .5) 

(4.6) 

The wave funotions of the free system I <P0 > are here defii.ned ,in the
H�lbert space which makes the union of spaces of free electron and phonon 
wave functions. Therefore we write : 

I <Po > = I <P oel > I %ph > , (4 .7) 

where the energy e0 corresponds to the funotion I 'Poe/ >  and E�' corresponds 
to the function I '!fJl" > . 

Analogous to 1the method used in the seouion A., we shall carry out ,the 
perturbation method. We have 

i O > = ( 1 + 80 + Ef;" - (Ho + Hph) (Hee + Heplt + • · · ' ) I  <Po > (4.8) 

Here t0 + E f,h corresponds to the value e0 in the previous analysis, and ' 0 H0 + Hph is analogous to H0 • We had for the perturbation Hee == h, now 
we have aditional perturbation He1,h = h1 . 

We must bare in mind that the projection operator P0 is defined in the 
space of free electrons and free phonons. 
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5. The contributions of the second order terms in the interaction
h + h1

In the expansion of ak (-r) iin terms of the •interaction h + h1 , a set of new
commutators appear. They can be split in two parts. The frrrst part are just 
the commutators which have been calculated in section A., and ,the second 
part represent commutators with quantities h1 and Hp1t .  We can carry out the
calcu1ation for. the terms with these commutators. They represent additional
terms to the contnibution of h. 

S.ince 

+ + 
{Aq ak-q ak + Bq ak-q ak ) ,

where the following abbrevliations are used 

we obtaiin 

[h1, ak] = L (Aq ak-q + Bq a k+q) ,
q 

[Ho, [hi, ak ] ]  = L ( Aq Ek-q ak-q + Bq ek + q ak + q )
q 

Analogously we can calculate the other commutators. 

(5 . I )  

(5.2) 

(5 .3) 

To write down the Green's function ,to the first order terms in h + h1 , we
have to put : 

f O > = { 1 + (ee + Eo _!;Ho + Hph) (h + h1 + . . .  } f </Jo > (5 .4) 

f </Jo > = f cpofreeel > f cpofreeph > • 

If we use the same procedure for h1 as in the secbion A., we can obtain the
paiit of G (k, k,0) that corresponds to pePturbation h1 • 
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The calculatJi.on shows that there i s  no  contribution from the interaction h1 for the first order terms 1in the expansion of electron Green's function. We can proceed the method used in the previous secMon to get the can­tnibutions of the second order terms in the interaction h + h1 . Therefore thecorrection of self energy that comes from electron-phonon interaction is giiven as the factor of ( (k0 - c1<) - function. The calculation giives that it has theform: 

Since bq I <P0p1, > = 0, rthe second term in brackets dissapear.Contribution of the f.irst term is 

(5.5) 

(5.6) 

Substiituting the value of D (q) and changing sum for an integral, we get 
1 1 -. 

s 
q -- -- w2 . da

q . (2n )3 2MS ck + q -ck -Wq 
(5.7) 

Here we take that •the integral in the expressio'n for D (q) does not dependon q; V = I .  W is the value of such integral.Since 
h.2 h. 2  ck + q = 

2
--,- (k + q)2,Im ck = - k2 wq = Sq 2m integration over q g,ives :

S q dq 

� k  · q + 2� - Sq

It can be transformed into the form 
S q sin (9 d {}q

2 d q 
I =  2n 1 q• • - k q cos {} + - - Sq 

m 2m 

(5.8) 

(5.9) 

(5. 10) 
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By solviing, we reduce this to the integral 
qmax q k S m - -S + -1 = 2n q2 k ln 2; ";. - - S - -

0 2m m 
d q , 

which gives the following result : 
2 1 • qma,c + k S 2m 

{ 
q�ma>< � ;; -

/ = k 3 ( 2m)a In qma:x _ ,._ _  S + 
2m m 

+ - - S - -- - - - S -.-. +( 
k 

) 

1 
[ 

q
3m8x 

( 
k 

) 

q 

1 m 3 8m2 m 2m 

+ ! + S [ q
2max + ( !!_ + S ) qmax +

3 8m2 m 2m 

( 
k 

)

2 I qmax k I ] + m + S In 2m - m - S -

- : ( � - s r In ( � - s )- : ( � + s ) ln I -� - s \ }  . 
qmax is of the order of 2n .1. = 2 a, where a is interatomic distance.

A. ' 

(5. 1 1) 

(5 . 12)

Introducing the result (5 . 1 2) rinto the expression (5 .7) we finaUy get the 
value for the change of electron energy caused by the 1interaotion with phonons. 

6. Conclusion
The self energy of electrons to the second power in the interaction consists 

of a contribution of screened Coulomb ,interaction and eledron-phonon .iu­
teradJion. An analysis of the expression (5. 6) shows that the contribution to 
the electron-phonon initeraction comes from absorphion of phonons by elec­
trons. An estimaite of electron phonon interaction shows that it is of the same 
order of magnitude as the energy of free electrons, as well as an estimate 
of electron-electron interaotion term shows the contribution of the same order 
of magn�tude. 
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METODA GREENOVIH FUNKCIJA U TEORIJI ELEKTRON-FONON MEDUDJELOVANJA 
N. HASIC

Univerzitet u Sarajevu, Sarajevo 

S a d r z a j 
Promatrao se je  utjecaj el.ektron -fonon medudjelovanja na kretanje elek­trona pomocu metode kvantne teo1iije polja posredstvom Greenove funkdije elektrona. Za proracun Fourierovog transformata upotrebljen je  obican racun smetnje za valnu funkoiju osnovnog stanja i razvoj operafora ponistavanja po vremenu. Racun koj1i j e  proveden do drugog reda po medudjelovanju dao je  za vlastitu energiju rezultat koj,i je potpuno ekVJivalentan rezultatu opce teorije sa Wick-ovim teoremom (3.6) ; v,idi sl. I 1i 2. Metoda razviij ena u dijelu A. primijenjena je na sistem sastavljen od elekfrona sa zasjenjenim Coulombskim medudjelovanjem kao i longitucLinal­nih fonona sa energijom hSq, gdje j e  S brz·ina zvuka. AnaLiza rezultata (5.6) pokazuje, da doprinos elektron-fonon medudjelovanju dolazi od apsorpcije fonona elekitronima. Ocjena elektron-fonon medudjelovanja j e  utvrdila da je ono istog reda velicine kao i energija sLobodnih elektrona. Takoder i ocj eria clana elektron-elektron medudjelovanja pokazuje, da je  to dopr,inos ·istog reda vdioine. 




