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Abstract: The effect of electron-phonon interaction on electron motion has been calculated
with the Green’s function method. It is assumed that the whole system is composed
of electrons with screened Coulomb interaction and of longitudinal phonons with an
energy hSq, where § is the velocity of sound. This effect has been calculated to the
second powers in the interaction of the self energy part of electrons. A method is
developed which enables one to consider the convenient application of Green’s func-
tions to the problem. The calculation .of Fourier transform of the Green’s function
G (k,7) has been carried out by using the ordinary perturbation method where annihi-
lation operator is expanded in power series of time. Agreement is shown with a
theory that uses Wick's theorem. Such an application of the perturbation method
enables us to avoid the adiabatic hypothesis.

A. PERTURBATION CALCULATION OF GREEN’S FUNCTIONS

1. Introduction

The problem of electron-phonon interaction has been investigated by many
“authors. especially /in connection with the problem of superconductivity. Bar-
deen? extended the self consistent field method to take into account the
motion of the ions and thus to determine the matrix element for electron-
lattice interactions. The electron-electron interactions were treated in the
Hartree approximation. Frohlich” used perturbation theory to investigate in-
teraction between electrons and lattice vibrations in a normal metal. He con-
sidered an isotropic model of a metal described by the Hamiltonian in which
annihilation and creation operators of electrons and phonons appeared. Na-
kajima? presented a simple field-theoretical treatment of the problem using
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also the Hartree approximation which gives results essentially equivalent to
Bardeen’s. A simplified basic Hamiltonian to describe the electron-phonon
interaction in metals has been derived by Bardeen and Pines®. The energies
of the elementary excitations and effective electron interaction for the system
were determined in the random-phase approximation. The influence of elec-
tron interactions to the longitudinal phonon frequency was investigated by
Staver and Bohm?. Taking the interaction between ions to be pure Coulomb,
the authors obtained simple dispersion relation which was in good agreement
with experimental result. Migdal® has solved the problem of an electron in-
teracting with a phonon field to order m/M in the approximation where elec-
tron-electron interaction was neglected. Migdal solved the self energy equa-
tion which corresponded to the sum of all electron-phonon self-energy dia-
grams. Finally, Pines® showed that Migdal’s results may be transposed to
the case in which eletron-electron interaction is included.

There is nothing new we want to introduce to the problem of electron-
phonon interaction, but the method developed in the present article we find
of interest in itself. In other words, ‘it seems to us to be interesting to present
the problem in somewhat different form. Our approach to the problem of
electron-phonon linteraction enables one to consider the influence of the elec-
tron-phonon interaction to the electron interaction with methods of quantum
field theory by introducing the Green’s function of electron. We work out
the perturbation theory for Fourier transform of electron Green’s function
G (k, ©) by expanding annihilation operator in power senies of time. This per-
turbation expansion does not rest on Wick’s theorem and on the adiabatic
hypothesis. The calculation is carried out to the second order powers of in-
teraction. In result we get the self-energy in Feynman diagrams which are
entirely equivalent to those of the general theory in which Wick’s theorem is
applied.

In the part B. of the present article the method formulated in the part A.
is applied. We start with simplified basic Hamiltonian to describe the elec-
tron-phonon interaction in metals and a number of approximations are made
in order to simplify the calculations. We derive for a monatomic crystal the
Hamiltonian expressed in the usual second quantized notation and we use it
in subsequent discussion. The result of the part B. shows that the self energy
of electrons to the second power in the iinteraction consists of a contribution
of screened Coulomb interaction and of the electron-phonon interaction. An
analysis of the expression we get shows that the contribution to the electron-
phonon interaction comes from absorption of phonons by electrons. On the
basis of these calculations an estimate of the interaction can be done.
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2. The calculation of Green’s function to the second order in the
interaction h

We introduce the electron Green’s function®

G (k1) =—i < 0|T[ax (z) ai' (0)]|0 > (2.1)
tk = wave vector)

and Fourier transform:

[
~

Gk ko)= | eithx~hb7) G(x,1)d’x dr

R d3kdk
Glwr)= ettt G lkko) (g0 (22)

[%

oo

The use of perturbation method for Green’s function is based on two assump-
tions. If Hamiltonian has a form H = Hy, + h one takes that the ground
state of the Hamiltonian H, describing bare particles (Bloch electrons or
bare phonons) approaches adiabatically to the ground state of a system with
interaction, where the interaction is introduced in time adiabatically. The
second assumption s that resulting time dependence of the ground state and
dependence on 7 of the function G, because of the presence of the interaction,
can be expanded in series with respect to the interaction. H, is simple enough
to obtain corresponding Green’s function explicitely.

The adiabatic hypothesis enables us to calculate the Green’s function of
the Hamiltonian H in terms of the Green’s function of the Hamiltonian H,%.

We will take a different approach. We shall proceed with the calculation
of Founier transform of the Green’s function, performing perturbation cal-
culation for the wave function in order to express it in terms of free particle
wave functions. Therefore, we shall use Rayleigh-Schrédinger perturbation
calculation.

Expanding ax (v) at zero, we get

2

auﬂ=aﬂw+du®r+&um§?+“” (2.8)
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where
A= —iakak +‘l[h, ak] B

ay = (—iex)?ar + (—iex) i (b, ax] + 2 [Ho, [ b, ar 11+ [ B, [A, ax 1] etc.
(2.4)

H = H,+ h; the free particle Hamiltonian has the form H,= ;ekaf’ ag,

h is the interaction Hamiltonian. We shall work with a two particle inter-
action

h =Z < ky kg | h(12)| kg ke > ai a:-zau axz , (25)
Mo kg ky kg
so that

, ak]=Z{< bk | h(12) | By ke > — < k| h(12) kel >) - (26)

hyhs Ao kg

© @y ax, Gk, -
If we introduce the notation:
kik|h(12) | koks > — < kk|h(12) | kaks > = (1£23) , (2.7)

(and analogous to it), (2.6) will be
A +
[hoai] - Z (14 23) ay, az, ax, * (2.8)
kike o

Analogous we have:

[Ho,[h,ak]] = 2 [8*1 — 8),2 — E].s} (lk 23) a;’.‘i a“ ak2 »

) A 2 B
[IJUI{HDJ [h; ﬂkﬂ] =2_‘ {fkl—skz — Eka} (lk 2 3) il A, Ay, etc. (2-9)

.h Ay hl
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It is easy now to get first order terms of % in the expansion of ax (z). The
Green’s function

G (k)= —i < 0|T [a (1) a (0)]] 0 > (2.10)

can be therefore obtained to the first order in A, if we express wave function
in terms of free system wave functions®:

Py

g0 — Hy

|0>=<1+ h+...>|¢o>- (2.11)

Let us introduce ¢ ~ function

t->00 i

a 1_e—it:
C(x)=Je—"’“’dk; {(x)=lim ———;
0
(2,12)

¢ () =J —ik =ik dk |
0

If we now ‘investigate the matrix elements which appear in the Founier
analysis of G (k, 7) with respect to time, we shall get

G(k,ko)=—ic<ko—e,‘—z {(1k k1) — (1% lk)}), k < kr

k(hf
(2.18)
G (b ko) = iC* <ko—ek—Z 2 (1% kl)), E<h
» k<k,’
{(0) = oo gives poles:
ho = ex + Z ((1k k1) — (1% 1%)}. (2.14)

k<kg

Hence, if we retain only the first power of interaction in the perturbation,
we get elementary excitations of infinitely long lifetime with energies

ko = &k +Zz{<k1k|h(1z)|kk1>—<kk1|h(1z)ykk1>} X (2.15)
k
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~ So we have quasiparticles as stationary motions of system instead of free
particles.

In the second order contnibutions in % in the expression of operator ax ()
the following commutators appear:

(A [k a]]
[[HO)k];[h,ak]] ) (216)
[[Ho[Hoh]], [hyacl], etc
“If ‘we calculate them, we can get the Green’s function to the second order
in A

In the expression for the second order of the Fourier transform G (%, k),

term multiplying {'(k, — ex) appears. We shall especially concentrate on that
term. It has the form:

0(< Fakih hoke> — < hhy|h' kghs >)

£ (ko — Ek) { '
1" + Efy — Eks — Efy
:2123*{‘ "'f
1 f

(< hokg|h|kik > —<ksks|h|kik >)+
+Z 2 (< kik|h|koks > — < kki|h|kyks>)
ex t ex, — Ekg— Eks (2.17)

ki< ko
kiy k'> kf

A By by B b k> — < Rshalb|k B>

8. Self energy

Let us express the function G (&, ) in the form of series:

G (k)= Golkyt) = Gi (hy7) + Ca (k) 4 -+

¥

Gk, ko>=fef*-rc<k,r) df=fe”'"Go<k;i> de +fe“"G1<k,r) & +
- - - (8.1)
+Je‘*-’G2(k,r)dr+--- ;

G (k, ko) = Go (k, ko) + G1 (k, ko) + G2 (k, ko) ‘+‘ s
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Here G,, G;, G;, etc. are the Green’s functions of zeroth, first, second
etc. order, respectively, in the interaction . According to the general theory
of Green’s functions®, if there are quasiparticles in the system, their energies
and lifetimes are given by real and imaginary part of poles of the Green’s
function G (k, k,). Assuming that there are quasiparticles in the neighbour-
hood of some pole, the Green’s function can be written in the form

1
Glhhk)y= — ~—
(k. ko) ko—ag—2 +iy ' or
(8.2)
1

Gk ky) = :
(k ko) ko—oo—(ReZ +ilm3)+in

Let us now expand the self energy 2 in series of interaction. We express
it as a sum of self energies of the first, second, etc. order in the interaction

oo, t 0.
(h*) (h?) (33)

We get

1 1 o1+ op + -

ko o -4.- in+ {opF og4 o) - ko - -agty _.(ko—oo—i—i:r;)z_

+

+ ooy + )2
+%_":0 +i77))3 — oo =G (ki ko) . (3:4)

Finally

G (ky ko) =1 (ko — 00) + i&' (ko — 0¢) (01 + 03) + =+ . (8.5)

Now we can point out the expansion (3.5). In the second order terms of
the expansion of the Green’s function G (k, %) next to ¢’ (ky—g,) we get
oy + 0,. Therefore, the expression we have obtained next to ¢’ (ky— 0,) in
the expansion of Green’s function to the second order in the interaction is
just the self energy o, . Since the expressions (2.18) for G (%, ky) can be written
in the form:

G (k, ko) = i (ko — &r)) +il’ (ko—Ek)Z {(1k 1k) — (1 k 1)},

h\'ki
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G (k, ko) = iC% (ko — &) + ¥ (ko—s,.)z (1k k1) — (1% 1R)) ,
k> (2.18%)

we get the self energy of the first order in the interaction.

Therefore:

[

02:

B 3(k1k Ep ks) + 2(ky k ko ka) (o Ra ke k)
Ex +5k1-—£,§2—-—£,}s 8*—'——8*1—-5.{2-—-5%

*2;*"(* k; < A

ky kf f &y, ke >’h}( (3.6)

In Feynman diagrams self energy to the first order in the interaction is

represented by diagrams
O

I
|
|
|
|
6I
&<o (37)

<k k| Bk > < hkky Ak k>
Fig. 1.

The lines that correspond to the lower point of the second diagram are
k — lines. In the theory based on Wick’s theorem they correspond to free
propagator with energy e .

Matrix element of this diagram in the same theory is <<kk,|h|k, k>,
which is the same as in our expression (3.6)

The same applies for the second order diagram.

Our oy, represented by diagrams, gives:
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The corresponding matrix elements in (3.6) are:

<hhlhikghy> <hykylhik k> (1)

kb ik ke T hyky B E R (2)

Sk Rk k> lhyhglhik k> )
|
I |
f ~
| |
: |

:_ ‘_ Ry > by | BLR > (4)

k:.
Fig. 2. (8.8)

The compartison with results of the general theory where Wick’s theorem is
applied shows that our treatment gives entirely equivalent results, avoiding
adiabatic hypothesis.
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B. APPLICATION OF PERTURBATION CALCULATION

4. Hamiltonian of the system

We shall formulate the problem of electron-phonon interaction by using
the Green’s function method discussed in the previous section. We are in-
terested in the effect of the electron-phonon interaction on electron motion.
In other words, we concentrate on the Green’s function of electron containing
in this expansion the part which corresponds to the electron-phonon interac-
tion, besides the electron-electron-interaction. Therefore we start from the
Hamiltonian which has been separated in parts corresponding to: free elec-
trons, interacting electrons with screened Coulomb interaction, free phonons
and effective electron-phonon interaction. Therefore, our Hamiltonian has
the following form

H=HZ + Hyn+ Hepr + Hee (41)

where

H;== Zeka;rak,
k

q

H“=Z < by ke |V ks ke > e an, g, ax,

Ay ks kg Ry
Heyp= Z i{ D (q) bg ax—q ax — D* (q) bgax—q ar | ; (4.2)
q, k
Ll 4.3
D@ = Vsavs | W Pudu (*8)

where

W is the potential energy of electron in lattice, V is the volume of the
system

up—q and u _ .
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are electron wave functions,
a, af and b,, b;

are electron and phonon annihilation and creation operators, respectively.
S iis the velocity of the longitudinal sound waves which correspond to the
wave vector g, since only longitudina]l waves contribute in this case.

wy = 8, (4.4)

The operator Hinz has been obtained under the assumption that the ions in
the lattice move as a whole, that D(g) depends of g only and that ion oscil-
lations in the lattice are divided into longitudinal and transverse for all gq.
Therefore the interaction Hin takes place with the longitudinal phonons only.
The free system is now represented by the Hamiltonian

He+ Hyy, (4.5)
It satisfies the following equation
(HE - Hpn, @ > —= (2o + K20y, > (4.6)

The wave functions of the free system |®, > are here defined in the
Hilbert space which makes the union of spaces of free electron and phonon
wave functions. Therefore we write:

l g150 > = | gDoel > l Poph >, (47)

where the energy &, corresponds to the function |@eer > and E" corresponds
to the function |we?* > .

Analogous to ithe method used in the section A., we shall carry out the
perturbation method. We have

(HS‘%‘HP;,‘FHNTHW;,)_O>:'-E°I_Iﬂ> .

, | P :
10> =(1+ £0+E‘I]JI:_C('H0_“_Hm (Hee & Hepn t ++2) [ Do > .

(4.8)
Here 2 + Ef* corresponds to the value &, in the previous analysis, and
H¢+ Hp, is analogous to Hy,. We had for the perturbation Hee = h, now
we have aditional perturbation Hen = Ay .
We must bare in mind that the projection operator P, is defined in the
space of free electrons and free phonons.
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5. The contributions of the second order terms in the interaction
h+h,

In the expansion of ax (7) in terms of the interaction % + A, a set of new
commutators appear. They can be split in two parts. The first part are just
the commutators which have been calculated in section 4., and the second
part represent commutators with quantities £, and Hp. We can carry out the
calculation for the terms with these commutators. They represent additional
terms to the contribution of A.

Since

+ +
hy =Z {Aqak—qay + Bq ar—q ax} , (5'1)

q k

where the following abbreviations are used

Ay =iD(g) bgand B, = i D¥{(q) by , (5.2)
we obtain
ool = D gy + Byassd) | (53

q

[HO’ [kla ak]] = Z (Aq Ek—qak—q + Bq Ek+qak+q) .

q

Analogously we can calculate the other commutators.

To write down the Green’s function 'to the first order terms in & + A;, we
have to put:

Py

el e b | D 5.4
(50+E0—(H0+th)(h+h+ }I 0>, (54)

oo
|¢0 > =|(Pofreeel> [‘Pofreeph >

If we use the same procedure for %, as in the secbion A., we can obtain the
part of G (k, ky) that corresponds to perturbation A, .
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The calculation shows that there is no contribution from the interaction
hy for the first order terms in the expansion of electron Green’s function.

We can proceed the method used in the previous section to get the con-
tnibutions of the second order terms in the interaction & + A, . Therefore the
correction of self energy that comes from electron-phonon interaction is given
as the factor of {’ (k,— ex) — function. The calculation gives that it has the
{orm:

+ 4+
\ ] I D*() b by a
—*l(;ku-—sk){Zﬁo @ D) Pubacia

£k +q—8k—rﬂ)q

2

(5.5)
D(qY* D(q) by by ara
g o
Ui 1 q—.—.q—q—'k":.f |0>} .
Ex — g~ Ex— g
Since by | Dypi => = 0, the second term in brackets dissapear.
Contribution of the first term is
< Dig)i?
Z _ @'_I_ . kS ko (5.6)
Ekig-—Fk — g
i
Substituting the value of D (q) and changing sum for an integral, we get
1 1 . q .
e | 3, . 5.7)
(2n)3 2MS L4 Jak+q—sk—wqdq (6.7

Here we take that the integral in the expression for D (g) does not depend
on g; V=1. W is the value of such integral.
Since

B 2 L S (5.8)
5k+q=2;_m(k+Q), o=k wg=35q '

integration over g gives:

qdq
s . 5.9
Jm—l—k-q-i—{;—Sq (59)

It can be transformed into the form

in®ddq*d
1=sz A7 (5.10)
Zkqgcosd +5-—8q
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By solving, we reduce this to the integral

P m e gk
2 i9m m 5.
0 2m m
which gives the following result:
2 (1 g gmex L ko
_ - max I 2m m
d I3 [ 3 (2m)? lnIHs +
(k ) [Qmax_<£_s)_q_+
m 8m? m 2m
k max
(~-— )Inlq TE—Sqr
m m  m E
L q k q
+ 3 [ — +< + S> “om +
k 2 dmax k I
Nl dmex _ 5.12
+ <m + s) In| > —— —S ] (5.12)

1<k )3 (k 1/Ek
——(=——S8 | In ——S>—~<—+S>ln
3 \m m 3 \m

@maz is of the order of 2_n , 4= 2a, where a is interatomic distance.

Introducing the result (5.12) iinto the expression (5.7) we finally get the
value for the change of electron energy caused by the interaction with phonons.

6. Conclusion

The self energy of electrons to the second power in the interaction consists
of a contribution of screened Coulomb interaction and electron-phonon in-
teraction. An analysis of the expression (5. 6) shows that the contribution to
the electron-phonon interaction comes from absorption of phonons by elec-
trons. An estimate of electron phonon interaction shows that it is of the same
order of magnitude as the energy of free electrons, as well as an estimate
of electron-electron interaction term shows the contribution of the same order

of magnitude.
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METODA GREENOVIH FUNKCIJA U TEORIJI ELEKTRON-FONON
MEDUD]JELOVANJA

N. HASIC

Univerzitet u Sarajevu, Sarajevo

Sadrizaj

Promatrao se je utjecaj elektron-fonon medudjelovanja na kretanje elek-
trona pomocu metode kvantne teorije polja posredstvom Greenove funkoije
elektrona. Za proralun Fourierovog transformata upotrebljen je obitan ratun
smetnje za valnu funkciju osnovnog stanja i razvoj operatora poniftavanja
po vremenu. Radun koji je proveden do drugog reda po medud jelovanju dao
je za vlastitu energiju rezultat koji je potpuno ekwivalentan rezultatu opée
teorije sa Wick-ovim teoremom (8.6); vidi sl. 1 i 2.

Metoda razvijena u dijelu 4. primijenjena je na sistem sastavljen od
elektrona sa zasjenjenim Coulombskim medudjelovanjem kao i longitudinal-
nih fonona sa energijom hSq, gdje je S brzina zvuka. Analiza rezultata (5.6)
pokazuje, da doprinos elektron-fonon medudjelovanju dolazi od apsorpcije
fonona elektronima. Ocjena elektron-fonon medudjelovanja je utvrdila da
je ono istog reda velidine kao i energija slobodnih elektrona. Takoder i ocjena
dlana elektron-elektron medudjelovanja pokazuje, da je to doprinos istog
reda velidine.





