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Abstract: The group-theoretical arguments are used to write the three nucleon ground state 
wave function. The obtained expressions are rewritten in the spherical coordinates con­
venient for the application of the angular momentum algebra and for the spatial inte­
gration. The formulae for different interference terms in the case of one particle 
Hamiltonian are given explicitly. 

1. Introduction
Among many approaches to form, without solving the Schrodinger equation, the three-nucleon bound state wave function with the total angular momentum J = .!_ , the even parity and the total isotopic spin T = .!_,  the two approaches

2 2 . are often used. One is due to Gerjouy and Schwinger1l and Sachs2l who gave the systematics of the components of the total wave function. Recently, Schiff and Gibson3l renewed the method and Bolsterli and Jezak4) tried to give to this approach the group-theoretical basis. In the framework of thiis approach the wave funotion for a three-nucleon system was not written in a complete form. The other approach ,is due to Derick and Blatt5l. Although complete, their metod seems not to be well su,ited for practical uses.'' The aim of this article is twofold. Firstly, we wJll show on the group-theore­tical basis how one can rewrite the Rarita-Schwinger approach, which will be (in spherical coordinates and using angular momentum algebra), adjusted to the practical uses. On this ground we shall discuss the questions concerning 
* A survey of the present situation can be found in many review articles. See for

exemple ref,6) 
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the S-state spatial antisymmetric wave function and the P-state function 
contaiining the antisymmetric spatial scalar function, (chapter 2) . Secondly, as 
a consequence of the form of the wave function obtained ·in chapter 2, we 
shall de11ive the formulae for the complete set of mat11ix elements for the 
electric form factor for a three-nucleon system to which many other physi­
cally impodant quantities of one-particle nature can be connected (chapter 3) . 

2. The eight components of the three-nucleon bound state wave function
Owing to the fact that the Schrodinger equation for the three body bound 

state cannot be solved using reasonable two--body potentials, one usually 
proceeds by writing the general form of the wave function which satisfies 
the antisymmetry conditions for spatial, spin and isotopic spin coordinates 
and is subject of the following constraints : 

total angular momentum J = _!_
2 

parity even 
1total isotopic spin T = 
2 

These constraints are the physical characteristics of the ground state of 
3He and 3H nuclei. 

The above conditions and the antisymmetry requirement, as was shown in 
ref.5l can be satisfied by ten independent components, whose linear combi-­
nation gives the total wave function. It was also shown that the components 
can be classified in accordance with the properties of the irreducible repre­
sentations of the permutation group of three objects (Sa) and that of the ro­
tation group in three dimensions ( R3

).

We proceed by rewriting ,the properties of the S
3 group. The irreduc.ible 

representations of the Sa group are symmetric and antisymmetric (both one 
dimensional) which we shall further denote by the indices »S« and »A«, re­
spectively, and a mixed representation (two-dimensional) denoted by the 
index »M«. The objects which undergo the transformations under the mixed 
representation will be denoted by indices » l «  and »2«. Having formed re­
presentations in a given basis one constructs the representation in the union 
of the basis by applying the rules for the direct product, which for the S3 
gr�up reads : 
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Rs (a) ® Rs (/J) = Rs (a{J) , 
Rs (a) ® RM (/J ; y) = RM (a/J ; ay) , 
Rs (a) ® RA ({J) = RA (a/J) , 
RM (a ; /J) 18) RM (r ; o) = Rs (ay + {JJ) EB RM ({JJ - ay ; aJ + f]y) 

(±) RA (ao - /Jy) ' 
RA (a) ® RM (/J ; y) = RM (ay ; - a{J) , 
RA (a) ® R.-1 ({J) = Rs (a/J) , 

22 1 

(1) 

where a, /J, y and o are one of the realisation of the .representation of ithc 
group S3 

4l .  These rules are directly applicable to the spin and isospin functionsfor three parbicles. 
Supposing the exchange moments equal zero, and by coupling firstly the 

spins of the particles denoted by 2 and 3 into the spin S23 with the projection 
M23 and after_ by coupling the spin S23 and that of particle 3 into the total spin 
S and its projection Sz one gets the function : 

X ;z (S21 ) = L (- )  Mn - }  + S2a - Sz [ (2 Su +I) (2 S +  1 ) ]11• 
q1 qJ 0'"1 (2) 

Two objects which immediately follow from (2) .  

(3) 

xl ( o )  = x, , 
undergo the rules for the mixed representation and the functions (3) are one 
of its realizations. 

The isotopic spin functions have the same properties and they have been 
formed in the complete analogy wiith the spin functions. We wii.H denote ,them 
by 17 :. (T 21) , 111 and 172• 

For the spatial coordinates to span the representation of the S3 group one 
chooses the centre of mass system by applying the following transformations : 
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1 4 4 4 

J ( T1 + T2 + Ts ) ,

(4) 

---+ --+ --+ --+ --+ R0 is the symmetric representation of the pos�tion vectors r1, r2 and r3 • R1 

4 and R; form the mixed representation. The Jacobian of the transformation is 
� y}.  Notice, however, that the parity of these objects is odd. In order to8 get the even parity equations (1)  must be used. Again, by applying equations 
( I ) combined with the direct inspection, one gets the scalar, vector and . tensor
representations. The scalar representation follows directly and reads : 

Ss = R� + R� , (5) 

One gets the vector representation by noting that the unique vector with 
4 4 even parity is the vector product of R1 and R2 • With respect to the permu-

tation properties this vedor is antisymmetric. The symmetric vector does not 
exJist and the vectors which span the mixed representation follow from equa­
tions ( I ) ,  

4 

Ps = 0 ,

It ·is convenient to rewrite these objects in the spherical coordinates. Defin­
ing the spherical components of a unit vector by: 

1 4 4 

�-1 = {l ( e1 - i e2) , 
(7 )
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-), 4 -, -}, where ei , e2 and e3 are the Cartesian unit vectors, a vector A is then 
--> A - Z ( - ) µ A µ t -µ ,

--> --> and the scalar product of two vectors A and B is 
--> -+ A , B = Z ( - )µ Aµ B -µ 

The vector components Aµ are: 
( 4 :n: )

1/2 Aµ = T A Y1
µ (A) ,

where by A the angular orientation of the vector is defined. 
--> --> --> Then, PA = R1 X R2 reads

and since: 
- ,;-

( 
1 1 1 ) 

(µ X (µ• = i V 6 ( - ) m , Cm ,-µ µ - m  

finally one has: 

223 

(8) 

(9) 

(10) 

(1 1 ) 

( 12) 

(13) 

In order to insure the total angular momentum J = 2._  , and even parity, 2 the quantiities of the vector representation mus-t be multipl1ied by the spin quan-tities following equations (I) . That was done in ref.4l. Here, we prefer, for 
practical purposes, to use more direct way, and to multiply PA by the quan-

--> --> + tities fl s, fl 1 and fl 2 defined as follows
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--+ --+ 1 

II2 = a1 x 2  (0 )
s, 

(14) 
The quantities (14) in addition to the obvious properties respect to the Sa 

--+ group multiplied by PA are the realisation of an irreducible representaition of the SUz group which authomatically insures the total angular momentum ] =  __1_ 2 • Applying the standard formulae for the addition of angular momenta, one gets in the spherical coordinates: 
--+ ----> • - 4n 

L ( 
1 I 1 ) (1 3/2 1/2)

.!.. + s, 1 " 1 3/ lls . PA = i 6 y 6 - R1 R2 ' (- ) 2  y (R1) Y ' (R,) X
sz2 3 -µ -µ - e  e-Sz f z · µ µ 

µ µ' (15) 
--+ ----> 4n �( 1 1 1 )(  1/2 

1
/2) 

.!.. + sz 1 A 1 A __1_ ll1 · PA = i 6-3 R1 R2 _ _ , _ S J (- ) 2 Y (R1) Y , (R2) X 2 (0)µ µ (! (! --,- z z µ µ Sz 
µ µ' 

The tensor representation follows directly from equations (1) since the tensor product for the Ra group span the Sa group representation. One has 
-+ ---+ -+ --+ (J)s = / [R1. R1] � + [R2, R:A J! ) , 

In the spherical coordinates these formulae have simple form 

(16) 

(17) 
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4n L ,;- ( 1 1 2 ) 1 A 1 ::: (J}z = 2 -3 R1 R2 ( - r V 5 I y (R1) y (R2) .µ µ -m µ µ' 

µ µ' 
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Notice, however thaf these formulae differ with respect to the Schiff's for-1mulae3l by the factor {S , 
The total angular momentum J = !._ , even parity, functions are obtained 2 from the functions (16) or (17)  and quartet spin functions by applying the addition rules for angular momenta. One has: 

( 18) 

,;- 4n r ,;- mz + _!_ + /z ( l  1 2) (2 3/2 1/2
) 

1 A 1 A '/2  D1 =2 v 5 -3· y to (- ) 2 / / R1 R2 Y (R1) Y (R2) X .
v v -m m µ - ,. 11 �· µ 

m JL v v' 

The total wave function is obtained from the formulae (3), (5), (15) and (18) using equations (1). It is a linear combination of the eight components: 
1 1 L 1 1 lif 12 f (1 ,  2, 3) = a1 '1/-'I /2 f (1, 2, 3) , 
z z z z 

i = l
( 19) 

where the _index »i« refers to the properties not included in the constraints : 
J = -} , T = }  and even parity. So, in the explicit forms one has 
S-state:

(20)
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S'-state: 

(21 )  

P-States:
(22) 

(23) 

(24) 

and D-states: 

(26) 

(27) 

The determination of the function 1/'i (Ss) lies outside this approaches. The 
choice of this function is subject to specific phenomenological suppositions 
concerning the radial dependence and the numerical values of the parameters, 
and irt: has always fo be confronted with the expe11iment. 

In the framework of the above described approach the S-state component of 
the wave function whose spatial part is antisymetric as well as the P-state 
funotion whose spatial part depends on an antisymmetriic scalar function can­
not be formed (eqs. 5. and 6.) . In the ref.5l these functions are different from
zero owing to the special choice of the spatial coordinates. To this end they 
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have used as the spatial variables the absolute values of the mutua:l distances 

--+ -+ ' -+ , between two nucleon.s x1 = /r2a /, x2= / ria � xs=r12 / which form a triangle, and 
three Euleri angles to describe the orientation of the triangle. One is than 
able to construct the spatial antisymmetric S-function as a determinant for­
med from nine scalar functions f; (x ;), (i, j = I ,  2, 3) ,  multipled by the sy­
mmetric product of spin and isospin functions. The spatially . antisymmetric 
P-state function is formed by multiplying the determinant by the symmetric

-+ -+ -+ combination of ll1, ll2, 'Y]1 'YJ, and PA which is, following equations (I) : 
-+ --> --> 

(fl2 'Y/1 - fl1 'Y/ 2) p A, 

We have two reasons not to take into consideration these components. The 
calculation of the binding energy for 3He and 3H nuclei have shown that their 
contributions are negligible. This seems understandable since the determinant 
formed by nine h (xj) funot,ions implies the existence of an average potential 
for the bound state of three nucleons which is physically hardly permissible. 

Further, the procedure is not suitable for numerical calculations. Siiince the 
three distances do not always form a triangle one is obliged to control the machine program by the additionaJ condition x; + Xj '.;:,- Xk . Moreover, in 
the collinear case (three nucleons form a line) the functions dependent on 
the Euleri angles are not defined, which introduces new ambiguities. 

3. One-/Jarticle matrix elements
The descriiption of many physically interesting processes by which one gains 

informations about the properties of three-nucleon bound state wave function 
goes via a Hamiltonian of one particle nature. These are : electron elastic or 
quasi-elastic scattering, p.-meson parbicle capture, photodesintegration, ra­
diative capture etc. 

We shall illustrate on the example of the electric form factor of the 3He 
nucleus how the wave function obtained in chapter 2. facilitates the calcu­
lations of various integrals by which one takes into account different inter­
ference terms. 

The electric charge form-factor for 3He nucleus is defined by: 
--+ -+  --+ -+  2 Fch (8He) = f e i q r 'P * f2c (r, r,) 'P dt1 dr:2 dr:a , (28) 

where q ,is the momentum transfer, r the electron coordinate, r; the nucleon 
coordinates, 'P is the complet 3-nucleon wave function (19) and the electric 

--> -+ charge density operator f2c (r, r;) defined by 
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(29) 
where i-; is the z-component isotopic spin operator for the i-th particle and

p n 

f eh and / eh the proton and neutron charge form-factor, respectively. 
Since eq. (29) is symmetric to the particle permutation, it is aHwed to cal­culate the contribution of a particle, say I, and the total contribution is ob­tained simply by mul,tiplyiing one particle expression by the factor 3. The one particle spin (and isotopic spin) matrix element is calculated from the well-known expression · 

(30) 

1 where a 
O 

(I) are the spin components of the particle I in the spherical co-
ordinates. 

The remaining spatial integrals can be classified into the S-S, S-S', S-P,S-D--;S'-.._D, P-D and D-D contriibutions.
S-S contributions

After performing the coordinate transformation (4) the spatial integral forthis contribution is 
(3 1) 

The angular integration over d Q1 and d D-2. gives 
(32)



By the transformation 

R2 = R cos 8 ,

R1 = R sin 8 ,  
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00 00 00 7r/g 

s dR1 s dR1 = s RdR s d<9 ,
0 0 0 0 

with the help of the formulae 

.,,;, 

[1 -(-l) n ] s n sin (z sin x )  sin (nx) dx == [I - (-l)n ] 2 In (Z) ,
.,,;, 

[l + (- 1)" ]  J cos (z sin x) cos (n x) dx = [I + (-l)n ] ; In (Z) , 

one obtains 

I s-s = S j lf\ (R) j 2 R4 ln (QR.) dR . 
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(33) 

(34) 

(35) 

One-dimensional integral (35) can be calculated either analitically or nu­
merically depending on the choice of a phenomenological function . 

S-S' contributions 
There are two integrals for this contribution: 

The substitution (33), by noting that 

S
1 = R2 cos 28,

(36) 
(37) 

gives for I s�s · an integral of the type (35). The I 8(:k, integral is equal zero 
since the integration over d Q2 gives zero. 
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S-P contribution
The matrix element for this contribution is composed of 5 components.-+ -+  � -+  ---+ -->  --), -+

They are those which contain the factors, llsPA, S1ll1PA, S1ll2P A, S2ll1P A,
__,. -,. 

S2II2P A· One sees that the contributions of the spin functions. The components 
-)- ---), -), -)-

with S1ll1P A and S1ll2P A giive again zero since the integration over d Q2 in
these cases gives zero. The two remaining components give zero too, which 
can be seen by the following argument. In the explicit form the factor, say, -+ -+ 
S2 ll1 PA is

-+ -+ ( 4:n 
)

2 2 2 L ( 1 1 1 
) (

1 1/2 1/2
) S2 I]_ 1 PA = i • 6 - 2 R R 1 

. · ( -) '/, + Sz 
3 1 2 -Jl -Jl -e e - Sz /z 

µ µ' 'Y 

By the use of the addition theorem 

1 A 1 A - � m r 9 (2j + l)
J 

1/2 ( 
1 1 j

) ( 
1 1 ; ) ; (R.i) , (39)y µ 

(R1) y 'Y 
(Ri) -L .... )-) l 4:n O O O  µ r -m y m 

one gets j = 0,2 and j '  == 0,2 . But the sum over 3 - j symbols gives

� 
( 

1 1 j' 
) ( 

1 1 j 
) ( 

1 1 1 
) 

3 + ,,. + µ' + 'Y _ 

L.J 1t' -y -m' y -µ -m µ -µ' -(! (-)
µ µ '  'Y 

{ 
j 1 j' 

( 
j 1 j' 

)= 1 1 1 } -m -e -m' 
and the 6-j symbol differs from zero only for j = j'=2 .  In the integral ex­

pression this insures the presence of the function Y! (R2) which causes the
integration over · d Q2 to be equal zero. By similar arguments the same result 
holds for the S' -P terms.

The S-D and S'-D contributions are equal to zero owing to the orthogo­
nality of the spin functions and the P-D contributions can be calculated like 
the D-D contributions (see bellow) , but we shall not w11ite the explicit expres­
sion since they are of less physical interest. 
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D-D contributions
The spatial part of D-D matrix element is of the type :

(40) 

where »i« and »j« refer to the P6 (Ss) , 'l'7 (Ss) , 1Jf8 (Ss) , (eqs. 25, 26, 27) ,  and 
Ds, D1 to the expressions ( 18) .  The integration over d Q2 gives : 

_ 4 °'\1 i L y L ( ) ( 25 ( 2L + 1) 1 h ( 2 2 L ) R l L M q 4n O O 0 

The sumation over m, m', µ gives the 6-j symbol 

It follows then L = 0, where from one has 

(42) 

The substitution (33) with the help of (34) gives for this expression and 
integral with the same structure as the expression (35). 

Depending on the choice of the . fenomenological function, the remaining 
one-dimensiional integration is carried but either analytically or numerically. 

In subsequent papers this mathematical approach will be applied to studies 
of radiiabive proton and neutron capture on deutron and tr.iton at variious 
energies. 
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0 TALASNOJ FUNKCIJI OSNOVNOG STANJA TROcESTICNIH NUKLEARNIH SISTEMA 
I. Konstrukcija talasne funkcije i prilozi izvodu jednostanicnihmatricnih elemenata 

N, BIJEDic i Z. MARI(: 

Institut »Boris Kidric«, Beograd 

S a d r z a j
Upotrebljene su metode teorije grupa za konstrukciju talasne funkcije osnovnog stanja jezgra aH i aHe. Pokazano j e  kako se komponente funkcije mogu klasificirati prema svojstvima ireducibilnih reprezentacija permutacione grupe (Sa) i rotacione grupe u trodimezionalnom prostoru (Ra), Upotrebom specijalne koordinaritne transformacije (jed. 4.) prostorne koordinate postaju elementi grupe (Sa), cime se omogucuje primena pojednostavljenog postupka za ispunjenje uslova antisimetricnosti talasne funkcij e u odnosu na prostome, spinske i izospinske koordinate. Za to je dovoljno uvek koristiti pravila di­rektnog proizvoda formule (1 . ) .  Upotrebom ovih formula dobivene su ska:lar­ne, vektorska i tenzorske komponente- U cilju homogenizacij e i pojednosta­vljenja racuna ove su komponente pisane u sfernim koordinatima upotrebom formula (6-13).  Sistematizacija komponenata, cija liinearna kombinacija daje ukupnu talasnu funkciju data je  formulama (20) do (27) . Diskutovana je razlika ovog prilaza od do sada poznatih konstrukcija talas­ne funkcije i navedeni su razlozi zbog kojih odredene komponente nisu uzete u obzir. Na primeru elektricnog form-faktora za jezgru aHe izracunati su interfe­recioni clanovi svih komponenata talasne funkcije. Lako se pokazuje da se oni fizicki procesii, koji se opisuju jednocesticnim hamiltonijanima (fotodez­integracija, radiacioni zahvat, rasejanje elektrona itd.) svode na tipove ma­tricn�h elemena:ta : formule: (35), (37) i (40). Funkoije IJI; (Ss) koje u ovimizrazima figurisu odreduju se poredenjem sa eksperimentom. 




