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1. K. Ljoljeh has shown that short range correlations of each pair of par-
ticles secure a bound state of liquid *He in low density limit. Evaluation of
relevant integrals were performed by making use of hard-sphere method.
Here we want to apply Ursell-Mayer method in the evaluation of these inte-
grals, that means of the expectation value of the energy, in order to obtain
exact expansion with respect to density, and to compare the result with that
of K. Ljolje in the low density limit.

2. The expression of expectation value of the energy of liquid ‘He in the

stated paper reads
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The notations are the same as in the paper?.
We define the functions:
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Let us first consider the function G,. After supstitution of (8) in (2), let us
concentrate our attention to one term in the sum. Let be ithe term in which
the function f° with m particles have v,; # 0 (the particles 1 and 2 are
excluded here).

Integral over other particles multiplied with V™*/I, _, is
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Since the integrals of each set of m particles are equal, and
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Performing similar procedures one obtains
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The supstitution of (10) and (11) in Eq. (1) gives the expansion of the expe-
ctation value of the energy with respect to the density.
3. In the limit of low density (¢ — 0) it follows
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where

[ « «
1 -T2

— —%r —%r
e—2Be 2 ,(,2)[e—23e 2 "—oBe T O

5> 5> -

— 1 |dr dry dryg ,

a—)
v=—2(f(adr.
Other notations are the same as in the paper?.

We see that the first term of Egs. (15) and (16) in the paper) are equal. For
real densities of liquid *He the first two powers of ¢ are not enough.
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