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ABSTRACT
Accurately predicting taxi-in times for arrival flights is crucial for efficient ground handling 
resource allocation, impacting flight departure timeliness. This study investigates terminal 
layout characteristics, specifically decentralised layouts, to predict and analyse arrival flight 
taxi-in times. We develop a surface traffic flow calculation method considering arrival and 
departure flights, eliminating fixed thresholds. We introduce runway-crossing operations for 
decentralised airports, creating new prediction variables. We consider factors like runway, 
aircraft type, airline, taxi distance, and time periods. Gradient Boosting Regression Tree 
predicts taxi-in times, while Lasso analyses factor impact. Our approach yields highly ac-
curate predictions for decentralised airports, with Surface traffic flow and Runway-crossing 
variables significantly influencing taxi-in times. This research informs airport managers in 
decentralised layouts, enabling tailored management strategies.
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1. INTRODUCTION
Most researchers have primarily focused on predicting taxi-out times for departing flights [1–6] with 

relatively less attention given to predicting taxi-in times for arriving flights [7, 8]. Given that the arrival pro-
cess sets the preceding of ground handling operations and the subsequent departures, the accuracy of taxi-
in time predictions holds significance. It directly impacts the pre-allocation of ground handling resources, 
subsequently affecting the on-time performance of departure processes. 

The arrival process of flights involves aircraft landing on the runway and taxiing through the taxiways 
until it reaches the stand. This process is particularly challenging for large airports with multiple runways 
due to numerous uncertainties. The variations in the configuration of multiple runways and the related 
terminal layout can structurally influence the taxi-in time prediction. This paper focuses on airports with 
independent parallel runways and a decentralised terminal layout in a Chinese context, for which Beijing 
Capital International Airport (PEK) is a typical illustration (Figure 1a). In this case, a single runway can 
simultaneously accommodate both arriving and departing flights on the condition that the runway spacing 
complies with requirements of independent parallel approaches and departures. A “runway crossing” issue 
occurs when arriving/departing flights require taxiways to bypass or conflict with an active runway. At 
PEK, both arriving and departing flights can confront the runway crossing issue in two directions, which is 
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different from that of airports with a centralised terminal layout, e.g. the other two biggest airports in China 
(i.e. Guangzhou Baiyun International Airport (CAN)) and Shanghai Pudong International Airport (PVG) 
(Figure 1b). In the case of the latter, it is arriving flights that require taxiways to bypass or conflict with an ac-
tive departure runway, i.e. unidirectional runway-crossing. Therefore, for airports with independent parallel 
runways and a decentralised terminal layout, larger runway-crossing occurrences and the complexity in the 
operation process increase the intricacy of predicting taxi-in times. 

PEK CAN                                                              PVG
a) Decentralised layout b) Centralised layouts

Figure 1 – The layout of three airports

Existing research has shown that both intensity and complexity of surface traffic flow are crucial fac-
tors influencing the prediction of taxi-in times [1, 9–13]. Intensity indicators that significantly impact the 
current flight’s taxi-in time include instantaneous traffic flow [1], the number of other flights on the same 
runway [10], the number of flights departing within the preceding 20 minutes [11] and the number arrival 
aircraft up to 1.3 minutes before the aircraft in question [12]. In these studies, the number of flights was 
measured by predefining a fixed time period. However, these fixed thresholds cannot be directly applied 
to other airports with different configuration layouts. Hence, the complexity perspective that considers the 
time-varying characteristics of surface traffic flow should be investigated [14]. The challenge is to examine 
the spatial-temporal characteristics of surface traffic flow by simultaneously modelling the interrelation-
ships between arriving and departing flights. This paper introduces a novel approach to accurately represent 
the dynamic characteristics of surface traffic flow specifically for airports with independent parallel runways 
and explores its impact on the taxi-in time.

Selecting appropriate modelling techniques is crucial for identifying factors affecting taxi-in times for 
arriving flights and for accurate predictions. Existing literature has employed various modelling techniques 
to predict taxi-in times for flights, including multivariate linear regression [13], Lasso regression [15] in sta-
tistical regression models, as well as machine learning models such as Gradient Boosting Regression Trees 
(GBRT) [16]. Lasso regression, as one of the representative statistical regression models capable of variable 
selection, utilises its oracle property to extract significant factors from among multiple influencing factors 
[17]. Beyond identifying influencing factors, the accuracy of prediction models is also paramount. GBRT, 
one of the most representative decision tree prediction methods in machine learning, often offers higher pre-
dictive accuracy than statistical regression models [18], albeit at the expense of some interpretability [19]. 
Consequently, this paper employs Lasso regression for factor analysis and GBRT for prediction.

In summary, this paper focuses on predicting taxi-in times for arriving flights and analysing influencing 
factors for airports with a decentralised terminal layout. Emphasis is placed on two aspects: surface traffic 
flow and runway crossing operations. The empirical study is PEK. The remainder of the paper is structured 
as follows: In Section 3, we propose a method for calculating surface traffic flow and introduce features 
related to runway-crossing operations based on the decentralised terminal layout of PEK. Additionally, we 
construct other features for predicting taxi-in times. Section 4 analyses the correlation of various influencing 
factors and performs data pre-processing. Section 5 presents the results of and provides our interpretations 
of the outcomes, followed by the conclusion in chapter 6.
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2. LITERATURE REVIEW
Taxi time consists of taxi-out and taxi-in time, and there are similarities in the influencing factors be-

tween taxi-out time for departing flights and taxi-in time for arriving flights [16]. To provide a clear over-
view of the latest advancements in taxi time prediction, Table 1 outlines the research landscape and target 
airports for studies in the domain of taxi time prediction.

Table 1 – Overview of selected studies in taxi time prediction

Year Authors Predictors Methodology Study airports

2008[20] Xu et al. GDP holding time; carrier delay; departure 
demand ratio; swap aircraft rate Piecewise linear model 34 U.S. airports

2010[12] Jordan et al. Surface traffic flow; type of airlines; taxi 
distance; weather

Sequential forward 
floating subset selection 
and Ordinary Least 
Square (OLS)

DFW

2010[1] Balakrishna et al. Surface traffic flow; time periods; average 
taxi time of adjacent periods

Reinforcement learning 
(RL) TPA

2011[21] Srivastava et al. Taxi distance; queue position; mean of 
taxi-out time; arrival rate; weather

Uniform flow model and 
split flow model JDK

2013[13] Ravizza et al. Surface traffic flow; taxi distance; turning 
angle OLS ARN and ZRH

2014[22] Ravizza et al. Surface traffic flow; taxi distance; turning 
angle

OLS, least median 
squared linear regression, 
support vector regression 
(SVR) and M5 model 
trees

ARN and ZRH

2016[23] Lee and Malik
Time periods; runway used; aircraft type; 
taxi distance; terminal concourse; aircraft 
type; month; weather

OLS, SVR, k-nearest 
neighbors (KNN), random 
forest (RF), and neural 
networks (NN)

CLT

2017[10] Feng and Meng
Surface traffic flow; runway used; taxi 
distance; average taxi time of adjacent 
periods

KNN and SVR PEK

2018[11] Herrema et al. Surface traffic flow; time periods; aircraft 
type; airlines; air traffic control

NN, regression tree, 
RL, and multi-layer 
perceptron (MLP)

CDG

2018[14] Yin et al.

Surface traffic flow; surface instantaneous 
flow indices; surface cumulative flow 
indices; aircraft queue length indices; and 
slot resource demand indices

OLS, SVM and RF PVG

2018[2] Diana
Runway used; total operations; total 
delays; percent of on-time gate departures; 
average taxi time; fleet mix

Ensemble machine 
learning, OLS, ridge, 
Lasso and elastic net

SEA

2021[16] Wang et al.

Surface traffic flow; runway used; taxi 
distance; aircraft type; month; type of 
airlines; turning angle; speed of other 
aircraft that have recently taken off; 
weather

Multilayer perceptron, 
OLS, Polynomial 
regression, GBRT, RF 

MAN, ZRH 
and HKG

2021[24] Chen et al.
Surface traffic flow; aircraft type; type 
of airlines; taxi distance; speed of other 
aircraft that have recently taken off; stands

SVR, KNN, decision tree PEK

2022[25] Zhao et al.

Surface traffic flow; time periods; runway 
used; aircraft type; airlines; number of Hot 
Spot passes; cross taxi; whether to cross 
the runway; stands; weather

Extreme gradient boosting CAN

Note: The column “Study Airports” is presented in the form of IATA codes.

Inspired by queuing models, Idris [26] linked surface traffic flow to taxi-out time for departures. He de-
veloped a method using pushback and take-off points. Jordan [12] applied statistical regression to determine 
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a time window for counting flights on runways. Balakrishna calculated instantaneous surface traffic flow at 
multi-runway airports by considering flights on runways and taxiways [1]. Ravizza [13] extended Idris’s ap-
proach to include arrivals and departures. Feng [10] and Herrema [11] used fixed 15- minute and 20-minute 
thresholds for surface traffic flow calculations.

Accounting for the interrelationships between arriving and departing flights is crucial in multi-runway 
airports in a collaborative optimisation circumstance [27]. For airports with independent parallel runways, 
as a single runway can simultaneously accommodate both arriving and departing flights, the number of de-
parting flights can inevitably influence the taxi-in time of arrival flights. Moreover, once a flight has been 
landed and is taxiing, the priority for a departing flight to use runways is higher. When operation conflicts 
occur, the arrival flights have to wait, resulting in longer taxi-in time. To consider the impact of instanta-
neous arrivals and departures on the current flight’s taxi-in time [16], this paper proposes a novel method to 
measure the intensity and complexity of the surface traffic flow for airports with parallel runways.

In addition to surface traffic flow, several factors related to airport operations have been considered in 
multiple taxi time prediction studies. These factors include runway used [23, 10, 2, 16, 25], aircraft type 
[2, 11, 16, 23–25], type of airlines [11, 12, 16, 24, 25], taxi distance [10, 12, 13, 16, 21, 23–25], and time 
periods [1, 11, 23, 25]. “Runway used” signifies the landing runway choice. “Aircraft type” categorises 
planes based on wingspan [4] or weight [23]. “Type of airlines” differentiates between domestic and foreign 
carriers to represent the language communication cost between foreign crew and local air traffic controllers. 
“Taxi distance” measures the path length between landing and stand position, a well-established taxi time 
predictor [9]. “Time periods” classify landing times into distinct segments. Balakrishna et al. [1] integrated 
time periods into a reinforcement learning model. However, complete validation was not possible due to ma-
chine learning’s interpretability constraints. Lee et al. [23] discussed impact of time periods on taxi time at 
the Charlotte Douglas International Airport (CLT) and introduced them predicting departure taxi-out times.

Few studies have explored the influence of airport configuration on aircraft taxiing. However, based on 
the Total Airport Management (TAM) concept [28], it is essential to incorporate the entirety of the airport 
processes including airside, landside and terminal [29]. Pina [30] verified that accurately predicting taxing 
times for landing flights helps distribute ground handling resources and estimate the in-block time. Tang 
[31] examined terminal layout effects at PEK on apron taxiing, focusing solely on the apron and overlook-
ing the entire movement area. Centralised layouts separate ground taxiing from runway operations, while 
decentralised layouts involve runway crossings or bypasses, leading to ground taxiing and runway conflicts. 
This paper introduces the “runway crossing” feature to assess the configuration’s impact on ground taxiing.

Statistical regression models are commonly employed for aircraft taxi time prediction. Jordan [12] used 
OLS to predict taxi times at Dallas-Fort Worth International Airport (DFW), which has a centralised ter-
minal layout. Ravizza [13] identified taxi distance as a key factor influencing taxi times using OLS and 
data from Stockholm Arlanda Airport (ARN) and Zurich Airport (ZRH). Lasso regression, known for vari-
able selection, has gained attention [17]. Diana [2] compared regression and machine learning methods, 
highlighting OLS and Lasso’s interpretability. Li [15] compared Lasso and OLS for PEK, where Lasso 
outperformed OLS notably at 3- and 5-minute error levels. Machine learning algorithms have also gained 
prominence with open-source libraries. Balakrishna [1] designed a reinforcement learning model for Tampa 
International Airport (TPA), achieving 81% accuracy within a 5-minute error. Ravizza [22] used SVR for 
ARN and ZRH, while Lee [23] compared OLS, SVR, RF and NN using CLT data, with RF showing superi-
or accuracy among machine learning methods. Wang [16] evaluated OLS, RF and GBRT for multi-runway 
airports (MAN, ZRH, Hong Kong International Airport (HKG)), observing better machine learning perfor-
mance than statistical regression.

In summary, taxi time prediction studies utilise OLS, Lasso regression and GBRT. OLS results can be less 
reliable when strong correlations exist among independent variables, as in models with intercorrelated factors 
like surface traffic flow and time periods. Lasso addresses this issue effectively [32]. GBRT, a decision tree 
method, is robust to multicollinearity and, as a Boosting technique, iteratively enhances performance, often 
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surpassing RF and SVR [18]. Hence, Lasso regression and GBRT are suitable for taxi-in time prediction. 
This study applies Lasso for analysing factors, GBRT for making predictions and OLS as a baseline to check 
for multicollinearity among variables.

3. DATA AND VARIABLES
The data for this study are sourced from the Airport-Collaborative Decision Making (A-CDM) system 

of PEK, one of the busiest airports in China. The A-CDM system of the airport aggregates operational data 
from various stakeholders, including the airport, airlines, air traffic control (ATC) and ground services. 
Figure 2 illustrates the runway configuration and the taxi paths across runways at PEK. The green rectangles 
denote corresponding runway identifiers, while the blue and orange arrows indicate the one-way taxi flow 
of aircraft crossing runways. PEK features three parallel runways, each with sufficient vertical spacing to 
facilitate independent parallel approaches and take-offs. As an airport with a decentralised terminal layout, 
Terminal 1 (T1) and Terminal 2 (T2) are situated between runways 18R/36L and 18L/36R, while Terminal 
3 (T3) is located between runways 18L/36R and 01/19.

To mitigate the impact of COVID-19 control measures on data analysis, we collected operational data 
from PEK between 1 May 2019 and 31 December 2019, before the pandemic. This time frame covers 
the peak season of flight operations within a year. The collected data fields include flight number, arrival 
runway, stand, aircraft type category, airlines, actual landing time (ALDT), actual in block time (AIBT), 
actual off block time (AOBT), actual take-off time (ATOT) and others. Based on these data fields, we 
construct response and explanatory variables to predict taxi-in times accurately.

The taxi-in time for arriving flights is defined as the difference between the AIBT and the ALDT of the 
aircraft. It is calculated as follows:

T t ttaxi in time AIBT ALDT= --  (1)

where T is the taxi time of arrival flights. After removing records with missing fields, a total of 105,907 
valid sample data points were obtained. Table 2 provides the minimum, median, maximum, mean, 25th per-
centile and the 75th percentile values for the overall sample. Considering the 25th and 75th percentile values 
described in Table 2, it can be observed that the distribution of taxi-in times for arriving flights at PEK is 
concentrated between 7 and 17 minutes.

 
Figure 2 – Airport diagram of PEK

Table 2 – Statistical indicators of taxi-in time for flights at PEK

Parameter Min Med(Q2) Max Avg 25%(Q1) 75%(Q3)
Taxi time/min 1 11 59 12.35 7 17
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3.1 Predictor variables
To accurately predict taxi times, it is necessary to extract features from various aspects. To achieve this 

goal, we have established 24 predictive variables, with a particular focus on “Surface traffic flow” and 
“Runway-crossing.”

Table 3 – The predictor variables in the model

Variable Type Description

Surface traffic flow Discrete
Number of arrival or departure flights that are moving on the 
runway, taxiway or apron during the time period between  
current flight landing and on block.

Runway-crossing Categorical Whether the flight crosses a runway. It is defined to be 1 for yes 
and 0 for no.

Time period Categorical
Time period of a day. The clusters are [2:00–8:59], [1:00–1:59, 
9:00–9:59], [0:00–0:59, 10:00–23:59] for three time periods, 
labelled as I, II, III respectively. Local time has been used.

Distance Continuous The distance of aircraft taxis from the landing point to the 
stand.

Runway used Categorical Runway number of arrival flights landing. Including 19, 01, 
18L, 36R, 18R, 36L a total of six runways.

Aircraft type Categorical

Aircraft type used on PEK arrival flights. Includes C (wing 
span is greater than or equal to 24 meters and less than 36 
meters), D (wing span is greater than or equal to 36 meters and 
less than 52 meters), E (wing span is greater than or equal to 
52 meters and less than 65 meters) and F (wing span is greater 
than or equal to 65 meters and less than 80 meters) aircraft 
types.

Type of airline Categorical

Type of airlines. It is defined as 1 for domestic airlines and 0 
for foreign airlines. This variable is designed to examine the 
difference between domestic and foreign airlines caused by 
language communication and familiarity level to local airports. 
For instance, a Chinese air traffic controller may need relatively 
longer response time when communicating with a foreign pilot 
in English.

3.2 Surface traffic flow
Designing a method to compute surface traffic flow for multi-runway airports presents challenges involv-

ing simultaneously considering arrival and departure flights and avoiding fixed threshold settings. To tackle 
these challenges, we introduce an approach for calculating surface traffic flow applicable to such airports. 
In this approach, we use the current flight’s landing time and in-block time as the computation’s start and 
endpoints. This calculation determines the count of various arrival and departure flights within this interval, 
obviating the need for fixed thresholds. Higher surface traffic flow values for the current flight indicate in-
creased congestion during its surface movement.

According to Equation 1, we define the taxi time interval for the i-th arrival aircraft as [tALDT(i), tAIBT (i)], 
the taxi time interval for the j-th arriving aircraft as [tALDT(j), tAIBT (j)] and the taxi time interval for the k-th 
departing aircraft as [tAOBT(k), tATOT (k)]. Here, tAOBT represents the AOBT of the aircraft and tATOT represents 
the actual takeoff time.

Figure 3 illustrates four potential categories of arrival flights impacting the current flight, and likewise, four 
potential categories of departure flights affecting it, as displayed in their respective taxiing states. The calculation 
methods for these eight flight types are detailed in Table 4. Figure 3 and Table 4 illustrate the count of all flights j that 
meet the criteria for flight i and represents the count of all flights k satisfying the conditions for flight i.
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Figure 3 – Graphical description of the variables in surface traffic flow

Table 4 – Classification and description of surface traffic flow variable

Variable Definition Description

 

Number of other arrival aircraft 
landing before current aircraft 
landing, in block after current 
aircraft landing and before  
current aircraft in block.

 
Number of other arrival aircraft 
landing before current aircraft 
landing, in block after current 
aircraft in block. 

 
Number of other arrival aircraft 
landing after current aircraft 
landing, in block before current 
aircraft in block.

 

Number of other arrival aircraft 
landing after current aircraft 
landing and before current 
aircraft in block, in block after 
current aircraft landing.

 

Number of other departure 
aircraft off block before current 
aircraft landing, take-off after 
current aircraft landing and  
before current aircraft in block.

 
Number of other departure 
aircraft off block before current 
aircraft landing, take-off after 
current aircraft in block.

 
Number of other departure 
aircraft off block after current 
aircraft landing, take-off before 
current aircraft in block.
Number of other departure 
aircraft off block after current 
aircraft landing and before 
current aircraft in block, take-off 
after current aircraft landing.

3.3 Runway crossing
Figure 2 illustrates PEK airport’s three parallel runways, dividing it into two distinct areas. The East Area 

lies between Runway 01/19 and Runway 18L/36R, while the West Area extends between Runway 18L/36R 



 Traffic Planning

630

Promet – Traffic&Transportation. 2024;36(4):623-638.

and Runway 18R/36L. Arrival flights via Runway 18L/36R can access the East or West Area via separate 
taxi paths without runway crossings. However, arrivals from outer Runways 01/19 or 18L/36R may need to 
cross areas depending on stand assignments.

Two methods facilitate crossing Runway 18L/36R at PEK. The first involves using End-Around Taxi-
ways (EAT): aircraft entering the West Area from the East use Taxiway S6. In contrast, those entering the 
East Area from the West use Taxiway S7, increasing taxi distance. The second method entails direct runway 
crossing, which may require waiting to avoid interfering with departing flights on Runway 18L/36R. Irre-
spective of the chosen method, flights crossing runways experience longer taxi times than others. Approx-
imately 30% of PEK flights operate in the runway-crossing mode, their average taxi time exceeding twice 
that of non-crossing flights (Table 5). This data underscores the extended taxi times for crossing flights. In our 
model, we denote these as “Runway crossing” (C).

It is crucial to note that the “Runway-crossing” definition aligns with PEK’s decentralised terminal lay-
out and may not apply universally to multi-runway airports. For instance, airports like Heathrow Airport 
(LHR) and Nanjing Lukou International Airport (NKG) feature terminals predominantly positioned between 
two runways, requiring minimal or no active runway crossings during operations.

Table 5 – Percentage of runway-crossing flights in PEK and their average taxi-in time
Flights category Proportion (%) Average taxi-in time (min)

Runway-crossing flights 29 19.8
Non-runway-crossing flights 71 9.3

3.4 Time periods
Our model’s time periods are denoted as variable TP. We collected landing times of all arrivals at PEK 

from 1 May to 31 December 2019. Each day was divided into 24 one-hour time periods. Based on the average 
number of arriving flights and the type of flights (i.e. passenger or cargo), a k-means clustering analysis was 
conducted to cluster the disaggregated time periods. The 24 one-hour time periods were categorised into the 
following segments: [2:00–8:59], [1:00–1:59, 9:00–9:59], and [0:00–0:59, 10:00–23:59], and labelled as I, II 
and III, respectively. TP-III experienced the highest average arrivals, while cargo flights dominated TP-I. Car-
go flights at PEK tend to have more distant stands from runways than passenger flights, resulting in relatively 
longer taxi times in TP-I and TP-III. Boxplot of Figure 4 illustrates taxi time variations across these periods.

 
Figure 4 – Box plot of the taxi-in time for different time periods

4. METHODOLOGY
We first conducted a correlation analysis on various features. Based on the results of the correlation anal-

ysis, we constructed Linear Regression, Lasso and GBRT models separately, and subsequently compared 
and evaluated their predictive performance. Finally, we conducted pre-processing on the data, including 
one-hot encoding and standardisation.
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4.1 Correlation analysis
Due to potential correlations among the variables in Table 3, we performed a correlation analysis on the 

variables in Table 3. Spearman’s coefficient assessed correlations for continuous and categorical variables, 
Cramer’s V for categorical variables and Eta squared for associations involving continuous, categorical and 
discrete variables. This paper has referred to Iversen’s criterion, where they suggest that when the correla-
tion coefficient falls between -0.3 to -0.7 or 0.3 to 0.7, it indicates a moderate correlation [33]. Tables 6–8 
display the results where the absolute coefficients greater than 0.3 are highlighted in bold.

Table 6 – Spearman coefficients for each pair of continuous variables and discrete variables
Variable Distance A1 A2 A3 A4 D1 D2 D3 D4
Distance 1 0.46 -0.50 0.64 0.55 0.55 -0.39 0.50 0.50 

A1 0.46 1 -0.37 0.57 0.62 0.47 -0.28 0.37 0.42 
A2 -0.50 -0.37 1 -0.58 -0.36 -0.48 0.46 -0.47 -0.45 
A3 0.64 0.57 -0.58 1 0.61 0.62 -0.46 0.61 0.58 
A4 0.55 0.62 -0.36 0.61 1 0.52 -0.30 0.42 0.52 
D1 0.55 0.47 -0.48 0.62 0.52 1 -0.21 0.45 0.71 
D2 -0.39 -0.28 0.46 -0.46 -0.30 -0.21 1 -0.48 -0.23 
D3 0.50 0.37 -0.47 0.61 0.42 0.45 -0.48 1 0.46 
D4 0.50 0.42 -0.45 0.58 0.52 0.71 -0.23 0.46 1 

Table 7 – Cramer’s V coefficients for each pair of categorical variables
Variable Type of airlines Runway-crossing Aircraft type Runway used Time periods

Type of airlines 1 0.03 0.33 0.10 0.08
Runway-crossing 0.03 1 0.08 0.25 0.08

Aircraft type 0.33 0.08 1 0.11 0.06
Runway used 0.10 0.25 0.11 1 0.29
Time periods 0.08 0.08 0.06 0.29 1

Table 8 – Eta squared for each pair of continuous variables and categorical variables and for each pair of  
discrete variables and categorical variables

Variable Distance A1 A2 A3 A4 D1 D2 D3 D4
Type of airlines <0.01 0.01 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 <0.01 

Runway-crossing 0.67 0.19 0.20 0.46 0.27 0.29 0.15 0.23 0.25 
Aircraft type <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 
Runway used 0.01 <0.01 0.02 0.01 0.01 0.01 0.01 <0.01 0.01 
Time periods <0.01 <0.01 0.01 <0.01 0.02 0.07 0.07 <0.01 0.07 

Tables 6–8 reveal correlations among variables. Notably, Distance correlates with Surface traffic flow and 
Runway-crossing. Longer taxi distances indicate higher surface traffic flow due to more conflicts during 
taxiing. Runway-crossing is affected by the detour via S6 and S7 taxiways, chosen by most flights crossing 
runways, increasing taxi distance.

Correlations also exist among the eight predictive variables within surface traffic flow. Multicollinearity 
challenges linear regression’s effectiveness with these variables. Therefore, regularisation techniques and 
machine learning, like GBRT, are essential. Regularisation methods shrink coefficients of correlated vari-
ables, preserving significant ones. GBRT, an ensemble learning method based on decision trees, naturally 
handles high feature correlation by prioritising the most crucial features for branching. This makes it suit-
able for addressing multicollinearity and high dimensionality.

4.2 Linear regression
The objective of the linear regression is to minimise the sum of squared residuals of the response vari-

able. The objective function is shown as follows:



 Traffic Planning

632

Promet – Traffic&Transportation. 2024;36(4):623-638.

D y xi j ij
j

n

i

m

0
11

2

b b= - -
==

e o//  (2)

where m is the sample size, n is the number of predictor variables, yi is the observed value of the response 
variable, and xij is the observed value of the predictor variable. B0 represents the intercept of the model, and 
Bj represents the coefficient corresponding to the predictor variable. The commonly used linear regression 
model is the OLS model, which aims to minimise the objective function D.

4.3 Lasso
Lasso is built upon OLS to create an L1-regularised model. The Lasso model formulates an objective 

function as follows:
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where D represents the objective function, and the aim of training the Lasso model is to minimise D. 
However, unlike OLS, the Lasso model introduces a penalty term 

j
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n

1
m b

=
/ into the objective function. 

The parameter λ determines the extent of regularisation applied to the regression model. In the R software, 
the “glmnet” package is used to compute the Lasso model. The “cv.glmnet” function aids in selecting the 
most suitable λ value through n-fold cross-validation. As a regularisation method, Lasso produces reliable 
coefficients for each predictor variable in its results, even when there is strong correlation among predictor 
variables [32].

4.4 Gradient Boosting Regression Tree
GBRT, a common machine learning decision tree algorithm, constructs multiple regression trees collab-

oratively through iterative processes. Each iteration splits the dataset into two subsets, and feature selection 
minimises squared errors. GBRT’s flexibility in handling variable types and superior predictive accuracy 
compared to traditional models are advantages. Yet, the interpretability of its results is reduced due to aggre-
gating weighted tree sums. We implement the GBRT model using the “gbm” package in R.

4.5 Pre-processing
We employed One-Hot encoding to transform categorical variables into dummy variables and standardised 

the sample data. One-Hot encoding is a method that converts categorical variables into multiple dummy vari-
ables. After performing One-Hot encoding, a particular original variable is removed and replaced by n new 
dummy variables, where n depends on the number of distinct feature values in the original variable. Within 
the new set of dummy variables, only one dummy variable has a value of 1, while the rest have values of 0.

To standardise the units of different variables and to prevent certain variable coefficients from being ex-
cessively large or small, which could affect the interpretation and comparison of variable effects, a process 
of min-max normalisation was applied to the data where necessary.

5. RESULTS
5.1 Learning curves of models

Learning curves visualise changes in training and testing model scores with varying training set sizes for 
each algorithm. They help detect underfitting or overfitting caused by outliers during training and determine 
the required training samples for accurate predictions. R-squared and Root Mean Squared Error (RMSE) 
gauge model performance. R-squared explains variance, while RMSE measures prediction accuracy, sen-
sitive to outliers. High R-squared and low RMSE denote well-fitted models. We plotted learning curves for 
training samples from 50 to 5000, focusing on statistical and GBRT models (Figure 5). We followed Viering’s 
[34] criteria to assess curve stability: R-squared and RMSE differences between testing and training sets 
within 0.02, and no significant score changes with increasing samples.
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Figure 5 – Learning Curves of four models

GBRT converges slower on both training and testing sets than statistical models. For small datasets 
(<1000 samples), GBRT’s convergence improvement is insignificant, raising the overfitting risk. But with 
larger training sets, all models converge. As the training set size grows, scores decrease for statistical models 
due to diminishing returns. Around 1500 samples, OLS and Lasso curves stabilise, while GBRT keeps con-
verging. Around 3500 samples, GBRT surpasses others. These results from GBRT need more data to build 
a robust PEK data model. Choosing the right method based on sample size is vital for accuracy: smaller 
samples favour statistical methods, and larger samples favour GBRT. Figure 5 shows no underfitting or over-
fitting issues with larger samples.

5.2 Evaluation of prediction results 
R², RMSE, Mean Absolute Error (MAE), and Prediction Accuracy are utilised as the metrics to evaluate 

the predictive performance of different models. The Prediction accuracy is defined as the ratio of the number 
of model predictions within a certain set range of the actual taxi-in time to the total number of predicted 
samples. Existing research on departure taxi time prediction mainly focuses on prediction accuracy between 
±3 minutes and ±5 minutes. However, considering that the average taxi time for arrival flights at the same 
airport is significantly lower than that for departure flights, we chose narrower ranges of ±1 minute, ±2 
minutes and ±3 minutes as the standards for evaluation. The predictive performance of the three models is 
presented in Table 9.
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Table 9 – Prediction performance metrics evaluation of four models
Performance measures OLS Lasso GBRT

RMSE/min 1.690 1.617 1.568
MAE/min 1.177 1.124 1.088

R² 0.908 0.932 0.938

Prediction 
accuracy

±1 min 48.8% 57.0% 58.6%
±2 min 81.0% 85.5% 86.5%
±3 min 90.5% 94.5% 95.5%

The GBRT model consistently exhibits the best predictive performance. The GBRT model achieves a 
prediction accuracy of 86.5% within a range of ±2 minutes and 95.5% within a range of ±3 minutes. Based 
on these results, the GBRT model is preferable for exit time prediction. However, predicting taxi time de-
mands both accuracy and interpretable results for airport traffic management. Traditional stats lag GBRT in 
PEK data, yet GBRT lacks interpretability. Linear regression, notably Lasso, provides strong interpretabili-
ty. Thus, we use Lasso results for variable interpretation.

Table 10 – Coefficients of the Lasso model for predicting taxi-in time (sorted in descending order of absolute values)
Variable Coefficients Coefficients of TP-I Coefficients of TP-II Coefficients of TP-III

A3 27.859 35.352 53.705 26.289 
D3 24.440 35.277 51.778 24.829 
A4 8.091 5.707 10.662 8.281 
D1 7.749 6.046 9.076 8.762 
A2 -4.107 -5.951 -12.409 -3.572 
D4 3.896 5.707 8.687 4.193 

Time periods-II 2.053 / / /
D 1.981 1.758 2.378 1.506 
D2 -1.748 -5.021 -12.761 -1.595 

Runway-18R 1.221 0.817 0 1.223 
Time periods-III -1.166 / / /
Runway-crossing 1.016 0.679 2.590 0.975 

Runway-18L 0.996 1.410 0.367 0.932 
Runway-19 0.893 0.880 1.825 0.867 

A1 0.776 0.075 1.359 0.856 
Aircraft type-D -0.547 -0.549 -2.329 -0.070 

Runway-01 -0.234 -0.389 -2.268 -0.169 
Aircraft type-C -0.220 -0.074 -0.397 -0.038 
Runway-36R -0.143 0.352 -0.580 -0.033 

Type of airlines -0.077 -0.415 -0.237 0.050 
Aircraft type-E 0.001 0.065 0.072 0.148 
Aircraft type-F 0 1.420 2.144 0
Runway-36L 0 0 0.085 0

Time periods-I 0 / / /

Compared to other features, the feature of surface traffic flow is the most important and impactful. The 
six features with the highest absolute coefficients are related to surface traffic flow: A3, D3, A4, D1, A2 and 
D4. Among the eight features related to surface traffic flow, A3 and D3 have the most significant impact 
on taxi-in time. This is because these two categories of flights directly occupy the taxiing resources of the 
current flight on the apron. However, for A2 and D2, the coefficients are negative. These two categories of 
flights land before the current flight and start taxiing after the current flight has landed and reached its stand. 
This indicates that these flights need to queue behind the current flight. Another possible reason is that these 
categories of flights are not on the same runway as the current flight, resulting in a smaller impact on the 
taxi-in time of the current flight.
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Table 10 indicates that the runway-crossing operation mode significantly impacts taxi-in time, surpassing 
traditional variables such as aircraft type and type of airlines. The runway-crossing operation mode increas-
es taxi-in time, aligning with our hypothesis since distance and time are typically correlated. However, we 
also observed that the coefficient of the runway-crossing is considerably different from those of A3 and D3. 
This discrepancy is due to the higher correlation between runway-crossing and Distance. Consequently, the 
coefficient of runway-crossing has been somewhat compressed in the Lasso model.

The impact of time periods is also relatively significant. The Lasso estimation shows that the taxi-in time 
in TP-II was longer than that in TP-I, while the taxi-in time in TP-III was statistically shorter than that in TP-
I, which seems to be converse to the descriptive analysis in Fig. 4. After checking for other factors that have 
impacts on taxi-in time but might also correlate with the variable of time period, the real impact of the latter 
is revealed. This also indicates the explanatory capability of the Lasso model. In order to explore which fac-
tors statistically increase the taxi-in time in TP-II, we further run three other models for TP-I, TP-II and TP-
III, respectively (Table 10). The results show that three variables, i.e. A3, D3 and aircraft type-F have larger 
impacts on taxi-in time in TP-II than the other two time periods. On the one hand, A3 and D3 represent the 
highest conflict level on the current flight from other flights on the surface. The larger the number of these 
two types of flights is, the longer the taxi-in time is. On the other hand, aircraft type-F have longer taxi-time 
than other types. Therefore, it can be seen that introducing controlling factors e.g. the surface traffic flow 
and aircraft type in the model can help identify the true impact of the exploring variables. 

Taxi distance is generally considered one of the more influential variables in previous research, but in 
the Lasso model, its coefficient differs significantly from the coefficients of A3 and D3. This situation can be 
attributed to two main reasons. Firstly, the correlation between Distance and Surface traffic flow is relatively 
high. Yet, the Lasso model emphasises identifying the importance of Surface traffic flow compared to Dis-
tance, leading to the coefficient of Distance being shrunk. Secondly, the existing literature focuses on target 
airports such as ARN and HKG, which follow a centralised terminal layout that differs from the operational 
rules of PEK. This disparity caused a shift in the relative importance of taxi distance. Nonetheless, it remains 
undeniable that both Surface traffic flow and Distance are crucial variables in taxi time prediction studies.

The model results also indicate that the type of airlines has an impact on taxi-in time. Negative coeffi-
cients corresponding to the predictor variables suggest that flights operated by domestic airlines generally 
have shorter taxi-in times compared to those operated by foreign airlines. This phenomenon could be at-
tributed to smoother communication between domestic airlines dispatchers and ATC towers, better familiar-
ity with ground configurations, and fewer procedures to be arranged before reaching the stand. Both Type C 
and Type D aircraft have negative coefficients, while Type E aircraft have a coefficient greater than 0. This 
suggests that, holding other variables constant, taxi-in times for Type C and Type D flights are generally 
shorter than for Type E and Type F flights. This is because larger aircraft types have lower flexibility in 
ground operations. Unlike smaller aircraft types, they are subject to stricter gate assignment rules, and the 
number of available gates for their use is more limited. Additionally, larger aircraft types tend to have lower 
speeds during turns in ground operations than smaller aircraft.

It is worth noting that the choice of runway also plays a crucial role in influencing taxi-in time. Runways 
19, 18L and 18R positively correlate with taxi-in time, while runways 01 and 36R negatively correlate with 
taxi-in time. Interestingly, the Lasso model deems runway 36L as an unrelated predictor variable. An analysis 
of PEK’s layout indicates that when arrival flights use runways 19, 18L and 18R from the north, they perform a 
turn before entering the apron after leaving the runway. This increases the number of aircraft turns and the taxi 
distance. Conversely, they might taxi to the apron more swiftly when arrival flights approach from the south.

6. CONCLUSIONS
Existing studies on taxi-in-time prediction often lack sufficient attention to the characteristics of air-

port terminal layouts. In fact, compared to centralised terminal layouts, some flights at airports with de-
centralised terminal layouts require additional runway-crossing movements during actual operations. To 
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address the gaps in existing methods for calculating surface traffic flow, this paper first proposes an improved 
multi-runway surface traffic flow calculation method based on a review of existing literature. Subsequently, an 
analysis is conducted for airports with decentralised terminal layouts, and new taxi-in-time prediction features 
are introduced. Given the potential high correlation among some influencing factors of taxi-in time, we employ 
Lasso regression to analyse these factors and use GBRT to predict the taxi-in time of arrival flights.

We chose PEK, one of the busiest airports in China, as our research subject. The results demonstrate that 
the GBRT model achieves a prediction accuracy exceeding 95% within a ±3-minute range. Despite Lasso 
being a statistical regression model with slightly lower prediction accuracy than GBRT, its ±3-minute pre-
diction accuracy still surpasses 90%. The results of the Lasso regression model reveal that the feature of 
Surface traffic flow we designed is the most significant factor affecting flight taxi-in time. The introduced 
feature of Runway-crossing related to the decentralised layout also exhibits substantial coefficients, indi-
cating a substantial impact of runway-crossing on flight taxi-in time. Finally, we discuss the importance of 
other features and provide insights for the airport operational management department.

These findings can assist airlines or ground handling departments in estimating aircraft in-block time 
with greater accuracy. Accurate prediction of taxi-in time for arriving flights can reduce the uncertainty in 
aircraft turnaround time. Additionally, it can aid airport authorities in allocating ground handling resources 
to aircraft at the right time, thereby enhancing resource utilisation efficiency. We have also validated that the 
airport’s terminal layout is a crucial influencing factor for flight taxi-in time. Airport analysts should priori-
tise runway-crossing in their predictions of taxi-in time for airports with a decentralised terminal layout. In 
addition, as airports with other runway configurations (e.g. converging or crossing) or terminal layouts (e.g. 
centralised) become increasingly congested, the method proposed to measure the dynamic sufficient traffic 
flow can also apply for them by simultaneously integrating arrivals and departures.
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唐小卫 叶梦凡 张生润 Kurt Fuellhart

分散式航站区布局机场的进港航班滑入时间预测研究及影响因素分析

摘要

准确预测进港航班的滑行时间对于高效分配地面保障资源至关重要，且影响着飞机

能否准时起飞。本研究调查了航站楼的布局特征，特别是机场的分散式布局，以预

测和分析进港航班的滑行时间。我们制定了一种考虑进港和离港航班的场面流量计

算方法，避免了固定阈值的设置。我们引入了适用于分散式航站区布局机场的跨跑

道运行，创建了新的预测变量。我们考虑了诸如跑道配置、飞机类型、航空公司、

滑行距离和运行时间等因素。梯度提升回归树用于预测滑行时间，而Lasso用于分析

各因素的影响。我们的方法能够准确预测分散式机场中航班的滑行时间，场面流量

和跨跑道变量在影响滑行时间方面起到了显著作用。这项研究为分散式布局的机场

管理者提供了有效的理论支持，使他们能够制定针对性的管理策略。
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