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ABSTRACT
Predicting traffic speed accurately and in real-time is crucial for the development of smart 
transportation systems. Given the nonlinear and stochastic nature of vehicle data, integrat-
ing diverse spatio-temporal data sources with the Improved Particle Swarm Optimisation 
(IPSO) offers a promising approach to optimise the Long Short-Term Memory Neural Net-
work (LSTM). Firstly, we enhance the optimisation capabilities of PSO by implementing 
nonlinear inertial weight and adaptive variation. Secondly, addressing the challenge of se-
lecting the LSTM hyperparameters, the PSO algorithm effectively identifies global optimal 
solutions for hyperparameter optimisation, ensuring appropriate settings through iterative 
training. Subsequently, we conduct a case study using multi-source spatio-temporal traffic 
speed data, comparing our proposed IPSO-LSTM model with traditional neural network 
prediction models and advanced models. Results from the experiment demonstrate that the 
IPSO-LSTM model presented in this study addresses issues of parameter selection and inac-
curate prediction encountered by traditional LSTM models in traffic state prediction. More-
over, it enhances the model’s ability to capture speed time series dynamics. Notably, in pro-
cessing complex speed data, our model exhibits superior accuracy and stability in prediction.

KEYWORDS
traffic speed prediction; multi-source data fusion; improved particle swarm optimisation; 
long short-term memory network.

1. INTRODUCTION
In recent years, with the steady increase in the number of automobiles on roads, traffic congestion has 

escalated significantly. Accurate and real-time prediction of vehicle speed plays a pivotal role in travellers’ 
route planning and time management endeavours. This predictive capability not only mitigates congestion 
during peak hours but also furnishes crucial support for traffic management authorities in devising proactive 
strategies. Accurately anticipating road speeds facilitates pre-emptive measures to circumvent congestion 
before it materialises. Hence, the development of speed prediction algorithms utilising vehicle driving data 
carries profound practical implications for the sophisticated control of highway vehicles.

In the domain of automotive intelligence, endeavours such as vehicle safety-assisted driving and intelligent 
vehicle behaviour decision analysis necessitate the examination of vehicle driving data to formulate 
corresponding strategies. The timelier and more precise the data acquisition, the higher the quality of ensuing 
decisions. Through speed prediction algorithms, driving data for future periods can be relayed to vehicle 
decision-making entities for analysis, thereby enabling the formulation of optimal behavioural strategies. 
Consequently, speed prediction algorithms emerge as indispensable components of vehicle intelligence. 
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Intelligent Transportation Systems (ITS) stand to enhance performance by assimilating future road network 
data. Effective traffic prediction requires the comprehension of the non-linear relationship between past and 
future traffic conditions. This functionality confers benefits across various applications, encompassing route 
guidance and congestion management [1]. This study endeavours to augment traffic prediction accuracy and 
minimise network operation costs, thereby furnishing insights pertinent to traffic management and control.

The remainder of the paper is structured as follows: Section 2 provides a comprehensive review of the 
pertinent literature. Section 3 elucidates the prediction model based on deep learning, the enhanced particle 
swarm optimisation algorithm, and delineates the algorithmic steps in detail. Section 4 elaborates on the 
data format and processing procedures. Section 5 undertakes numerical calculations and conducts an analy-
sis of the results. Finally, in Section 6, the research findings are summarised, along with an examination of 
limitations and potential avenues for future research.

2. LITERATURE REVIEW
There are two standard methods for predicting traffic conditions. One category involves parametric ap-

proaches such as autoregressive integrated moving average (ARIMA), multiple regression theory, exponen-
tial smoothing, grey model and Markov model, among others. The second category encompasses non-para-
metric methods such as the k-nearest neighbour model, neural networks, and more.

Among them, the parametric method helps elucidate the quantitative relationship between independent 
and dependent variables, and quantitatively analyse the influence of variables on dependent variables. Chan-
dra and Al-Deek considered the correlation of traffic data (especially speed) between different locations, 
and introduced the VAR model as the prediction model of expressway section speed [2]. Sun and Sun intro-
duced a real-time collision prediction model employing a dynamic Bayesian network (DBN). Their goal was 
to analyse the relationship between dynamic traffic changes and collisions, specifically using expressway 
traffic speed data for real-time accident prediction [3]. Wang et al. merged empirical mode decomposition 
(EMD) with autoregressive integrated moving average to forecast and analyse non-stationary and nonlin-
ear traffic speed data series [4]. Zhang et al. developed a traffic speed prediction framework employing 
high-order Markov chains. This framework encompassed both observable factors like traffic volume and 
speed, as well as latent environmental factors [5]. Zeng et al. introduced the DWT-Bi-LSTM model, lever-
aging wavelet transform and bidirectional LSTM, to enhance accuracy and efficiency in predicting parking 
spot availability from past data [6]. Ma et al. introduced a novel wavelet-based spatiotemporal multi-graph 
convolutional neural network to improve the precision of traffic speed prediction. By integrating multiple 
GCNs, 3DCNN and wavelet analysis, their model exhibited superior performance compared to standard 
methods across diverse time spans and real-world datasets. [7].

Non-parametric methods adapt internal model parameters based on data to establish relationships be-
tween variables and dependent variables. They are less influenced by user intervention, thus exhibiting 
broader applicability. Research by Asif et al. and Yao et al. proposed a traffic speed prediction model with 
single time step length that comprehensively considered spatio-temporal parameters on the basis of the 
support vector machine (SVM) algorithm, so as to support travellers’ route selection and traffic guidance 
[8–9]. Tang et al. proposed a new fuzzy artificial neural network structure to predict multi-step forward 
driving speed based on three remote traffic microwave sensors in the southern section of the fourth Ring 
road in Beijing [10]. Zang et al. introduced an MSTFLN model designed for long-term expressway traffic 
speed prediction. This model extracts intricate speed features by jointly learning from multi-scale inputs 
[11]. Zheng et al. proposed a k-nearest neighbour (K-NN) method based on tensor, in which traffic mode 
involved multidimensional time information and bidirectional spatial information [12]. Zhang et al. adjusted 
the hyperparameters of the multi-task learning (MTL) model by using the Bayesian optimisation method 
in combination with GPS data of a taxi, and concluded that the MTL model is leveraging deep learning 
[13]. Zhang et al. and Zheng et al. introduced the attention-graph convolution sequence-to-sequence model 
(AGC-SEQ2SEQ), a deep learning framework aimed at capturing intricate non-stationary temporal dynamics 
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and spatial correlations for multi-step traffic condition prediction [14–15]. Ma et al. devised a short-term 
traffic speed prediction technique utilising a hybrid spatio-temporal feature selection algorithm (STFSA), 
which integrates traffic flow spatio-temporal analysis. They combined convolutional neural network and 
gated recursive unit (CNN-GRU) methodologies for this purpose [16]. Ma et al. introduced swarm intelli-
gence optimised deep extreme learning machines (DELM) and applied them, along with variational mode 
decomposition (VMD), to road traffic prediction and autonomous lane change decisions [17]. While neural 
networks offer various advantages, their predictive capacity diminishes when handling long time series data, 
thus prompting the introduction of the Long Short-Term Memory (LSTM) neural network.

In order to verify the effectiveness of the LSTM neural network in predicting traffic speed, Ma et al. 
employed the travel speed data of Beijing traffic microwave detector to conduct model training and testing 
[18]. Jia et al. assessed the efficacy of both deep belief networks (DBN) and the LSTM models in short-
term traffic speed prediction. Findings indicated the LSTM’s superior capability in capturing the temporal 
features of traffic speed data compared to DBN [19]. Gu et al. fused the LSTM with gated cyclic unit (GRU) 
neural networks to create a two-layer deep learning framework (FDL) [20]. Hu et al. incorporated the LSTM 
to address the challenge of gradient disappearance in practical applications, integrated the attention mecha-
nism into the LSTM-RNN, and devised a high-precision short-term traffic flow prediction model [21]. Meng 
et al. innovatively introduced a dynamic time distortion algorithm for time series processing and proposed a 
long short-term memory (D-LSTM) model with dynamic time distortion [22]. Zeng et al. proposed a hybrid 
GRU-LSTM model using historical parking data and various factors to forecast parking availability, aiming 
to optimise resource use and ease traffic congestion amid growing urbanisation and vehicle numbers [23]. 
Ma et al. introduced an improved short-term traffic flow prediction model that combines time series analysis 
with an enhanced LSTM network, specifically leveraging bidirectional LSTM (BiLSTM) [24]. While neural 
networks offer various advantages, their ability to predict over extended time series is limited. This led to 
the proposal of the Long Short-Term Memory (LSTM) neural network. Despite the LSTM’s strong perfor-
mance, enhancing its predictive accuracy remains a concern due to challenges in determining the optimal 
number of hidden layers and neurons within those layers. Additionally, setting the appropriate learning rate 
and iteration count poses difficulties. The number of hidden layers and neurons significantly impacts the 
model’s fitting ability, whereas the learning rate and iteration count influence the training process and the 
model’s effectiveness. In practical applications, determining these parameters relies on empirical experi-
ence, resulting in considerable randomness that diminishes the predictive capability of the model.

Moreover, within intricate urban road networks, the traffic state is subject to numerous interrelated fac-
tors that exhibit complex nonlinear relationships with speed. Among them, weather conditions, air quality, 
holiday activities, peak hours and other factors have a significant impact on urban traffic conditions. Lin 
et al. combined diverse new data sources with conventional data, devising a probabilistic framework en-
compassing a location decomposition model, traffic topic model and traffic speed Gaussian process model. 
The framework, termed the theme-enhanced Gaussian process aggregation model (TEGPAM), was pro-
posed [25]. Essien et al. built an LSTM model by merging urban road network traffic and weather datasets 
from Greater Manchester, UK. Experimental results highlighted that temperature variations significantly 
influenced traffic conditions, indicating its importance as a variable within the model [26]. Li et al. (2019) 
extracted representative features from the data for fusion, established a prediction model to capture correla-
tion, and used heterogeneous data to predict space-average-velocity [27]. While numerous deep learning 
methods exist for traffic flow prediction, current research predominantly focuses on univariate traffic time 
data. There remains a limited extent of research on comprehensive traffic prediction models that integrate 
multi-source characteristic data fusion.

To sum up, most studies involve parametric and nonparametric prediction models, while some hybrid 
models are also presented. The deep learning model appears as a “black box” in the learning process and 
often lacks optimisation for internal parameter design. In addition, in previous studies, the characteristics 
of traffic speed considered for influence were relatively singular, which could not provide good prediction 
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accuracy. Therefore, based on the actual data sets of Guangzhou traffic speed and weather conditions, this pa-
per comprehensively considers the spatio-temporal factors that may affect the urban traffic speed, and designs 
an urban road short-time traffic speed prediction method based on the improved PSO optimised LSTM model. 
The results may provide potential insights for intelligent transportation systems in traffic state prediction.

3. METHODOLOGY
3.1 LSTM

The LSTM, a specialised type of RNN, adeptly captures long-term dependencies without encountering 
the gradient vanishing issue. It incorporates a memory cell structure within the hidden layer neurons of RNN 
to retain past information. Additionally, it integrates three gate structures (input gate, forgetting gate and 
output gate) to regulate the utilisation of historical data.

If the input sequence is x1,x2,...,xT, and the state of the hidden layer is a1,a2,...,aQ then at the time q:

i x bq i q xi q i1v s a s= + +a -^ h  (1)

x bq q q1v s a sm = + +a amm m-^ h  (2)

x bi gq q q qxq q 11$ $d s a sd m= + ++ ad d d-- ^ h  (3)

x bq q q qx c1s a s sj v j+ + += a jj j j-^ h  (4)

gq q q$a j d= ^ h  (5)

where iq, λq and jq are the input gate, the forget gate and the output gate respectively; δq is the cell unit; sα is 
the weight of the recursive connection; sx is the weight from the input layer to the hidden layer; bi, bλ, bδ and bj 
are the thresholds of each function; σ(·) and g(·) are sigmoid and tanh functions respectively; · is the dot product.

To align LSTM with the prediction objective, an additional layer of linear regression needs incorporation, 
namely:

bq qp s a= +pj p  (6)

where ξq represents the output of the final prediction result; bξ represents the threshold of linear regression.

3.2 Principle of standard PSO
If the potential solution to the optimisation problem is likened to a particle, it continuously navigates 

through space, adapting its position based on its individual experience and the optimal individual experience 
while seeking the optimal position. Initially, PSO initialises by acquiring a set of random solutions, then 
iteratively hunts for the optimal solution by monitoring the current spatially optimal particle. In a multi-di-
mensional search area, the ψ particles make up a population. In iteration β, the spatial location and speed of 
the particle α are τα,β and ϕα,β respectively, and the particle updates its position and velocity by supervising 
the two optimal solutions. The first solution pertains to the optimal solution sought independently by the 
particle itself, known as the individual extreme value ηα. The second solution refers to the current optimal 
solution sought by the entire population, denoted as the global optimal solution κα . While seeking these two 
optimal solutions, the particle adjusts its velocity and position utilising the following methods:

v v, , , ,1 1 2$ $ $ $ $z f z | h x | \ x= + - + -a b a b a a b b a b^ ^h h  (7)

, , ,1 1$x x k z= +a b a b a b+ +  (8)
where ε is inertial weight; χ1and χ2 are learning factors; v is the random number between [0,1]; ι is the ve-
locity coefficient, ι=1.

3.3 Principle of improved PSO
This paper enhances the inertia weight within the PSO algorithm and integrates the mutation mechanism 
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of the genetic algorithm. This integration bolsters the search capabilities of the PSO algorithm, rendering it 
adaptable in its exploration abilities.

This algorithm’s fundamental concept involves formulating a mathematical model for the inertia weight, 
allowing for dynamic and adaptive adjustments throughout the entire iterative process. Early in the iteration, 
the inertia weight quickly diminishes, hastening the algorithm’s convergence and refining its local optimi-
sation capacity. Concurrently, the genetic algorithm’s mutation mechanism intertwines with regenerating 
particle positions during iterations to amplify population diversity. This amalgamation enables the algorithm 
to explore beyond local optima, expanding its search across the solution space and fortifying global optimi-
sation capabilities. The adaptive mutation concept balances the algorithm’s local and global search abilities.

In the conventional PSO algorithm, the inertia weight serves to uphold particle motion’s momentum 
while balancing the algorithm’s global and local search capabilities. A significant inertia weight strengthens 
global search, weakens local search, accelerates algorithmic convergence, and yet compromises optimisa-
tion accuracy. Conversely, a smaller inertia weight diminishes global search strength, enhances local search, 
slows the algorithm’s convergence, improves search precision, and yet elevates the risk of local optima. The 
evident conclusion is that the judicious adjustment of the inertia weight value profoundly impacts the algo-
rithm’s performance. Setting w will diminish global optimisation capabilities and decelerate the algorithm’s 
convergence rate. Adaptive parameter adjustment is a technical method to improve convergence speed and 
optimise search performance. This paper suggests a computational approach to enhance PSO performance 
through the utilisation of nonlinearly changing inertia weights. The calculation Equation 9 is as follows:

e1
max

max

max min
g g

t
t

g g= -
+ -

-  (9)

where ζmax and ζmin are the upper and lower limits of ζ respectively; ρ is the current iteration number; ρmax is 
the maximum number of iterations. When ρ is small, ζ approximates ζmax. With the increase of ρ, ζ decreases 
in a non-linear fashion, while ζ decreases rapidly. This ensures the algorithm’s local optimisation capacity 
while enabling flexible adjustments between its global and local optimisation capabilities.

Inspired by the mutation mechanism in the genetic algorithm, an adaptive variation function is proposed 
to give particles the ability to jump out of the local range. When rand ≥ prob, the particles mutate, the parti-
cles distribute evenly across the entire space, increasing the randomness of the particles. The Equations 10–11 

for adaptive mutation probability are as follows:

2
1 1>

max
w t

t
+b l  (10)

$y w  (11)

where ϛ represents the adaptive variogram, which ranges within [0.5, 1]. When ρ is small, ϛ has a low value, 
leading to a higher probability of υ ≥ ϛ , the particles are prone to mutation. It facilitates the particle’s escape 
from local scopes, aiding in global exploration. As ρ increases, as ϛ goes up, the likelihood of υ ≥ ϛ going 
down increases. Particle mutation probability decreases, lowering the chance of particles getting stuck in 
local optima. This allows particles to conduct a broad global search before fine-tuning, ensuring compre-
hensive convergence. 

To assess the impact of the enhanced particle swarm optimisation algorithm, the 5-dimensional Sphere 
test function was individually optimised using the standard PSO algorithm and the IPSO algorithm, fol-
lowed by a comparative experiment. The two algorithms were iterated 1000 times each. The results were 
amplified by logarithmic processing, and the fitness curve was obtained as shown in Figure 1.
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Figure 1 – Fitness curve of Sphere function

Seen from the curve trend after taking logarithms in Figure 1, the traditional PSO algorithm falls into the 
local optimal solution very early in iteration. It no longer has the ability to search for optimisation. The 
enhanced IPSO algorithm effectively breaks away from local optima, persistently seeking optimal solutions 
even after 1000 iterations, highlighting its distinct advantages.

3.4 IPSO optimisation of the LSTM algorithm
Leveraging traffic speed and spatio-temporal data, a combined digital-analogue approach is employed for 

traffic speed prediction. Building upon the aforementioned theory, this study introduces an IPSO-optimised 
algorithm for the LSTM model.

LSTM models can succumb to overfitting when trained on limited data, thereby jeopardising prediction 
accuracy. To address this concern, regularisation methods are employed, notably the inclusion of a Dropout 
layer. This layer selectively deactivates neurons during training, preventing the network from relying too 
heavily on specific nodes and features. By injecting variability into hidden layer neurons across training 
iterations, the model’s dependency on fixed node relationships is diminished, thus mitigating the risk of 
feature reliance. Dropout regularisation serves to diminish the impact of individual weight contributions, 
thereby mitigating model bias and curtailing the risk of overfitting in intricate neural network architectures.

The traffic speed prediction model’s framework, integrating diverse data sources, is depicted in Figure 2. 
The algorithmic steps are outlined as follows:

Step 1: Data pre-processing. By analysing the multi-source correlation of velocity data, multiple features 
with strong correlation were screened out, and the feature sequence of influencing factors was directly used 
as additional features. The time sequence data was processed in the way of the sliding window, with the 
window size set to 6, sliding forward one data point at a time, where six time points represent a duration of 
1 hour. The model utilises six time-related features to predict the subsequent traffic speed.

Step 2: Initialise the parameters by setting the particle positions and velocities. A population particle 
( , , , ),X a a,i 0 1 2 2 k  is randomly generated, where a1 denotes the quantity of neurons in the initial hidden layer; 
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a2 signifies the quantity of neurons in the secondary hidden layer; 2 stands for the learning rate within the 
LSTM; and ι signifies the count of iterations within the LSTM. The population size, iteration count, learning 
factor, location and speed are established. Each particle is encoded as an array containing four elements, 
representing the learning rate, the number of iterations, the quantity of neurons in the first hidden layer and 
the quantity of neurons in the second hidden layer, respectively. By adjusting the ranges of these parame-
ters, we can control the magnitude of parameter changes during mutation, thereby influencing the extent of 
exploration in the search space. Furthermore, we introduce adaptive mutation operations to avoid prema-
ture convergence to local optima. Additionally, by adjusting the range of inertia weights, we influence the 
magnitude of particle velocity updates during mutation, thereby further optimising the search process of the 
algorithm, leading to improvements in convergence speed and search efficiency. 

Step 3: Establish the particle’s evaluation function by allocating the LSTM parameter to particle Xi,0 
acquired in Step 2. Segment the data into training, validation and prediction samples. The training data are 
utilised to train the neural network, resulting in the output values yt

jt for the training samples and output val-
ues yv

kt for the validation samples once the iteration limit is reached. The fitness value fiti for individual Xi is 
defined using the mean square error (MSE) function as outlined in Equation 12:

fit y y y y2
1

2
1

i t
j

t
j

j

J

v
k

v
k

k

K

1 1

2 2

= - -+
= =

t t^ ^h h/ /  (12)

where yt
j and yv

k represent the anticipated output values of the training and validation samples, respectively. 
The conventional approach in prior research primarily focuses on the fitting error of training samples as the 
sole fitness value. However, this practice might lead to suboptimal predictive outcomes if the neural network 

 
Figure 2 – Flow chart of IPSO optimisation LSTM algorithm
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becomes overly tailored to the training data, causing overfitting issues. Directly assessing the prediction effec-
tiveness of the model, the validation sample error becomes crucial. Therefore, the fitness function encompasses 
both the training sample fitting error and the validation sample error. Each carries equal weight, set at 0.5. The 
model’s fitness function is computed by multiplying the sum of these weighted values.

Step 4: Compute the fitness value linked to position Xi for each particle. Individual and population 
extreme values are established based on the initial fitness value of the particles, with each particle adopting 
its historical best position as its optimal position.

Step 5: During each iteration, the particle’s velocity and position are updated using Equations 7 and 8, 
incorporating both the individual and global extreme values. Following this update, the new fitness value 
for the particle is computed. The individual and population extreme values are then adjusted based on the 
fitness values of the updated particles in the population.

Step 6: Once the PSO algorithm reaches its maximum iteration count, the forecasted data obtained are fed into 
the LSTM model trained using the optimal particle. Consequently, the output comprises the predicted traffic speed.

1.1 Model evaluation indicator
To assess the model’s performance, the accuracy of the traffic speed prediction model is appraised using 

various evaluation metrics. These metrics encompass the mean absolute percentage error (MAPE), root mean 
square error (RMSE) and mean absolute error (MAE). The specific formulas are denoted in Equations 13–15.

%MAPE A
1 100

*

r

r r

r

A

1
#}

} }
=

-
=
/  (13)

ARMSE 1 *
r r

r

A

1

2
} }= -

=
^ h/  (14)

AMAE 1 *
r r

r

A

1
} }= -

=
/  (15)

In this context, ψr
* denotes the forecasted traffic speed yielded by the time series prediction model in pe-

riod r; ψr stands for the actual traffic speed data, and A signifies the predicted value. Larger MAPE, RMSE 
and MAE values indicate a greater margin of error within the model.

4. RESULTS
4.1 Data sources

The empirical study utilises traffic speed data provided by the Guangzhou Transportation Commission of 
China as the experimental dataset. This dataset covers 214 sections, primarily urban expressways and trunk 
roads, spanning from 1 August 2016 to 30 September 2016, encompassing a 61-day period. Speed data for 
each segment is aggregated daily within a 10-minute timeframe.

To comprehensively consider the influence of relevant characteristic variables on traffic speed, the 
characteristic variables affecting urban traffic state are input into the prediction model. Among them, air 
quality variables include the concentrations of SO2, NO2, CO and PM2.5 recorded hourly by monitoring 
stations. Meteorological features include real-time temperature, precipitation and weather conditions 
recorded by weather stations hour by hour (The codes “0–7” correspond to weather conditions as follows: 
“sunny, cloudy, cloudy, light rain, moderate rain, heavy rain, shower, rainstorm”). The time attribute is the 
number of hours (indicating the number of hours in a day within 24 hours) and the duration (indicating the 
number of days in a week (the code “1” indicates Monday) at the time point. Whether it is a working day 
(code “1” means a working day and code “0” indicates a non-working day) is also indicated.

4.2 Data processing
We processed and analysed traffic data, revealing that the current traffic speed is similar to recent periods, 

with the most significant impact from recent times and a decreasing correlation over time. The traffic speed 
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data exhibit distinct daily and weekly periodic characteristics. There is spatial correlation among traffic speeds 
across different road segments. We selected external factors, such as PM2.5, SO2, CO, weather and rainfall, 
with correlation coefficients exceeding 0.1 with speed data. Subsequently, we normalised various datasets 
based on these findings. Normalisation of traffic speed and meteorological characteristic data involves a linear 
transformation of the original data, ensuring that the resultant values are mapped within the [0,1] range. The 
formula is shown in Equation 16.

m min
min

ax
n i i

i i= -
-  (16)

where μ is the scaled data; θ is the raw data of traffic speed and meteorological characteristics. The original 
data ranges from a minimum of θmin to a maximum of θmax. This paper divides the dataset, allocating 90% 
for training purposes and reserving 10% for testing. An LSTM model optimised through IPSO is utilised 
to forecast the future traffic speed specifically for Road_1. Sequence data were arranged and reconstructed 
before and after to construct the feature matrix, as shown in Table 1.

Table 1 – Characteristic matrix of multi-source

Time Road_1 Road_2 … Road_40 CO Weather PM2.5 … Rainy …
2016/8/1 

00:10 0.80640 0.91294 … 0.83300 0.83333 1.00000 0.56451 … 0.33246 …

2016/8/1 
00:20 0.72673 0.80322 … 0.72879 0.83333 1.0000 0.56451 … 0.33246 …

… … … … … … … … … … …
2016/8/31 

24:00 0.51809 0.29897 … 0.47534 1.00000 0.20000 0.91936 … 0.23097 …

4.3 Experimental environment
The experiment is based on a python 2.8.1 environment and coded by the TensorFlow1.14.0 deep learning 

framework. The editing platform is Jupyter Notebook 1.0.0 and the operating system is Windows 10. The 
study constructed eight prediction models, namely: IPSO-optimised LSTM model with one hidden layer 
(IPSO-LSTM_1); PSO-optimised LSTM model with one hidden layer (PSO-LSTM_1); IPSO-optimised 
LSTM model with two hidden layers (IPSO-LSTM2); PSO-optimised LSTM model with two hidden layers 
(PSO-LSTM_2); General LSTM model; Bidirectional LSTM model (BiLSTM); GRU model; and BP neural 
network model (BPNN). To ensure experimental fairness, these models employ identical traffic data feature 
inputs and utilise the uniform Adam optimiser for comparative analysis in traffic speed prediction.

4.4 Initial parameter settings
Table 2 shows the detailed initialisation parameter settings for the IPSO-LSTM model. Details of the 

LSTM network training and IPSO algorithm optimisation are described below.
Table 2 – Initialise the IPSO-LSTM model hyperparameters

Network parameters Initial values
Initialisation weight [0.6,0.8]
Number of training 1000

Population size 5
Individual learning factor 1.5
Population learning factor 0.5

Learning rate [0.001,0.1]
Neural network capacity [1,100]

Iteration count [10,100]
Hidden layer number 2

Batch size 100
Activation function tanh

Training subset: Validation subset 9:1
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4.5 IPSO optimisation parameters determination
Figure 4 illustrates the fitness evolution of the LSTM optimised using particle swarm optimisation. Here, 1 

and 2 denote the LSTM model with single and dual hidden layers, respectively. The left one in Figure 4 shows 
the fitness comparison of IPSO-LSTM_1 and PSO-LSTM_1, while the right one in Figure 4 gives the fitness 
comparison between IPSO-LSTM_2 and PSO-LSTM_2. The IPSO optimisation of the LSTM demonstrates 
a reduced fitness value and rapid convergence towards the minimum fitness level. This highlights the IPSO’s 
superior global optimisation capability and faster convergence rate.

 
Figure 4 – Comparison of fitness curves

Figure 5 displays the changes in the learning rate, iteration times and hidden layer node number with the 
iteration times of the IPSO algorithm. Figure 5a indicates the learning rate ε fluctuates during iterations before 
stabilising at 0.0074, while Figure 5b indicates that the iteration number n of the LSTM fluctuates over PSO 
iterations and eventually steadies at 47 instances. In Figure 5c, the neuron count within the initial hidden lay-
er, h1, finally settles at 81. In Figure 5d, the neuron count h2 in the second hidden layer settles at 12.

(a) (b)

(c) (d)
Figure 5 – The optimal values of ε, n, h2 and h2 in the IPSO-LSTM_2: a) Learning rate; b) Number of iterations of LSTM;  

c) Number of the neurons within the initial hidden layer; d) Number of the neurons within the secondary hidden layer

5. DISCUSSION
5.1 Effectiveness analysis

The prediction test confirms that IPSO-LSTM_2 outperforms in forecasting traffic speed, as illustrated 
by the obtained prediction results in Figure 6.
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To better explain the prediction performance of the models, Table 3 compares the prediction performance 
of each model using identical sample inputs. It can be seen that in comparison to the MAPE of BPNN, LSTM, 
GRU, Bi-LSTM, Conv-LSTM, CNN-LSTM and the prediction accuracy of IPSO-LSTM_2 is improved 
by 20.96%, 14.24%, 26.13%, 23.36%, 22.73% and 13.90%, respectively, showing the best prediction 
performance. Therefore, following the enhancement of the particle swarm optimisation algorithm and its 
integration with the LSTM, the model fitting effect is effectively enhanced and the prediction accuracy is 
significantly improved.

 
Figure 6 – Prediction results of LSTM optimised by PSO and IPSO

Table 3 – Prediction errors of other models

Errors BPNN LSTM GRU Bi-LSTM Conv-LSTM CNN-LSTM IPSO-LSTM_2
MAPE（%） 0.12006 0.11065 0.12846 0.12381 0.12280 0.11021 0.09489

RMSE 4.71527 4.40562 4.90083 5.21896 4.56724 4.36695 3.93772
MAE 3.50607 3.12706 3.21892 3.32392 3.18591 3.06029 2.62404

To validate the effectiveness of our model across different prediction time ranges, we conducted prediction 
experiments on various time intervals using the Guangzhou traffic speed dataset. The specific results are 
presented in Table 4.

Table 4 – Comparison of prediction performance at different time intervals

Errors MAPE（%） RMSE MAE
10 min 0.09489 3.93772 2.62404
20 min 0.07392 3.16551 2.33185
30 min 0.06265 2.62200 2.04044

We found that our model performs excellently in the prediction tasks of 10, 20 and 30 minutes, with 
performance improving as the prediction time extends.

5.2 Robustness analysis
After conducting experiments on the dataset from Guangzhou, we have demonstrated the robustness and 

generalisation capability of our model. To further validate our findings, we compared it with similar traffic 
speed data from Shenzhen, as shown in Table 5.

Table 5 – Comparison of predictive performance of different datasets

Errors MAPE (%) RMSE MAE
Model PSO-LSTM_2 IPSO-LSTM_2 PSO-LSTM_2 IPSO-LSTM_2 PSO-LSTM_2 IPSO-LSTM_2

Guangzhou 0.11055 0.09489 4.26611 3.93772 3.37811 2.62404
Shenzhen 0.11154 0.10660 5.84341 5.11804 4.72913 3.92970

The experimental results indicate that our model IPSO-LSTM_2 outperforms PSO-LSTM_2 in traffic 
speed prediction tasks in both Guangzhou and Shenzhen, confirming the robustness and generalisation of our 
model. We conducted an analysis of traffic speed on weekdays and weekends, revealing significant daily and 
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weekly periodic features in the data. On weekdays, the traffic speed time series for the same road segment is 
similar to the previous day. Although the patterns differ between weekends and weekdays, the similarity between 
weekends also serves as an important basis for traffic prediction. Additionally, we used the IPSO-LSTM_2 model 
for prediction, and the accuracy curves are shown in Figure 7c. It can be observed from the figure that our model 
demonstrates good performance and accuracy in both weekday and weekend speed prediction tasks.

 
(a)

 
(b)

 
(c)

Figure 7 – Periodic characteristics and prediction accuracy analysis: a) Speed data of all sections in a day; b) Speed data of all 
sections in a week; c) The prediction accuracy curve

6. CONCLUSIONS
This study proposes a traffic speed prediction model based on multi-feature data fusion and IPSO-LSTM. 

Firstly, we optimised the PSO by integrating nonlinear weight variations and incorporating a mutation mech-
anism with genetic algorithms. These modifications enhanced the global optimisation capability of the PSO 
and accelerated its convergence speed. The fusion of the PSO and the LSTM involves optimising the number 
of hidden neurons, learning rate and iterations of the LSTM using the PSO. This approach alleviates the lim-
itations of manually defining LSTM parameters, thereby improving the accuracy of traffic speed prediction. 
Compared to the PSO, the IPSO achieves superior optimisation of the LSTM parameters, enhancing the over-
all predictive performance. Furthermore, we input data related to speed prediction, such as PM2.5, SO2, CO, 
weather and rainfall, into the model to improve the accuracy of traffic speed prediction. Lastly, evaluation of 
performance metrics such as the MAPE, RMSE and MAE reveals that the proposed LSTM neural network, 
integrated with multi-source data fusion and IPSO optimisation, outperforms other baseline models in terms of 
prediction accuracy and demonstrates good performance across different datasets and time intervals.

In summary, the proposed speed prediction method shows promising feasibility and provides a tailored 
research foundation for urban road traffic management. Considering the limited availability of device re-
sources, this study conducted model training with a small sample size. Future exploration could focus on 
further researching big data fusion techniques, expanding the experimental sample, and more extensive 
applications in traffic state monitoring research.
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赵永鹏，荔永苍，马昌喜，王珂，徐学才

利用多源数据融合优化的LSTM神经网络进行交通速度预测

摘要：

准确实时地预测交通速度对智能交通系统的发展至关重要。鉴于车辆数据的非线性

和随机性，结合多源时空数据与改进的粒子群优化算法（IPSO）为优化长短期记忆

神经网络（LSTM）提供了一种有前景的方法。首先，我们通过引入非线性惯性权重

和自适应变异提升了PSO的优化能力。其次，为解决LSTM超参数选择的难题，PSO算

法通过迭代训练有效地识别全局最优解，确保合适的参数设置。随后，我们使用多

源时空交通速度数据进行案例研究，将我们提出的IPSO-LSTM模型与传统神经网络预

测模型及先进模型进行了比较。实验结果表明，本研究提出的IPSO-LSTM模型解决

了传统LSTM模型在交通状态预测中遇到的参数选择问题和预测不准确问题。此外，

它增强了模型捕捉速度时间序列动态的能力。值得注意的是，在处理复杂速度数据

时，我们的模型在预测准确性和稳定性方面表现出显著优势。

关键词：

交通速度预测；多源数据融合；改进的粒子群优化；长短期记忆网络


