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Personalization of thiopurine therapy: Current recommendations 
and future perspectives

ABSTRACT

Despite great therapeutic advances in the field of biologics, 
small synthetic molecules such as thiopurines, including 
azathioprine, mercaptopurine, and thioguanine, remain an 
important therapeutic pillar in the treatment of inflamma-
tory bowel disease, other autoimmune disorders, and cancer. 
This review presents the latest guidelines for thiopurine 
administration, highlighting the importance of individua-
lized therapy guided by pharmacogenomics. It emphasizes 
dose adjustment based on nudix hydrolase 15 (NUDT15) and 
thiopurine S-methyltransferase (TPMT) genotype, along side 
thiopurine S-methyltransferase activity and thiopurine 
metabolic profile. In addition, the article takes a critical 
look at emerging research in the field of thiopurine pharma-
co genomics featuring novel genetic markers and techno-
logical developments in genetic testing. Finally, the potential 
of integrated approaches that combine genetic, meta bolic, 
and clinical factors to further individualize thiopurine 
therapy is highlighted.

Keywords: thiopurines, TPMT, NUDT15, personalized medi-
cine, therapeutic drug monitoring

INTRODUCTION

Thiopurines were first discovered by Gertrude B. Elion and George H. Hitchings in 
the early 1950s (1). For their groundbreaking contributions to drug development, the pair 
was awarded the Nobel Prize in Medicine or Physiology in 1988. Since their discovery, 
thiopurines, including azathioprine (AZA), 6-mercaptopurine (6-MP), and 6-thioguanine 
(6-TG), have demonstrated their efficacy in various clinical applications. Thiopurines 
 continue to be widely used in the treatment of chronic systemic autoimmune diseases, and 
prevention of transplant rejection, and remain an integral part of treatment for acute 
 lymphoblastic leukemia (ALL) (2, 3).

Thiopurines are used to maintain remission, especially of corticosteroid-dependent or 
refractory inflammatory bowel disease (IBD) in adult patients (2). While the introduction 
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of biologics has changed the therapeutic landscape of IBD, thiopurines continue to be an 
essential, efficient, and cost-effective component of IBD treatment, either as monotherapy or 
in combination with other treatments, particularly infliximab (2, 4–7). In the treatment pro-
tocol for childhood acute lymphoblastic leukemia (ALL), 6-MP serves as the backbone during 
the final and most prolonged phase of AIEOP BFM ALL 2017 protocol, the maintenance 
phase, which lasts up to two years (3). The continued relevance of thiopurines in clinical 
practice is further supported by their use in the treatment of other diseases such as acute 
myeloid leukemia, various lymphomas, rheumatoid arthritis, systemic lupus erythematosus, 
psoriasis, eczema, autoimmune hepatitis, idiopathic thrombocytopenia, and transplant 
 medicine.

Thiopurines therefore remain an important anticancer and immunosuppressive group 
of drugs. However, they are characterized by a complex metabolism and narrow therapeutic 
index that exposes patients to the risk of severe, potentially life-threatening side-effects (8, 9). 
Due to individual genetic or metabolic differences, the same dose may achieve the desired 
effect in one patient while provoking a serious adverse reaction in another (10, 11). Therefore, 
precise dosing is an important factor to consider when using them. To address this challenge, 
pharmacogenomic guidelines for thiopurine S-methyltransferase (TPMT) genetic polymor-
phisms and TPMT activity have been in place for more than a decade (12), while recent 
advances in genomics also include the determination of the most common genetic polymor-
phisms in nudix hydrolase 15 (NUDT15) (11). In addition, therapeutic drug monitoring that 
allows quantification of thiopurine metabolites, especially 6-thioguanine nucleotides (6-TGN) 
and 6-methylmercaptopurine (6-MMP), is an important component in the optimization of 
thiopurine treatment if there is no response to thiopurines and/or in case of side-effects 
 especially during IBD treatment (2, 13).

In this review, we highlight biomarkers for thiopurine therapy, namely, genetic polymor-
phisms in TPMT and NUDT15, and thiopurine metabolites. We first focus on the molecular 
basis of genotype-phenotype correlations and how these associations have led to well-estab-
lished guidelines for thiopurine dosing. We then describe methods and clinically validated 
analytical procedures for TPMT and NUDT15 genotyping, measurement of TPMT activity, 
and monitoring of thiopurine metabolites. Finally, we address future challenges, particularly 
in relation to clinical implementation, and what are the approaches to overcome them.

THIOPURINES

Treatment with thiopurines lasts from one to several years, primarily during the 
maintenance phases of ALL and IBD, with the aim of extending disease remission. The 
most common starting daily dose of 6-MP in the maintenance phase of ALL treatment is 
50 to 75 mg m–2 (1.5 to 2.5 mg kg–1), while IBD patients usually receive 1–3 mg kg–1 of AZA 
for maintaining remission (4, 14). The effectiveness of thiopurine treatment varies and 
depends on the type of disease and the age of patients. Due to a systematic approach to 
designing treatment protocols, the effectiveness in the field of ALL has increased from 
40 % in the mid-1960s (15) to over 90 % in the pediatric population in recent years (3, 16). 
Nevertheless, some studies report only a 35 % effectiveness rate for thiopurine treatment 
in IBD (17, 18). Up to 60 % of patients discontinue treatment due to severe adverse effects, 
such as hypersensitivity reactions, acute pancreatitis, gastrointestinal toxicity, leukopenia, 
hepatotoxicity, and infections, or non-response to thiopurines (19, 20).



357

D. Urbančič et al.: Personalization of thiopurine therapy: Current recommendations and future perspectives, Acta Pharm. 74 (2024) 
355–381.

 

Metabolic pathways

Thiopurines are antitumor and immunosuppressive prodrugs, that undergo complex 
metabolism involving both activation and deactivation pathways (Fig. 1). After oral admini-
stration, the conversion of thiopurines begins in the intestines and liver, where AZA is 
partially enzymatically cleaved by glutatione S-transferase (GST) forming methyl nitrothio-
imidazole and 6-MP. The latter may enter the activation pathway resulting in the produc-
tion of cytotoxic 6-TGN. This process starts with the attachment of ribosyl and phosphate 
groups to the purine moiety by hypoxanthine phosphoribosyltransferase (HPRT) and 
continues with an oxidative reaction catalyzed by inosine 5’-monophosphate dehydroge-
nase (IMPDH), which significantly influences the conversion rate to 6-TGN. The next step 
involves the conversion of the resulting 6-thioinosine monophosphate (TIMP) to 6-thiogua-
nosine monophosphate (TGMP) by guanosine 5’-monophosphate synthase (GMPS). This 
is followed by phosphorylation by kinases to 6-thioguanosine triphosphate (TGTP) (9). 
This latter step is opposed by dephosphorylation with the NUDT15 (21).

Apart from the activation, there are two deactivation pathways of thiopurines, involving 
TPMT and xanthine oxidase (XO) (9). As a liver enzyme, XO converts between 3 and 37 % of 
absorbed 6-MP into thiouric acid (10). The remainder of 6-MP then either enters the activation 

Fig. 1. Schematic presentation of thiopurine metabolism. 6-MP – 6-mercaptopurine, 6-MMP – 6-methyl-
mercaptopurine, 6-MTG – 6-methyltioguanine, 6-TG – 6-tioguanine, 6-TGN – 6-tioguanine nucleotides, 
ABC – ATP-binding cassette (transporters), AZA – azathioprine, GMPS – guanosine monophosphate 
synthetase, GST – glutatione S-transferase, HPRT – hypoxanthine-guanine phosphoribosyltransferase, 
IMPDH – inosine-5′-monophosphate dehydrogenase, ITPA – inosine triphosphate pyrophosphatase, 
MTIMP – methylthioinosine monophosphate, NUDT15 – nudix hydrolase 15, XO – xanthine oxidase, 
SLC – solute carrier (transporters), TIMP – thioinosine monophosphate, TGMP – thioguanosine mono-
phosphate, TGTP – thioguanosine triphosphate, TPMT – thiopurine S-methyltransferase, TXMP – thio-
xanthine monophosphate.
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pathway or is methylated by TPMT, resulting in the formation of 6-MMP. TPMT also partici-
pates in the methylation of some other 6-MP metabolites at various stages of the activation 
pathway (Fig. 1) (9). Namely, it is involved in the production of 6-methylthioinosine mono-
phosphate (MTIMP), which, alongside 6-TGN, exhibits pharmacological effects (22).

The activation and deactivation pathways for 6-TG are similar to the metabolism of 
6-MP but are less complex since 6-TG, unlike 6-MP, already holds a guanine structure. 
Only a one-step conversion by HPRT transforms 6-TG into cytotoxic 6-TGN (Fig. 1) (9). The 
oxidative deactivation of 6-TG by XO has not been fully elucidated. 6-TG is also deactivated 
by TPMT methylation; however, its methylated metabolites do not demonstrate pharma-
cological activity (23).

Mode of action

Due to its structural similarity to guanine, 6-TGN incorporates as a building block 
into nucleic acids; however, instead of participating in synthesis, it disrupts the function 
of DNA polymerase, and thereby arrests replication of DNA, causing DNA degradation 
(24). The activity of 6-TGN includes the direct inhibition of DNA polymerase and ligase, as 
well as the suppression of RNase H activity, leading to a termination in gene transcription 
(25). The disintegration of nucleic acids triggers apoptotic mechanisms and cell death. The 
cytostatic and immunosuppressive effects of thiopurines, specifically TGTP, are also 
achieved through the obstruction of CD28-dependent activation of Rac1, which directs T 
lymphocytes toward apoptosis (26). Additional activity of thiopurines is expressed by 
MTIMP. By inhibiting phosphoribosyl pyrophosphate amidotransferase, it suppresses de 
novo purine synthesis and thereby reduces the level of adenosine triphosphate (22). 
Another target effect of thiopurines is triggered by methyl nitrothioimidazole, a degrada-
tion product of AZA. Its immunosuppressive effect is associated with the inhibition of 
oxidative stress defense mechanisms, as it can reduce the concentration of glutathione in 
the cell (27).

Safety and efficacy of treatment with thiopurines

Among patients treated with thiopurines, the most common motives for discontinu-
ing therapy include hypersensitivity reactions, acute pancreatitis, gastrointestinal intole-
rance, myelotoxicity manifested as neutropenia, hepatotoxicity, and infections (28). Due to 
the potential mutagenic and carcinogenic activity of thiopurines, some patients who have 
successfully undergone treatment later reported developing secondary neoplasms, such 
as lymphoma, non-melanoma skin tumors, and chronic myeloid leukemia (29–31).

To ensure patient safety and efficacy of treatment with thiopurines, routine checks of 
the leukocyte levels and liver function through liver enzymes are mandatory during treat-
ment, usually every three months in patients with IBD (32) and every 8–12 weeks during 
maintenance treatment of ALL (33). Where available, the level of thiopurine metabolites in 
hemolysates is frequently monitored in patients unresponsive to treatment or in indivi-
duals exhibiting side-effects (2, 13, 34–36). Levels of 6-TGN in the range of 235 to 450 
pmol/8×108 red blood cells (RBC) in patients with IBD predict successful treatment (37). 
6-TGN levels lower than 235 pmol/8×108 RBC are associated with non-responsiveness to 
therapy or indicate non-compliance (38, 39). Levels of 6-TGN higher than 450 pmol/8×108 
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RBC are associated with an increased risk of adverse effects (40, 41). Significantly elevated 
methylated thiopurine metabolites – 6-MMP > 5700 pmol/8×108 RBC, indicate a higher risk 
for liver toxicity, although monitoring 6-MMP alone is insufficient for predicting hepato-
toxicity (4, 37, 42). A high ratio of 6-MMP to 6-TGN has proven useful, especially for detect-
ing non-responders or shunters, a subgroup of patients, that excessively produce 6-MMP 
instead of 6-TGN.

PHARMACOGENOMIC DETERMINANTS OF THIOPURINE METABOLISM

Alongside the nature of the disease, inherited predisposition significantly influences 
the acute onset of adverse effects, disease relapse, adverse effects that occur years after 
completion of therapy, and non-response to thiopurines. Genetic polymorphisms are one 
of the factors that can lead to insufficient efficacy and decreased safety of the drug when 
different individuals are exposed to the same dose (45). Clinical and translational studies 
have identified a number of polymorphisms affecting the clinical response to thiopurines, 
correlating with their efficacy, toxicity, or resistance to such treatment (8). However, only 
variants in TPMT and NUDT15 have been translated into clinical practice (11). We high-
light these two genes and their implication in thiopurine therapy in the following sections.

Thiopurine S-methyltransferase

Thiopurine S-methyltransferase (TPMT) is a cytosolic enzyme that catalyzes the 
S-methylation of aromatic and heteroaromatic sulfhydryl compounds, with the methyl 
group being donated by the co-factor S-adenosyl methionine (SAM) (46, 47). The reaction, 
which presumably follows the classic nucleophilic substitution (SN2) mechanism (48), 
results in the formation of a methylated substrate and S-adenosyl homocysteine (SAH) 
(46). SAM serves not only as a methyl donor but also stabilizes TPMT, preserving its enzy-
matic activity, which was highlighted in our previous studies (49, 50). The gene encoding 
this protein is located on chromosome 6 at locus 6p22.3. The gene spans over 34 kb and 
consists of 9 exons, of which 8 code for the protein (51). In the human genome, pseudogenes 
for TPMT are located on chromosomes 18 and X (51).

Currently, 46 different single nucleotide polymorphisms (SNPs) as well as deletions of 
smaller gene fragments are known in the exonic or intronic region (52, 53). In addition to 
the SNPs, individuals also differ in the sequence of the TPMT promoter region with a G/C- 
-rich variable number of tandem repeats (VNTRs), which are evolutionarily related to the 
most common SNPs (54). Due to their impact on enzyme activity and their significant 
frequency, the most important genetic polymorphisms are TPMT*3A, TPMT*3C, and 
TPMT*2 (55–58). In these polymorphisms, a change in one nucleotide leads to a protein 
with an altered amino acid sequence, resulting in incorrect folding and faster degradation 
of TPMT (59). Consequently, the activity of TPMT corresponds to the individual's geno-
type, where individuals with wild-type TPMT have normal TPMT activity, heterozygous 
individuals have intermediate TPMT activity, and individuals carrying both variant alleles 
express TPMT with barely detectable enzymatic activity (58). In the European population, 
about 89 % of individuals have normal TPMT activity, 11 % have reduced TPMT activity, 
and around 0.3 % have very low TPMT activity (10, 58). However, the distribution of 
 activities in individuals with the wild-type genotype is relatively wide, meaning that the 
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genotype of the most common polymorphisms does not perfectly explain the phenotype 
and that there are other genetic or non-genetic factors that additionally influence TPMT 
activity (60).

Nudix hydrolase 15

Nudix hydrolase 15 (NUDT15) is an enzyme that belongs to the nudix hydrolase 
 family of enzymes encoded by 24 genes on the human genome, which contains also at least 
5 pseudogenes (61). These enzymes catalyze the hydrolysis of substrates with a general 
nucleoside diphosphate structure linked to another moiety, such as canonical and oxi-
dized derivatives of (d)NTPs, nucleotide sugars, and dinucleotide polyphosphates. They 
share an evolutionary conserved domain named NUDIX box consisting of 23 amino acids, 
among which glutamic acid residues bind divalent cations, while other amino acids con-
tribute to substrate specificity (61). In vitro studies have shown that NUDT15 preferentially 
hydrolyses 6-thio-deoxyguanosine triphosphate (6-TdGTP) and TGTP, the active metabo-
lites of thiopurines, and negatively affects their desired cytotoxic and immunosuppressive 
effects, as well as increases the risk of thiopurine-related toxicities (62). Spanning over 
15,030 base pairs on chromosome 13, the NUDT15 gene has 3 exons and corresponding 
intronic regions (63). The first association of NUDT15 variant (rs116855232) with thiopu-
rine-induced toxicity came from a GWAS conducted in Korean patients with IBD (64) and 
was later confirmed in several other studies in patients with IBD and ALL (21, 65, 66). The 
identified missense variant c.415C>T, which results in a p.Arg139Cys change which leads 
to decreased enzyme activity, is present in NUDT15*2 and NUDT15*3 alleles. To date, 
several other variants have been identified and 20 different NUDT15 alleles together with 
additional 7 suballeles have been reported in the Pharmacogene variant consortium data-
base (67). Based on in vitro activity data or in silico prediction, alleles are divided into those 
having a normal function (NUDT15*1 and it's 7 suballeles), alleles with severely decreased 
enzyme activity (NUDT15*2 - *9), alleles with no function (NUDT15*10, *13, *14, *17, *18 
and *19) and alleles with unknown function (NUDT15*11, *12, *15, *16 and *20) (68).

Clinical implications and guidelines in thiopurine pharmacogenomics

Three TPMT alleles (TPMT*2, TPMT*3A, and TPMT*3C) constitute 90 % of cases of 
reduced activity phenotypes in individuals of European origin (10, 58, 69). As the presence 
of these alleles affects TPMT activity, poor TPMT metabolizers convert more thiopurines 
to the active 6-TGN, thus increasing the risk for drug toxicity, such as bone marrow sup-
pression, severe gastric intolerance, and susceptibility to infections (70, 71). Similarly, indi-
viduals with genetic polymorphisms NUDT15*2, NUDT15*3, and NUDT15*9 exhibit 
lower NUDT15 activity and a higher risk for drug toxicity when treated with thiopurines 
(21, 69). Therefore, thiopurines require tailored dosing strategies based on TPMT and 
NUDT15 genetic variability. Genotyping of TPMT and NUDT15 prior to treatment can 
mitigate adverse thiopurine effects such as myelosuppression and leukopenia, without 
compromising the disease’s relapse rate (72–74).

International expert panels from the field of pharmacogenomics – Clinical Pharma co-
genetics Implementation Consortium (CPIC), Dutch Pharmacogenetics Working Group 
(DPWG), and Canadian Pharmacogenomics Network for Drug Safety (CPNDS), have been 
established to consolidate information on how genetic polymorphisms impact treatment (11, 
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75, 76). These organizations have developed recommendations and pharmacogenomic 
guidelines for dosing of currently slightly less than 200 drugs, including thiopurines (75). 
Based on the functional impact of the variant alleles, minor allele frequencies in multiethnic 
populations, the availability of reference materials, and the feasibility for laboratories to test 
using standard methods, genetic polymorphisms in TPMT and NUDT15 can be classified 
into two Tiers (77). Tier 1 variant alleles include TPMT*2, TPMT*3A, TPMT*3B, TPMT*3C, 
and NUDT15*3, as they strongly affect enzyme activity, are tested by standard methods, and 
account for > 90 % or >50 % of the reported variant alleles, in TPMT or NUDT15, resp. Tier 2 
includes other variant alleles in TPMT and NUDT15 that are less frequent with less defined 
molecular mechanisms or difficulty to test for them by standard methods (77).

According to the presence of Tier 1 genetic polymorphisms in TPMT in NUDT15, 
guidelines classify individuals as normal metabolizers with two functional (non-variant) 
alleles, intermediate metabolizers with one functional and one non-functional (variant) 
allele, and poor metabolizers with two non-functional (variant) alleles in respective genes. 
CPIC guidelines further classify individuals with one allele of uncertain function and one 
non-functional allele (i.e., TPMT*2/TPMT*8, TPMT*3A/TPMT*7, NUDT15*2/NUDT15*5, 
and NUDT*3/NUDT15*6) as possible intermediate metabolizers. According to guidelines 
(Table I), normal metabolizers should start with standard thiopurine doses, while interme-
diate metabolizers and possible intermediate metabolizers for either of the enzymes, 
should receive 30–80 % or 50–80 % of standard AZA/6-MP or 6-TG dose, resp. Poor metabo-
lizers, diagnosed with malignancies, should start 6-MP at doses reduced by 10-fold thrice 
weekly, whereas in non-malignant cases it is suggested to consider alternative treatments 
to AZA. Alternative treatment is recommended also for poor metabolizers receiving 6-TG. 
In patients who are poor metabolizers due to the double variant NUDT15*3 genotype, 25 % 
of the 6-TG normal dose is recommended for malignancies. Additional guidelines refer to 
patients who are intermediate metabolizers for both enzymes (TPMT and NUDT15) (11, 
78–80). Such patients are suggested to start with a 20–50 % reduction of the thiopurine 
standard dose at the beginning of the treatment, followed by potential further dose adjust-
ments based on the severity of myelosuppression (81).

Guidelines issued by various working groups exhibit minor discrepancies. For 
instance, according to the DPWG guidelines, dose reduction is not required for intermedi-
ate metabolizers of 6-MP or AZA when they are used to achieve immunosuppression, 
provided the initial dose does not exceed 1.5 mg kg–1 for AZA or 0.75 mg kg–1 per day for 
6-MP. Additionally, the DPWG guidelines propose different dosing recommendations for 
6-TG, according to the presence of genetic polymorphisms in TPMT or NUDT15. Dosing 
recommendations for thiopurines are summarized in Table I (75).

One of the risks associated with TPMT and NUDT15 genotyping before prescribing 
thiopurines is the possibility of underdosing, as not all intermediate metabolizers experi-
ence myelosuppression at standard doses of thiopurines (82). Therefore, the guidelines 
also recommend monitoring the efficacy of thiopurine treatment and further adjusting the 
dose once the steady state is reached and according to routinely monitored clinical param-
eters such as leukocyte count (11, 75, 77).

Besides TPMT genotype tests, certain clinical laboratories offer also TPMT activity 
determination. Measuring TPMT activity has the advantage of identifying patients with 
high TPMT activity, and those who have low TPMT activity on account of other non-Tier 
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1 genetic polymorphisms. Assays for 
testing NUDT15 enzyme activity are 
usually not integrated into clinical prac-
tice (77, 83).

Countries like the US, Canada, the 
UK, The Netherlands, France, Belgium, 
Spain, Australia, and New Zealand, 
highly recommend TPMT and NUDT15 
genotyping prior to treatment, due to 
their significant association with treat-
ment outcomes (84–86). Additionally, St. 
Jude Children's Research Hospital is 
currently conducting a clinical trial 
entitled "Total Therapy XVII for Newly 
Diagnosed Patients with Acute Lympho-
blastic Leukemia and Lymphoma", employ-
ing precision medicine strategies based 
on genomic features to improve cure 
rates and quality of life for children 
with ALL, highlighting the forever 
evolving importance of precision medi-
cine (87).

ANALYTICAL METHODS FOR INDIVIDU-
ALIZATION OF THIOPURINE THERAPY

Determination of TPMT and  
NUDT15 genotypes

Research studies that reported 
TPMT and NUDT15 genotyping, em ploy 
mainly targeted variant analysis by dif-
ferent DNA amplification methods, 
including polymerase chain reaction 
(PCR), allele-specific PCR, PCR-single 
strand conformation polymorphism 
(PCR-SSCP), denaturing HPLC (DHPLC), 
TaqMan genotyping, direct (Sanger) 
sequencing, restriction fragment length 
polymorphism (RFLP), multiplex ampli-
fication refractory mutation (ARMS) 
and KASP genotyping (88). Some pro-
viders of clinical tests offer also larger 
sets of analyses, simultaneously detecting 
several different genetic polymorphisms. 
These panels include methodologies 
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such as microarrays, pyrosequencing, and next-generation sequencing (e.g., massively 
 parallel sequencing). As of now, the National Library of Medicine under the Genetic 
Testing Registry lists 71 centers, that provide genetic testing for thiopurines, that are 
located in the United States, Spain, Portugal, Germany, India, Turkey, Canada, Finland, 
Slovakia, Austria, Netherlands and South Korea (89).

Measurements of TPMT and NUDT15 activity

Numerous methods have been developed for the determination of TPMT activity. The 
enzymatic activity of TPMT can be monitored by detecting the formation of methylated 
products or through the consumption of the methyl donor SAM. The first step in TPMT 
activity assessment is the incubation of hemolysate or lysate of peripheral blood mononu-
clear cells with a substrate, 6-MP or 6-TG, and a methyl group donor, SAM. Upon incuba-
tion, a methylated product is formed and a methyl donor is consumed. The SAM con-
sumed, or methylated products, 6-MMP or 6-MTG, can be detected in various ways. The 
enzyme activity is usually normalized and reported in terms of either hemoglobin content, 
packed red cells, erythrocyte count, or protein content.

The first methods for TPMT activity measurement evolved in the late 1970s and 1990s. 
These were radiochemical methods that measured the conversion of 6-MP to radioactively 
labeled 6-MMP, using C14- or H3-labelled-SAM (90–92). At the beginning of the 21st century, 
a rapid immunoassay for TPMT was invented, using an antibody specific for the methylated 
product, 6-MMP, that was attached to the sample well (Patent, WO 03/076894 A2). Another 
immunochemical assay was an ELISA-based assay for measuring TPMT activity (93). 
However, most methods currently used to assess TPMT activity use high-performance 
 liquid chromatography (HPLC) and liquid chromatography coupled with tandem mass 
spectrometry (LC-MS/MS) (58, 60, 94–97) The former methods exploit the absorbance of 
6-MMP or the fluorescence of 6-MTG. LC-MS/MS methods have been developed to deter-
mine TPMT activity with high specificity and lower limits of detection as well as shorter 
analysis time (97). Specificities and sensitivities of TPMT activity tests to detect heterozygous 
or homozygous individuals range from 90.9–100.0 % and 13.4–100.0 %, resp. (88).

Thiopurine metabolite measurements

The metabolism of 6-MP is complex, involving numerous enzymes (8). This results in 
many metabolites, among which 6-TGNs and 6-MMP are the most significant. Monitoring 
the levels of these metabolites to enhance the efficacy of therapy and reduce adverse effects 
has been proven useful, especially in the treatment of autoimmune disorders (4, 98–100). 
Measuring the 6-TGNs and 6-MMP metabolites in erythrocytes facilitates dose adjust-
ments for patients receiving the drug (32), as several clinical studies demonstrated a cor-
relation between the levels of 6-TGN and the efficacy of therapy, as well as a correlation 
between the levels of 6-MMP and certain toxic effects (2, 13, 34–36).

Measurement of intracellular levels of thiopurine nucleotides in erythrocytes is usu-
ally assessed by chromatographic methods. Most of the analytical methods measure thio-
purine metabolites in erythrocytes (101–103); however, methods using whole blood (104) 
and a dry blood spot (105) were also developed. The hemolysates from whole blood sam-
ples should be prepared as soon as possible, due to limited stability, especially of 6-TGN 
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(105–108). The stability of thiopurine metabolites is enhanced if the blood is spotted on 
appropriate filter papers and dried out completely (105).

After preparation, samples are separated and thiopurines are detected using HPLC- 
or UPLC-MS/MS methods (101–105, 109). The HPLC-UV method, compared to the LC-MS/
MS method, is less expensive but requires more time for analysis and uses larger quanti-
ties of the mobile phase. The advantages of the LC-MS/MS method include shorter time of 
sample analysis and improved specificity, accuracy, and sensitivity (44).

FUTURE PERSPECTIVES

All three approaches, pharmacogenetics, phenotyping, and therapeutic drug moni-
toring, are complementary and exhibit great potential to significantly improve patient care 
by predicting and preventing adverse drug reactions. However, the extent of the imple-
mentation of different strategies for individualization of thiopurine dosing varies between 
different regions and different medical specialties and is difficult to estimate due to the 
lack of studies. It ranges from 67 % in the UK to 43 % globally (110), from 94 % in derma-
tology, 50 % in gastroenterology to 20 % in other immune-related conditions (110, 111). 
Some studies report that the patients are more likely to have their TPMT phenotype deter-
mined, compared to the TPMT genotype (112). However, due to the lack of studies, it is 
hard to define the exact extent of the use of TPMT activity measurements.

A recent systematic review of the cost-effectiveness of pharmacogenomics found that of 
11 studies examining the pharmacoeconomic impact of these tests, eight demonstrated 
cost-effectiveness or even cost-savings associated with pharmacogenomic testing in thiopu-
rine therapy (113). However, to improve the implementation of TPMT and NUDT15 testing 
prior to treatment initiation, evidently several challenges need to be overcome. These include 
the need for multidisciplinary teams consisting of physicians, pharmacists, and other 
healthcare professionals to work together, all of whom need to be trained in the pharmaco-
genomic intricacies. In addition, the integration of pharmacogenomic data into electronic 
health records and decision support systems is essential for an efficient workflow but 
requires significant resources. The issue of reimbursement and the high costs associated 
with genetic testing are significant barriers, especially in less affluent regions. Finally, stan-
dardization is critical to ensure consistent and reliable pharmacogenomic practices.

Demand for population-specific guidelines

The need for population-specific pharmacogenomic guidelines for thiopurine treat-
ment is particularly emphasized by the different allele frequencies of genetic polymor-
phisms in genes such as TPMT and NUDT15 in different populations (Table II). The preva-
lence of TPMT and NUDT15 polymorphisms affecting thiopurine metabolism and toxicity 
varies widely among Caucasians, Asians, and Africans (114, 115). According to guidelines, 
NUDT15 genotyping is more relevant for individuals of East Asian and Hispanic descent 
with Native American ancestry, whereas TPMT genotyping is important among European 
and African populations (66).

Additionally, certain populations may be under-researched, so we may lack informa-
tion on important genetic variants that influence the efficacy of thiopurines and the risk 
of adverse effects. Consequently, research findings from one population may not be 
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Table II. Frequencies of TPMT and NUDT15 variant alleles in biogeographical groups, based on joint 
consensus of AMP, CPIC, CAP, DPWG, ESPPT, PharmGKB for Tier 1 (TPMT*2, TPMT*3A, TPMT*3B, 

TPMT*3C, NUDT15*3) and Tier 2 (TPMT*11, TPMT*29, TPMT*42, NUDT15*2, NUDT15*4, 
NUDT15*6, NUDT15*9, NUDT15*14) (75, 77, 116, 117)

Gene Allele Clinical 
function

Nucleotide 
change

Amino acid 
change

Common population  
frequencies

TIER1
TPMT TPMT*2

rs1800462
No function c.238G>C p.Ala80Pro European: 0.24 %

African: 0.04 % 
East Asian: 0.01 %
Central/South Asian: 0.00 %
Latino: 0.41 %

TPMT*3A
rs1800460
rs1142345

No function c.460G>A
and
c.719A>G

p.Ala154Thr
and
p.Tyr240Cys

European: 3.82 % 
African: 0.65 % 
East Asian:0.07 %
Central/South Asian: 0.47 %
Latino: 3.93 %

TPMT*3B
rs1800460

No function c.460G>A p.Ala154Thr European: 0.00 % 
African: 0.00 %
East Asian: 0.00 %
Central/South Asian: 0.00 %
Latino: 0.01 %

TPMT*3C
rs1142345

No function c.719A>G p.Tyr240Cys European: 0.43 %
African: 4.84 % 
East Asian: 1.99 %
Central/South Asian: 1.09 %
Latino: 0.89 % 

NUDT15 NUDT15*3 No function c.415C>T p.Arg139Cys European: 0.30 %
African: 0.06 %
East Asian: 5.81 %
Central/South Asian: 6.17 %
Latino: 0.36 %

TIER 2
TPMT TPMT*11

rs72552738
Decreased 
function

719A>G Asn240Asp European: < 0.01 %
African: 0.00 %
East Asian: 0.00 %
Central/South Asian: 0.00 %
Latino: 0.00 %

TPMT*29
rs267607275

Decreased 
function

719A>G Asn240Asp European: 0.00 %
African: 0.00 %
East Asian: 0.01 %
Central/South Asian: < 0.01 %
Latino: 0.00 %

TPMT*42
rs759836180

Decreased 
function

719A>G Asn240Asp European: < 0.01 %
African: 0.00 %
East Asian: 0.00 %
Central/South Asian: 0.00 %
Latino: 0.00 %



366

D. Urbančič et al.: Personalization of thiopurine therapy: Current recommendations and future perspectives, Acta Pharm. 74 (2024) 
355–381.

 

Gene Allele Clinical 
function

Nucleotide 
change

Amino acid 
change

Common population  
frequencies

NUDT15 NUDT15*2 No function c.415C>T p.Arg139Cys European: 0.01 %
African: 0.05 %
East Asian: 3.6 %
Central/South Asian: 0.06 %
Latino: 3.76 %

NUDT15*4 Uncertain 
function

c.416G>A p.Arg139His European: 0.01 %
African: 0.03 %
East Asian: 0.08 %
Central/South Asian: 0.02 %
Latino: 1.25 %

NUDT15*6 Uncertain 
function

c.50_55dup p.Gly17_
Val18dup

European: 0.28 %
African: 0.21 %
East Asian: 1.08 %
Central/South Asian: 0.13 %
Latino: 0.14 %

NUDT15*9 No function c.50_55del p.Gly17_
Val18del

European: 0.2 %
African: 0.03 %
East Asian: 0.00 %
Central/South Asian: 0.04 %
Latino: 0.08 %

NUDT15*14 Not 
assigned

415C>T Arg139Cys European: 0.01 %
African: 0.00 %
East Asian: 0.00 %
Central/South Asian: 0.00 %
Latino: 0.00 %

NUDT15 – nudix hydroase 15, TPMT – thiopurine S-methyltransferase; bold – populations with the allele frequency 
higher than 1 %.

directly applicable to another, underscoring the importance of complementary studies and 
the development of tailored pharmacogenomic guidelines to optimize therapeutic out-
comes, minimize toxicity, and improve the efficacy of thiopurine therapy.

Emerging research in the field of thiopurine pharmacogenomics
The genetic polymorphisms in TPMT and NUDT15 listed in Table I are the only vari-

ants clinically annotated with the highest level of evidence for pharmacogenetic testing (11, 
77). However, the incomplete concordance between TPMT and NUDT15 genotype or acti-
vity and response to thiopurines made it necessary to expand the portfolio of new biomarkers 
that could be used for individualization of thiopurine therapy (60). It was recognized that 
other genetic traits, such as genetic polymorphisms in PACSIN2, ITPA, ABCC4, MTHFR, 
NT5C2, SLC291A, and SLC28A3, influence the efficacy and safety of thiopurines.

PACSIN2 encodes a protein involved in linking the actin cytoskeleton to vesicle for-
mation by regulating tubulin polymerization (118) and regulation of the migration behav-
ior of malignant cells (119). In ALL patients, the homozygous genotype (TT) of the variant 

Table II. Continued
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rs2413739 (C>T) in the intronic region of PACSIN2 was associated with lower TPMT acti-
vity compared to patients without this change (120, 121). The modulation of TPMT activity 
by PACSIN2 has also been validated in in vitro studies (120). The TT genotype for rs2413739 
in PACSIN2 has been associated with thiopurine-related hematotoxicity, hepatotoxicity, 
and gastrointestinal toxicity, particularly in patients with ALL (120–122); however, the 
mechanism of interaction between PACSIN2 and TPMT is not yet fully understood.

The nucleotidase NT5C2 dephosphorylates purine monophosphate nucleotides and 
is important for cellular nucleic acid homeostasis. The NT5C2 variant has been identified 
as one of the most common genomic lesions specific for relapsed ALL and has been directly 
linked to thiopurine resistance (123–126). Germline mutations (rs72846714) (124, 125) and 
acquired somatic mutations (127) were associated with an increased incidence of relapse 
in ALL patients.

Another candidate considered as a potential pharmacogenetic marker that may influ-
ence metabolism and 6-MP-induced toxicities is inosine triphosphate pyrophosphatase 
(ITPA); however, results correlating its genetic polymorphisms with thiopurine outcome 
in ALL or IBD patients are inconsistent. The results of a recent meta-analysis examining 
ITPA polymorphisms and response to thiopurine in ALL patients show that ITPA 94C>A 
(rs1127354) is associated with 6-MP-induced neutropenia and hepatotoxicity, but not leuko-
penia (128). Results in IBD study cohorts are even more inconclusive, with many studies, 
including meta-analyses, finding no association between ITPA genotype and the develop-
ment of thiopurine toxicity (129–133). Due to the involvement of the enzyme in thiopurine 
metabolism, certain ITPA variants (rs6139036, rs1127354) have been reported to affect the 
metabolic profile of thiopurines (134, 135). The differences in the results of these studies 
may arise from the different settings of the studies, including population characteristics 
(130, 131, 133, 136, 137) and the co-occurrence of polymorphisms in TPMT and NUDT15 
(138). It has been suggested that the ITPA genotype could serve as a genetic marker for 
improving risk stratification and therapy individualization in patients with ALL (139).

In addition to genetic biomarkers, metabolic factors have been shown to regulate TPMT 
activity and consequently could influence thiopurine treatment. Besides its methylation 
function, SAM plays a crucial role in stabilizing enzymes, and one of them is TPMT (140, 
141). In experimental assays, the supplementation with SAM stabilizes TPMT posttransla-
tionally and prevents degradation of variant TPMT (49, 141). Consequently, cells, such as 
MOLT lymphoblasts, cultured under conditions without SAM show significantly lower 
TPMT activity (142). Our previous findings further show, that TPMT activity measured in 
hemolysates positively correlates with the concentration of this cofactor (49, 50). Therefore, 
the measurement of SAM could contribute to the fine-tuning of thiopurine dosing.

Increased toxicity of thiopurines in patients with ALL has also been associated with 
polymorphisms that reduce the activity of methylenetetrahydrofolate reductase (MTHFR) 
(71). Considering the significant involvement of this enzyme in the formation and regula-
tion of SAM, this information indicates that folate metabolism is a potential factor influ-
encing the outcome of thiopurine treatment. The involvement of the folate cycle in TPMT 
activity and subsequently in the response to thiopurines has also been suggested by 
genetic polymorphisms in the thymidylate synthase (TYMS) gene (143). These polymor-
phisms may not only affect TPMT activity but have also been significantly associated with 
an increased risk of developing lymphopenia in patients with inflammatory bowel disease 
treated with thiopurines (144).
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New technological advances in genetic testing

Recent advances in genetic testing technologies will have a significant impact on phar-
macogenomics. The transition from targeted variant analysis to comprehensive pharmaco-
genomic panels has already enabled the simultaneous examination of multiple genetic mark-
ers in different genes, supporting precise drug therapy. Genes involved in the thiopurine 
response, in particular TPMT, NUDT15, and NT5C2, are included in several pharmaco-
genomic panels as well as panels for hematologic and solid tumor and cancer genomic profil-
ing offered by different providers of genetic testing around the world (89, 145). The introduc-
tion of pharmacogenomic panels (passports) can greatly facilitate personalized medicine 
and adjust drug selection and dosing to optimize therapeutic outcomes and minimize 
adverse effects (146, 147). However, the clinical implementation of pharmacogenomics is 
fraught with challenges, including the complexity of interpreting extensive genetic data, the 
need for robust clinical guidelines to use this information effectively, concerns about the 
privacy and security of sensitive genetic information, and regulatory and reimbursement 
considerations (144, 148, 149). Improvements in analytical methods, software development, 
and artificial intelligence are likely to increase the functionality and consequently the use of 
such panels to better and more easily predict drug response (150).

Integrated approaches

Ideally, a futuristic projection on the future prospects of thiopurine therapy would 
involve an integrative approach in pharmacogenomics that comprehensively brings 
together multiple factors to personalize thiopurine dose adjustment. In addition to genetic 
variations in TPMT, NUDT15, and other genes mentioned above, these approaches would 
include environmental factors, patient characteristics such as age and comorbidities, 
co-therapy, and the metabolomic profile that includes thiopurine metabolite levels and 
other biochemical markers such as SAM and possibly folate cycle metabolites. Specific 
emphasis should be given to drug-drug interactions, as complex thiopurine metabolic 
pathways offer many targets for concomitantly used drugs. Among them, non-steroid 
anti-inflammatory drugs, furosemide, and sulfasalazine were reported to even inhibit 
TPMT (151–153). One of the most studied examples of interaction with thiopurines is allo-
purinol, which enhances thiopurine efficacy and is already applied together with thiopu-
rines to treat refractory examples of IBD and ALL (154–156). The integration of these vari-
ous data can be facilitated by sophisticated algorithms or predictive models that summarize 
and analyze the information to recommend optimized dosing regimens. Steps have 
already been taken toward such predictive models (157–160); however, the cost-effective-
ness of such approaches has to be evaluated.

CONCLUSIONS

Pharmacogenomics and therapeutic drug monitoring (TDM) have greatly improved 
patient care in thiopurine therapy, addressing individual variability in efficacy and safety. 
Pharmacogenomics guidelines in personalized dosing by identifying TPMT and NUDT15 
genetic variants reduce adverse reactions and optimize outcomes of thiopurine therapy. 
Risk prediction via pharmacogenomics and enzyme activity assessment enables proactive 
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measures to prevent adverse drug reactions, while TDM ensures optimal drug levels, 
adjusting dosages based on individual factors. Emerging research in thiopurine pharmaco-
genomics, together with novel technological approaches in genetic testing, forecasts a new 
era of precision medicine where treatment is increasingly improved by the comprehensive 
integration of different data points. As the field continues to evolve, it is crucial to include 
these innovations, translating the knowledge into actionable strategies that refine patient 
treatment and elevate the standard of care in medical settings where thiopurines play a 
critical role.

Acronyms, abbreviations, symbols. – 6-MP – 6-mercaptopurine, 6-MMP – 6-methylmercaptopurine, 
6-TdGTP – 6-thiodeoxyguanosine triphosphate, 6-TG – 6-thioguanine, 6-TGN – 6-thioguanine nucleo-
tides, ALL – acute lymphoblastic leukemia, ARMS – multiplex amplification refractory mutation, AZA 
– azathioprine, CPIC – Clinical Pharmacogenetics Implementation Consortium, CPNDS – Canadian 
Pharmacogenomics Network for Drug Safety, DHPLC – denaturing HPLC, DPWG – Dutch Pharmaco-
genetics Working Group, GMPS – guanosine 5’-monophosphate synthase, HPLC – high-performance 
liquid chromatography, HPRT – hypoxanthine phosphoribosyltransferase, IBD – inflammatory bowel 
disease, IMPDH – inosine 5’-monophosphate dehydrogenase, ITPA – inosine triphosphate pyrophos-
phatase, LC-MS/MS – liquid chromatography coupled with tandem mass spectrometry, MTHFR – 
methylenetetrahydrofolate reductase, MTIMP – 6-methylthioinosine monophosphate, NT5C – nucleo-
tidase, NUDT15 – nudix hydrolase 15, PCR – polymerase chain reaction, PCR-SSCP – PCR-single strand 
conformation polymorphism, RFLP – restriction fragment length polymorphism, SAM – S-adenosyl 
methionine, SNP – single nucleotide polymorphism, TDM – therapeutic drug monitoring, TGMP – 
6-thioguanosine monophosphate, TGTP – 6-thioguanosine triphosphate, TIMP – 6-thio inosine mono-
phosphate, TPMT – thiopurine S-methyltransferase, TYMS – thymidylate  synthase, VNTRs – variable 
number of tandem repeats, XO – xanthine oxidase
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