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ABSTRACT
Wildfires profoundly impact ecosystems and soil organic matter (SOM), a critical factor in soil quality and carbon 

cycling. This research aimed to assess the impact of wildfire severity on SOM and the potential of visible-near infrared 
spectroscopy (VNIR) spanning the 350 - 1050 nm wavelength range for monitoring SOM in a post-fire landscape using 
two modelling approaches (i) Partial Least Squares Regression (PLSR) and (ii) Artificial Neural Networks (ANN). Following 
a comprehensive two-year investigation in Zadar County, Croatia, where a 13.5 ha mixed forest was moderately to 
severely affected by a wildfire, spectral reflectance analysis revealed that SOM content strongly influenced soil 
reflectance. High-severity samples exhibited the lowest reflectance compared to those with moderate severity and 
the control group. The critical region for SOM information in post-wildfire soil estimation models was between 550 
and 700 nm. ANN consistently outperformed PLSR, achieving a ratio of performance to deviation (RPD) values from 
1.74 to > 2.5. In contrast, PLSR achieved values between 1.62 and 2.29, demonstrating ANN's capability to provide 
accurate predictions of SOM content in complex post-fire SOM dynamics conditions. This research indicates that VNIR 
spectroscopy, particularly coupled with ANN-based models, offers a reliable and non-destructive method for assessing 
SOM content in post-fire environments, facilitating informed land management decisions for ecosystem recovery.
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SAŽETAK
Šumski požari imaju dubok utjecaj na ekosustave i organsku tvar tla (eng. SOM), ključni čimbenik kvalitete tla i kruženju 

ugljika. Cilj ovog istraživanja bio je procijeniti utjecaj jačine šumskog požara na SOM i potencijal vidljivo-blisko infracrvene 
spektroskopije (eng. VNIR) koja obuhvaća raspon valnih duljina 350 - 1050 nm za praćenje SOM nakon požara koristeći 
dva pristupa modeliranju (i) Parcijalna regresija najmanjih kvadrata (PLSR) i (ii) Umjetne neuronske mreže (ANN). Nakon 
sveobuhvatnog dvogodišnjeg istraživanja u Zadarskoj županiji u Hrvatskoj, gdje je 13,5 ha mješovite šume bilo umjereno 
do jako pogođeno šumskim požarom, analiza spektralne refleksije otkrila je da sadržaj SOM snažno utječe na refleksiju 
tla. Uzorci visoke jačine pokazali su najnižu refleksiju u usporedbi s onima s umjerenom jačinom i kontrolnom skupinom. 
Utvrđeno je da je kritično područje za informacije o SOM u modelima procjene tla nakon požara između 550 i 700 nm. 
ANN je dosljedno nadmašivao PLSR, postigavši vrijednosti omjera performansi i odstupanja (eng. RPD) od 1,74 do > 2,5, 
dok je PLSR postigao vrijednosti između 1,62 i 2,29, pokazujući sposobnost ANN-a da pruži točna predviđanja sadržaja 
SOM-a u uvjetima složene dinamike SOM-a nakon požara. Rezultati ovog istraživanja pokazuju da VNIR spektroskopija, 
posebno u kombinaciji s modelima temeljenim na ANN-u, nudi pouzdanu i nedestruktivnu metodu za procjenu sadržaja 
SOM nakon požara, olakšavajući informirane odluke o upravljanju zemljištem za oporavak ekosustava..

Ključne riječi: šumski požar, hiperspektralni podaci, linearno modeliranje, nelinearno modeliranje
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INTRODUCTION 

Increasing problems at the global level, such as 
unsustainable land management (land-use change, 
wetland drainage, lack of forest management) and 
climate change (more frequent weather extremes, higher 
temperatures, prolonged droughts), are leading to an 
increase in catastrophic wildfires (Kisić et al., 2023; Ali et 
al., 2022; Turco et al., 2014). According to the Croatian Fire 
Brigade (2022), Croatia experienced a 12.11% increase 
in burned area in 2021, with 37,340 hectares burned, 
compared to the average from 2011 to 2020. Additionally, 
in the Mediterranean region of Croatia, the burned area 
index (the ratio of the burned area to the number of fires) 
increased by 1.34% in the same year. The increase is to the 
general predictions that higher temperatures and dryness 
caused by the variable climatic conditions in this area will 
create more favourable conditions for the emergence and 
rapid spread of wildfires in the future (DHMZ - Croatian 
Meteorological and Hydrological Service, 2013). 

Although wildfires of low intensity and severity 
are part of the natural dynamics of the Mediterranean 
ecosystem, the recorded more severe wildfires caused 
by anthropogenic influences and climate change have 
damaging, often long-lasting, effects on the environment 
and particularly on soil (Grillakis et al., 2022; Pereira et 
al., 2019). 

High-severity wildfires can cause permanent 
environmental change, for example, from high-value 
forests to shrubs, a process which is triggered by post-fire 
soil erosion (Francos et al., 2018; Sheridan et al., 2018; 
Verma and Jayakumar, 2015). Additionally, long-term 
changes include disturbances in soil functions crucial for 
the survival of the biosphere, such as reduction of nutrient 
storage capacity, alterations of nutrient cycles, triggering 
the process of desertification, and modification of organic 
matter – a key indicator of soil quality (Jiménez-González 
et al., 2016; Shakesby, 2011; DeBano et al., 1998). 

In recent years, the potential of spectral data obtained 
via field spectroscopy has been explored in soil research, 
monitoring, and mapping (Šestak et al., 2022; Gholizadeh 
et al., 2018a). Soil spectroscopy is recognised as a fast, 

non-destructive and simple analytical method and a 
tool for comprehensive soil research, which enables the 
simultaneous evaluation of many soil properties using 
hyperspectral data, multivariate statistical approaches 
and chemometric methods (Zovko et al., 2018; Viscarra 
Rossel et al., 2006). 

In recent decades, the use of remote sensing data 
to monitor the recovery of SOM after wildfires has 
increased. The development of new technology, such as 
diffuse visible and near-infrared (VNIR) soil spectroscopy, 
allowed researchers to gather additional soil data and 
form complex databases whose information can be used 
to improve the modelling and prediction of different soil 
properties, including organic matter (Rosero-Vlasova et 
al., 2018; Makhamreh, 2006). 

VNIR spectroscopy is a type of remote sensing that 
uses light in the visible and near-infrared spectrum to 
measure the reflectance of the soil. The reflectance of 
the soil is dominantly affected by the amount of SOM 
in the soil, in addition to other soil properties that can 
affect reflectance, such as soil texture and moisture 
(Stenberg et al., 2010). Soils with high SOM content tend 
to be darker in colour and have a lower reflectance than 
soils with low SOM content. According to Baumgardner 
et al. (1986), organic matter is one of the most critical 
properties to explain reflectance differences in the VNIR 
spectral region arising from the stretching and bending of 
organic covalent bonds. This information can be used to 
monitor the recovery of SOM after a wildfire.

Overall, the use of spectroscopy in the VNIR spectrum 
in combination with multivariate statistical methods has 
proven to be a precise technique for estimating not just soil 
C but various other soil properties as well (Viscarra Rossel 
et al., 2006; Croft et al., 2012). The most commonly used 
chemometric models are principal component analysis 
(PCA), stepwise multiple linear regression (SMLR), partial 
least squares regression (PLSR), principal component 
regression (PCR), and artificial neural networks (ANN) 
(Mohamed et al., 2018). Viscarra Rossel and Behrens 
(2010) compared different modelling algorithms to 
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determine soil organic carbon content. The ANN model 
provided the best predictions, mainly because ANNs can 
model complex nonlinear interactions in the data. 

So far, monitoring of spatio-temporal changes in 
post-fire soil quality has yet to be conducted in the 
pedological and climatic conditions of Mediterranean 
Croatia. Therefore, the primary purpose of this research 
was to apply soil spectroscopy to provide a continuous 
quantitative assessment of post-fire effects on SOM using 
two modelling approaches, PLSR and ANN, to facilitate 
informed land management decisions for ecosystem 
recovery in Mediterranean conditions.

MATERIALS AND METHODS 

Study area and experimental design 

The study was conducted in Zadar County, Croatia 
(44° 05’ N; 15° 22’ E; 72 m a.s.l), within a 2 km radius 
of Zadar airport. The climate is Mediterranean (Csa) 
according to the Köppen-Geiger classification (Kottek et 
al., 2006), with an average annual temperature of 14.9 °C 
and precipitation of 879.2 mm. Most of the vegetation 
in the area consists of Quercus pubescens Willd., Pinus 
halpensis Mill., Pinus pinaster Ait., Pinus pinea L. and 
Juniperus communis L. 

The soil type is Cromic Cambisol (IUSS Working 
Group WRB, 2015). The soil texture is silt loam (Soil 
Survey Division Staff, 1993). These soils are characterised 
by their stable aggregate structure, which allows 
high permeability and good drainage, as well as high 
content of weatherable minerals, such as feldspars and 
ferromagnesians (Husnjak, 2014; Chesworth et al., 2008). 

The wildfire affected approximately 13.5 ha of a mixed 
forest of Quercus pubescens Willd. and Juniperus communis 
L. on 15 August 2019. The severity of the fire was medium 
to high, as determined by visual inspection of burned 
vegetation and ash characteristics (Pereira et al., 2019). 
The experimental set-up was established according to 
the characteristics of the burned area, following the 
methodology described in Pereira et al. (2019): (I) - three 
categories of sampling areas were defined: C – control 

(unaffected by fire); MS – medium severity (where foliage 
and tree trunks were partially burned and soil was 
covered with black ash); HS – high severity (sites where 
foliage and tree trunks were completely burned and soil 
was covered with white ash); (II) - 120 soil samples were 
collected in total according to severity category (each 
category contained 40 samples). Finally, each category 
was subdivided according to the two vegetation species, 
i.e., each of the three severity categories contained 26 
sample areas under Quercus pubescens Willd. And 14 
sample areas under Juniperus communis L. (Figure 1). 

Figure 1. Sample division according to wildfire severity and 
vegetation type. A total of 120 samples were divided equally 
into control samples (C) and two wildfire categories: medium 
severity (MS) and high severity (HS). Each of the three severity 
categories was further subdivided into samples collected under 
Quercus pubescens Willd (Q) and Juniperus communis L. (J)

Prior to the soil sampling procedure, 7 days post-fire, 
the ash layer on the surface was removed with a soft brush 
to avoid contamination of the samples and subsequent 
false results. Afterwards, during the subsequent soil 
samplings, there was no need for the removal of surface 
ash because it had already been incorporated into the soil 
profile via precipitation. 
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Soil samples were collected at a depth of 0-3 cm with 
a spade, and each sampling point was georeferenced 
using a Trimble GeoXH handheld device (GeoExplorer® 
6000 series, Trimble GmbH, Raunheim, Germany) and 
marked with a marking bar. The final experimental design 
is shown in Figure 2. The markers allowed for periodic soil 
sampling at the same microsite at seven days (0 MAF), 3 
months (3 MAF), 6 months (6 MAF), 9 months (9 MAF), 
12 months (12 MAF), 15 months (15 MAF), 18 months 
(18 MAF), 21 months (21 MAF) and 24 months (24 MAF) 
post-wildfire within a radius of approximately 0.5 m of the 
marker. During each sampling campaign, the collection of 
120 soil samples was planned, resulting in a total of 1,080 
samples.   

Figure 2. Study area and experimental design. Different shapes 
denote vegetation species (circles indicate samples under Quer-
cus pubescens Willd.; triangles indicate samples under Junipe-
rus communis L.), and different colours denote wildfire severity 
(green - C; orange - MS; red - HS)

Laboratory analysis and measurements of soil reflectance

Per each sampling campaign, 60 air-dried, ground and 
sieved (<2 mm) samples were separated for chemical 
analysis, while the remainder of 60 samples were not 
subjected to chemical analysis. Soil CaCO3 content was 
determined by volumetric Scheibler calcimeter and total 
carbon (TC) content by dry combustion using a vario 
MACRO CHNS analyser (Elementar Analysensysteme 
GmbH, Langenselbold, Germany). SOM was calculated by 
multiplying the remainder of the difference between TC 
and CaCO3 with a factor of 1.724.

Measurement of soil spectral reflectance in laboratory 
conditions was performed on all air-dried, ground and 
sieved (<2 mm) samples (N = 120 for each sampling 
campaign). The measurements were carried out using 
a portable spectroradiometer (FieldSpec®3, ASD 
Inc., Boulder, USA) with a wavelength range of 350 - 
1050 nm, a sampling interval of 1.4 nm and a spectral 
resolution of 3 nm with simultaneous recording of 700 
wavelengths. Individual soil samples were placed in 1.5 
cm petri dishes and recorded at a fixed distance of 0.5 cm 
using a vertically mounted manual optical probe. Before 
initial readings, the device was calibrated using a white 
calibration plate (Spectralon®, Labsphere, North Sutton, 
USA), and white reference measurements were repeated 
every 10-15 minutes, per the manufacturer's instructions. 
The frequency at which the radiation is absorbed gives a 
reduced reflected signal, registered in the detector as a 
percentage of reflectance (% R). Each sample's reflectance 
measurement was taken by averaging 3 consecutive 
scans to reduce the noise in the spectral signal. 

Statistical analysis and model development

Before the statistical analysis was carried out, 
the collected data were checked for normality using 
Kolmogorov-Smirnov test. The data was transformed 
when needed to meet the normality criterion in further 
statistical analysis using several techniques: logarithmic, 
Box-Cox and Yeo-Johnson transformations (McGrath et 
al., 2004; Yeo and Johnson, 2000; Box and Cox, 1964). 
Z-scores were subsequently calculated to detect outliers, 
which were removed if the score exceeded 3 standard 
deviations (Kannan et al., 2015). Once the normalised 
data were obtained, a one-way analysis of variance 
(ANOVA) was used to determine the percentage of 
variation attributable to each factor: sampling time, 
wildfire severity, and vegetation type. Tukey's HSD test 
was applied where significant differences were observed 
(P < 0.05).

Raw spectral reflectance data was used in all model 
developments, and spectral bands from 350 to 409 nm 
were removed due to the large noise effect. If needed, for 
improvement of the signal-to-noise ratio, transformations 
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Table 1. Classification system for model accuracy assessment 
determined by ratio of performance to deviation (RPD) value

RPD value Classification of the model

< 1.0 very poor

1.0 < RPD < 1.4 poor

1.4 < RPD < 1.8 fair

1.8 < RPD < 2.0 good

2.0 < RPD < 2.5 very good

> 2.5 excellent

of the original spectra were performed using first and 
second derivatives, as well as the Savitzky-Golay filter 
using a second-order polynomial for derivation and 
smoothing (Nawar and Mouazen, 2017; Ben-Dor et al., 
1997; Savitzky and Golay, 1964). 

Two models were compared to develop calibration and 
validation models for predicting SOM content based on 
VNIR spectral reflection: (i) linear PLSR and (ii) nonlinear 
ANN. The independent (predictor, x-variable) input was 
the raw reflectance data from 410-1050 nm, and the 
dependent (y-variable) input was the SOM content. The 
datasets were split into calibration (50%) and validation 
(50%).

Spectral data were subjected to PCA, a technique 
that can reduce the dimensionality of a large number 
of spectral variables, prior to ANN modelling due to its 
computationally demanding processing time. The PC 
(principal component) scores obtained via PCA were used 
as input variables in the ANN modelling procedure.

Models were tested for reliability and prediction ability 
using full cross-validation. The following coefficient of 
determination (R2), root mean square error (RMSE), and 
the ratio of performance to deviation (RPD) were used to 
analyse the accuracy and performance of the model. The 
statistical analysis's significance values were performed for 
an error probability level of P < 0.05. RPD was calculated 
as the ratio between the standard deviation (SD) of the 
reference SOM content against the root mean squared 
error of prediction (RMSEp) and evaluated according to 
the classification system proposed by Gholizadeh et al. 
(2018b) (Table 1).

RESULTS 

Visual soil status report

Figure 3 provides a visual overview of the initial post-
fire soil status. By monitoring the vegetation recovery on 
the study site, it can be stated that vegetation regrowth in 
MS occurred as early as 3 MAF. Most MS areas affected 
by the fire in that timeframe exhibited native grass 
regrowth mixed with other perennial plant species, such 
as ferns and creepers. On the other hand, HS samples did 
not follow this trend and were still mostly bare. 

In the following vegetation season, 2020, namely on 6 
and 9 MAF, MS samples continued to exhibit vegetation 
regrowth in the form of native grasses. During this time, 
vegetation started resprouting in HS areas, which mainly 
consisted of ferns and procumbent/creeper species, but 
the soil surrounding them was still exposed.

By the 21 and 24 MAF sampling period, MS areas 
were visually much more comparable to C, while soil in 
HS areas was still rather exposed (Figure 4).

Soil organic matter content after the wildfire

Throughout the 2-year sampling period, the plan 
was to collect 120 soil samples per campaign. However, 
at certain C sampling sites, the unexpectedly dense 
vegetation at 21 MAF and 24 MAF impeded access to the 
area, thus preventing sample collection. Consequently, 
only 1,074 samples were collected out of the intended 
1,080 samples.

The Kolmogorov-Smirnov test results showed that the 
SOM content distribution does not conform to normally 
distributed data (K-S d = 0.16, P-value < 0.001). After the 
Box-Cox transformation, the Z-scores were calculated, 
and 2 outliers were detected and removed from further 
analysis. Normal Gaussian distribution was achieved after 
transformation, and this dataset was used for further 
analysis.

The overall SOM content during the study period, 
according to the severity of the wildfire and vegetation 
type, is presented in Table 2. Both the standard deviation 
(SD) and coefficient of variation (CV) indicate moderate 
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variability in the data set (according to Zhang et al., 2007), 
especially in the immediate post-fire period (SD = 4.49, 
CV = 0.53) and at the end of the two-year study (SD = 
6.58, CV = 0.55). The average SOM content varied from 
6.9 to 11.89% throughout the study. The lowest SOM 
content of 3.72% was recorded 21 months after wildfire 
in HS samples and under Quercus pubescens Willd. The 
highest content of 33.19% was recorded 24 months after 
wildfire in C samples under the same vegetation type. 

Analysis of variance revealed that the content in 
SOM varied significantly over time and according to the 
severity of wildfire and vegetation type (Table 2). High-
severity wildfire caused an overall 21.72% increase in 
average SOM content, while medium-severity wildfire 
did not cause a significant change compared to unburned 
samples (Table 2). In addition, SOM content was 

significantly higher under Quercus p. than Juniperus c. 
throughout the study period (Table 2). 

In the first 15 MAFs, HS significantly increased 
compared to C (Figure 5). The initial (0 MAF) average 
SOM content in C samples was 7.09%, and the measured 
content in severely burned areas (0 MAF-HS) was 10.5%, 
a 48.1% increase. During the following five sampling 
periods (3, 6, 9, 12 and 15 MAF), the average SOM 
content in HS was 34.88%, 46.97%, 43.65%, 14.89% 
and 20.7% higher than content measured in C samples. 
In the following period (18 and 21 MAF), the content 
of SOM was higher in HS compared to C, although not 
significantly. The SOM content in MS showed an 8.68% 
increase in the immediate post-fire period (0 MAF) 
compared to C, which is notably lower than the increase 
observed in HS.

Figure 3. Soil condition on 22 August 2019 (0 MAF): a) control, b) medium severity, c) high severity

Figure 4. Soil condition on 26 August 2021 (24 MAF): a) control, b) medium severity, c) high severity

(a)

(a)

(b)

(b)

(c)

(c)
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Table 2. Descriptive statistics of SOM content (%) and ANOVA results for nine sampling times, three wildfire severity levels and 
two vegetation types

Sampling time Wildfire severity Vegetation

0 
MAF

3 
MAF

6 
MAF

9 
MAF

12 
MAF

15 
MAF

18 
MAF

21 
MAF

24 
MAF C MS HS Quercus p. Juniperus c.

N 60 60 60 60 60 60 60 56 59 178 179 178 348 187

Mean 8.54b 7.30b 7.92b 7.42b 6.90b 7.38b 7.80b 7.01c 11.89a 7.55b 7.31b 9.19a 8.94a 7.04b

Min 4.68 4.52 4.21 4.01 4.44 4.38 4.03 3.72 4.99 4.01 4.00 3.72 3.72 4.00

Max 23.89 20.34 22.80 17.92 12.93 15.94 16.07 21.85 33.19 33.19 22.96 31.76 33.19 27.99

SD 4.49 2.81 3.28 2.65 2.13 2.37 2.51 3.20 6.58 3.58 2.80 4.64 3.97 3.33

CV 0.53 0.38 0.41 0.36 0.31 0.32 0.32 0.46 0.55 0.47 0.38 0.50 0.44 0.47

MAF – Months after fire; C – Control; MS – Medium severity; HS – High severity; SD – Standard deviation; CV – Coefficient of variation. Different 
letters represent significant (P < 0.05) differences among sampling times, wildfire severities, and vegetation types.

No significant change compared to C was recorded 
during the 3, 6, 12, 15, 18 and 21 MAF. On the final 
sampling date (24 MAF), MS showed a 29.97% decrease in 
average SOM content compared to C, with no significant 
difference between C and HS samples.

Soil spectral data

The average spectral data of three wildfire severities 
were grouped according to vegetation and sampling time. 
Figures 6 - 9 compare the average reflectance of C, MS, 
and HS taken under Juniperus c. and Quercus p. at the 
study period's beginning and end (0 MAF and 24 MAF). 
In the immediate post-fire period (0 MAF), the greatest 
spectral differences between C, MS, and HS groups 

Figure 5. Mean SOM content (%) according to the interaction of 
the wildfire severity and time-since-fire factors. Whiskers rep-
resent standard deviation. Different letters indicate significant 
(P < 0.05) differences between wildfire severity and time-since-
fire

were in the green/yellow to red (550 to 700 nm) region, 
especially in samples taken under Quercus p. vegetation 
(Figure 7b).

Figure 6. Average raw (a) and first derivative (b) reflectance for 
control, medium severity and high severity samples taken under 
Juniperus c. vegetation immediately post-fire at 0 MAF (N = 42). 
Wavelengths are expressed in nm.

Figure 7. Average raw (a) and first derivative (b) reflectance for 
control, medium severity and high severity samples taken under 
Quercus p. vegetation immediately post-fire at 0 MAF (N = 78). 
Wavelengths are expressed in nm.

At the end of the study period (24 MAF), these 
spectral differences remained visible between the C and 
HS groups. However, MS exhibited higher reflectance 
throughout the entire spectra, which was visible in both 
vegetation species (Figures 8 and 9).
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Comparison of PLSR and ANN models 

Spectral bands from 350 to 409 nm were removed 
from further analysis due to the large noise effect that 
can be seen best from the first derivative reflectances 
(Figures 6b, 7b, 8b and 9b). In each PLSR model, three 
to five PCs were identified that represented the primary 
structured information in the spectral dataset (Table 3).

PLSR models computed for each sampling time 
provided fair to very good predictions according to 
RPD, with values ranging from 1.62 (6 MAF) to 2.29 
(21 MAF), with an exception at 3 MAF which produced 
a poor model (RPD = 1.35) (Table 3). 3 MAF model was 
the only model that benefited from the data smoothing 
procedure (Savitzky-Golay). The PLSR model computed 

Figure 8. Average raw (a) and first derivative (b) reflectance for control, medium severity and high severity samples taken under 
Juniperus c. vegetation two years post-fire at 24 MAF (N = 42). Wavelengths are expressed in nm.

Figure 9. Average raw (a) and first derivative (b) reflectance for control, medium severity and high severity samples taken under 
Quercus p. vegetation two years post-fire at 24 MAF (N = 78). Wavelengths are expressed in nm.

for the entire dataset collected over the study period 
(ALL MAF) provided fair predictions, with an RPD value 
of 1.55 (Table 3).

For ANN modelling, the input predictors (x-variables) 
were the PCA scores of raw reflectance data. Eleven 
to eighteen PCs summarised the most variation in the 
reflectance datasets (Table 3). RPD values of ANN 
outperformed PLSR models, with RPD values ranging 
from 1.96 (9 MAF) to >2.5 (0, 3, 15, 18 and 24 MAF), 
which all fall in the category of very good and excellent 
models (Table 3). One exception was the model obtained 
at 21 MAF when PLSR outperformed ANN with an RPD 
value of 2.29 (21 MAF ANN RPD = 1.74).
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Table 3. PLSR and ANN Model performance at each individual sampling period and for the entire reflectance dataset

Dataset summary Model performance

MIN MAX MEAN SD CV NPC RMSEC RMSEP R2
C R2

P RPD

0 MAF (N=119)

4.68 23.89 8.60 4.12 0.48
PLSR 4 1.66 1.95 0.84 0.78 2.11

ANN 11 0.41 0.82 0.99 0.96 >2.5

3 MAF (N=120)

4.52 20.34 7.65 2.81 0.37
PLSR 3 1.63 2.08 0.66 0.46 1.35

ANN 13 1.34 1.09 0.77 0.85 >2.5

6 MAF (N=120)

4.21 22.80 7.97 3.28 0.41
PLSR 3 1.8 2.02 0.69 0.62 1.62

ANN 14 1.14 1.5 0.88 0.79 2.18

9 MAF (N=120)

4.01 17.44 7.55 2.31 0.31
PLSR 5 1.19 1.35 0.73 0.66 1.71

ANN 13 0.95 1.18 0.83 0.74 1.96

12 MAF (N=120)

4.44 12.93 7.14 2.13 0.30
PLSR 3 1.14 1.26 0.71 0.66 1.69

ANN 11 0.88 0.93 0.83 0.81 2.29

15 MAF (N=120)

4.38 15.94 7.69 2.37 0.31
PLSR 4 1.08 1.18 0.79 0.76 2.01

ANN 14 0.82 0.34 0.88 0.98 >2.5

18 MAF (N=120)

4.03 16.07 8.14 2.51 0.31
PLSR 4 1.03 1.13 0.83 0.8 2.22

ANN 13 0.5 0.94 0.96 0.86 >2.5

21 MAF (N=120)

3.72 21.85 7.12 3.20 0.45
PLSR 3 1.21 1.4 0.86 0.82 2.29

ANN 18 0.64 1.84 0.96 0.67 1.74

24 MAF (N=118)

4.99 33.19 12.08 6.34 0.52
PLSR 4 2.84 3.29 0.8 0.73 1.93

ANN 18 0.9 2 0.98 0.9 >2.5

ALL MAF (N=1074)

3.72 33.19 8.33 3.86 0.46
PLSR 4 2.44 2.49 0.59 0.57 1.55

ANN 15 1.85 2.15 0.77 0.69 1.79

SD – Standard deviation; CV – Coefficient of variation; NPC – optimal number of principal components; RMSEC – Root mean square error of cal-
ibration; RMSEP – Root mean square error of prediction; R2

C – Coefficient of determination for calibration; R2
P – Coefficient of determination for 

validation; RPD – Ratio of performance to deviation
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DISCUSSION

Impacts of wildfire severity on SOM content

A significant increase in SOM content in the HS 
samples compared to MS and C was recorded in the first 
9 MAF (by 35 to 48%), which indicated that incorporation 
of burned material (ash, charred foliage and bark, dead 
roots, burned grass-bed) into the soil profile occurred. 
In the following period of 12-21 MAF, the SOM content 
in HS was still elevated compared to C, although not 
significantly (Figure 5), probably because of an onset of 
slow vegetation regrowth and recovery, which was first 
observed in HS in the study field in the spring following 
the wildfire (6 MAF). However, as visually confirmed 
during the entire 2-year study period, the vegetation 
recuperation in HS was slower than in MS, which certainly 
caused reduced nutrient demand and uptake. This 
probably resulted in the accumulation of soil nutrients 
and SOM. 

The increase in post-fire SOM was also reported by 
Muráňová and Šimanský (2015), who recorded a 24% 
increase in SOC content in HS in the immediate post-
fire period. Interestingly, they reported an increase in 
the amount of post-fire SOC content, but at the same 
time, its quality worsened due to the deterioration 
of the humic to fulvic acid ratio. Unfortunately, this 
study did not address the detailed breakdown and the 
nature of post-fire SOM and is, in this sense, limited to 
extrapolating some deductions based solely on measures 
of increase or decrease of SOM. Future studies should 
further investigate the nature of post-fire SOM in terms 
of its quality to confirm or deny the findings reported in 
this study.

SOM content in MS increased significantly (by ~9%) 
in the immediate post-fire period (0 MAF). It was higher 
than in C in the following post-fire period (although not 
significantly), suggesting that the incorporation of burned 
material occurred but was not as pronounced as in HS. 
Additionally, the recuperation of vegetation on all MS 
sites was visible as early as 3 MAF, possibly due to the 
overall lower temperature reached during a wildfire on 
these sites coupled with partial combustion of biomass, 

which resulted in more favourable conditions for 
vegetation recovery. This supports the previous studies 
that low and medium-severity wildfires generally have 
a more neutral or even beneficial effect on ecosystem 
recovery compared to high-severity wildfires (Yang et al., 
2021; Pereira et al., 2017; Alcañiz et al., 2016; Inbar et 
al., 2014). 

At 24 MAF, a significantly lower SOM content 
recorded in MS compared to C indicated intensive and 
ongoing vegetation regeneration in these areas affected 
by a wildfire of lower severity, as supported via visual 
observations of post-fire vegetation recovery of the 
wildfire-affected area and observed in previous studies 
(Fuentes-Ramirez et al., 2022; Arroyo-Vargas et al., 2019).

Impacts of wildfire severity on soil reflectance

As shown in Figures 6 - 9, differences in spectral curve 
behaviour between two wildfire severities and control 
are evident in both vegetation species. Specifically, HS 
samples had the highest average SOM content and, 
therefore, the lowest average reflectance throughout 
the study period. In contrast, C samples had the lowest 
average SOM content, causing the highest average 
reflectance. At 0 MAF, the green/yellow to red reflectance 
region (550 to 700 nm) decreased in burned areas. 
Similar results were obtained by Šestak et al. (2022), who 
reported a decrease in soil reflectance following wildfire 
in the same reflectance region on burned samples from 
Mediterranean Croatia. These results support that SOM 
differences explain reflectance variation in the VNIR 
spectral region, namely, higher SOM content decreases 
reflectance and vice versa (Baumgardner et al.,1986). 
According to Zheng et al. (2016) and Tian et al. (2013), 
SOM content correlates with reflectance in the range 
from 500-700 nm the most. These observations in 
research conducted on various soil types, including this 
study, lead to a conclusion that the 550-700 nm range 
carries most of the information on SOM that could be 
useful in developing universal models for estimating 
SOM in different types of soils, including ones affected 
by wildfires. Higher reflectance recorded at 24 MAF in 
MS samples compared to both C and HS supports the 
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assumption of intensive vegetation regeneration during 
this period, favouring mineralisation of SOM and nutrient 
uptake, as previously discussed. 

Comparison of PLSR and ANN models

3 MAF PLSR was the only model that benefited from 
a data smoothing procedure that effectively preserved 
high-frequency signal components and reduced noise. 
However, a large part of the variation in the model still 
remains unexplained. This is probably related to the 
complex wildfire impacts on SOM and the effects of 
intrinsic factors that occurred in the immediate post-
fire period. Namely, according to Cofer et al. (1997), 
vegetation wildfires lead to the formation of char and 
new forms of C that could have affected the linear VNIR-
SOM relationship and behavior of spectral curves. The 
ongoing complex processes of post-fire soil recovery 
clearly show a nonlinear relationship, as observed in 
other studies (Pereira et al., 2019; Francos et al., 2018; 
Prendergast-Miller et al., 2017). This is why nonlinear 
ANN models generally proved superior to PLSR models. 
These results confirm that learning nonlinear ANN 
algorithms can correlate complex spectral information 
with the target variable, especially in complex post-fire 
SOM dynamics conditions. Similar results were obtained 
by Viscarra Rossel and Behrens (2010), who compared 
multiple data mining techniques, including PLSR and 
ANN, for calibrating VNIR reflectance spectra to SOC 
and confirmed the superiority of the ANN model that can 
detect complex nonlinear interactions in the data.

As for the PLSR model obtained with the entire 
0-24 MAF dataset, its accuracy and performance were 
inferior to individual models computed for each sampling 
period separately, with RMSEp of 2.49, R2 of 0.57 
between measured and predicted SOM content, and 
RPD value of 1.55 indicating a fair model. These results 
emphasise the benefit of data segmentation during the 
short-term post-wildfire monitoring that enables us to 
model specific features of post-fire SOM dynamics. It is 
beneficial for post-fire SOM monitoring to use models 
computed according to the specific stages of SOM 
dynamics, i.e. to compute models segmented by the rate 

of soil regeneration and/or seasonal criteria that consider 
the speed and seasonality of soil changes. However, to 
reduce costs, a generalised model based on all available 
data could be useful to detect SOM recovery's direction.

CONCLUSIONS

The spectral reflectance analysis revealed that soil 
reflectance is significantly affected by variations in SOM 
content resulting from different wildfire severities. The 
greatest spectral differences between C, MS and HS 
were found in the green/yellow to red (550-700 nm) 
region. This suggests that this region carries most of the 
information on SOM that could be useful in developing 
universal models for estimating SOM in soils affected by 
wildfires. Nonlinear models such as ANN should be used 
to estimate the field variability of SOM, especially in the 
complex conditions of post-fire soil dynamics. 

The data acquired and analysed in this study provided 
short-term information on wildfire effects on SOM 
content on a local scale and provided some valuable 
insights into the direction of SOM recovery in the 
Mediterranean environment. Long-term studies (10-30 
years) are encouraged to develop models that monitor 
the effects on SOM and to fully understand the spatial 
and temporal change in soil quality.
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