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Abstract: The organisation of projects is commonly 
understood as a highly complex system that is to be 
developed from standardised processes serving a 
unique goal to be reliably achieved at the first attempt. 
The system’s development on the time axis determines 
a significant part of the quality of an organisation 
since the characteristic behaviour represents the sys-
tem’s ability to follow a stable and predictable path 
through the space of states. Due to the well- acknow-
ledged complexity of the system, the available options 
at each branching point are numerous, and the pro-
ject’s success is not so much determined by a single 
decision as by the entirety of the complete decision 
path from the first incomplete model to the final goal. 
In particular, in the fields of construction and real 
estate management, the acceptable corridors of devi-
ation are fairly narrow because the technical and the 
legal/economical margins are low, dictated by the tight 
markets. In order to keep the naturally given strongly 
varying development under control, generally, key per-
formance indicators (KPIs) are defined, intended to 
unambiguously reflect the current overall behaviour 
of the system, to allow judging of the situation and to 
serve as a solid basis to initiate measures to control 
the development. This paper investigates the structure 
and the required minimal set of KPIs safely covering  
the development of a complex system on a system- 
theoretical basis. Against this background, we propose 
a certain abstract set of KPIs, in addition to pointing out 
the methods useful to identify these.

Keywords: controlling, Systems Theory, KPI, construction 
management, real estate management, complexity

1  Introduction
For this kind of investigations, organisations are repre-
sented by models using the concepts of the Systems Theory 
(Bertalanffy 1969; Wiener 1992; Luhmann 2001). Elements 
that represent real (persons, departments, physical ele-
ments, products, plans, etc.) and abstract (decisions, 
activities, accounts, space, etc.) participants interact with 
each other, forming the system’s behaviour (Smith 1776; 
Taylor 1911; Coase 1937). From this concept, terms such as 
‘controllability’ are derived. Furthermore, on the abstract 
level, the required effort for achieving controllability is 
also elaborated (Haken 1983; Eber 2021a, 2021b).

Elements (or nodes) are formulated on the most 
detailed level of description as single variables iq  [1.. ]i NÎ ,  
which develop dependent on all other nodes jq  according 
to interaction functions ( )i i jq f q= . Systems formulated on 
higher levels, e.g. those containing subsystems as nodes, are 
considered incomplete and do not reflect the final behaviour 
thus, these need to be resolved into the most detailed subsys-
tems (Booch et al. 2007; Zimmermann and Eber, 2014).

On this basis, a set of graph-theoretical network 
parameters can be derived, describing the pure structural 
situation. As is typical for systems, the internal structure 
of nodes remains outside the system boundaries and 
is therefore invisible. The main parameters would be as 
follows (Shannon 1948; Wassermann and Faust 1994; 
Ebeling et al. 1998; Eber and Zimmermann 2018):
•	 The parameters x V u= =  are equal for closed systems 

representing the average number of out-ties, the 
number of in-ties and the (half) number of ties per 
node in general.

•	 The complexity ln( 1) / ln Na x= + describes (according 
to, e.g. Shannon 1948), the average number of optional 
steps that the system can take within a consecutive 
time increment of development.

•	 The heterogeneity J refers to the ‘narrowness’ of the 
distribution of ties and contributes significantly to 
additional virtual complexity, e.g. taking long tails 
into account (Caldarelli and Vespignani 2007). Hence, 
concentrating the impact of a node only to a therewith 
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limited number of nodes tends to keep the effects local 
and inspires for the description as ‘locality.’

•	 The recursiveness b provides a measure for the exist-
ence of loops within the system, which also leads to 
an increased virtual complexity due to the numerously 
repeated operation of the same interactions.

•	 If the system is rankable, i.e. the entirety of causal 
relationships remains loopless, the maximum length 
of causal chains in terms of participating interactions 
is given by the parameter G .
Organisational systems are intended to develop on the 

time axis aiming at a particular goal (Schulte-Zurrhausen 
2002; Kerzner 2003; Schelle et al. 2005). In the field of 
construction management, this would be the successful 
construction of a building within the given time and cost 
frame, i.e. in general, the respective fulfilment of the given 
contract (Malik 2003; Picot et al. 2008; Hoffmann and  
Körkemeyer 2018; Eber 2019b). In order to achieve this safely, 
a substantial number of nodes (variables jq ) is subjected 
to very short loops applying negative feedback parameters 
and, hence, correcting any deviations from a desired value 
while consuming related control resources. Therewith, the 
volatility of the behaviour of the system becomes limited, 
gaining some certainty to reach the expected goal.

It is a major requirement for any resource-consuming 
enterprise or project to not only develop safely towards a 
goal and maintain the given corridor but to also provide 
sensible parameters during the run, indicating such cer-
tainty (Verein Deutscher Ingenieure e.V. 2019; Koskela 
2000; Koskela et al. 2002; Winch 2006).

These observable parameters are named ‘key per-
formance indicators (KPIs)’ as they are expected to com-
pletely reflect the current development of the complex 
system, to allow for certain predictions of the result and 
to provide a reliable basis for the implementation of major 
correction activities (Liening 2017).

Against this background, the question for the minimal 
number of KPIs required to observe and control a ‘complex 
system’ successfully becomes crucial. In this paper, we 
propose an approach to tackle this subject on the basis of 
the Systems Theory.

2   Methodology - fundamental 
static approach

As long as time does not play a role, the system is com-
pletely static and, therefore, well defined.

( ) 0 , [1 ]i
i j

q f q i j N
t t

¶ ¶= = " Î
¶ ¶

 . (1)

2.1  Degrees of freedom

Based on the very fundamental rules from Informatics, the 
dimensionality of the problem determines the degrees of 
freedom. The number of independently varying parame-
ters jq  span a space open for the behaviour of the system, 
i.e. its static state vector. Hence, the number of orthogonal 
observables required to describe the situation is given by 
the dimension of this space. This equals the dimension of 
the describing adjacency matrix (Eber and Zimmermann 
2018).

2.2  Interactions, arrows and edges

For each given static interaction between two or more ele-
ments, the degrees of freedom are reduced by one since 
each condition, i.e. dependency, inhibits one dimension 
from developing freely.

Hence, static systems constructed from more inter-
actions than elements ( 1N Nx x> Þ > ) are described by 
complexity ln( 1) / ln ln 2 / lnN Na x= + > . Such systems 
represent overdetermined systems that have no solution 
if not degenerated. 

3  Methodology - dynamic behaviour

3.1  Integral interactions

Any non-static system involves interactions implying not 
states but modification of states. Such less-restrictively for-
mulated interactions avoid overdetermination but lead to 
state vectors with dynamic components. This kind of inter-
action is introduced by arrows and edges given by differ-
ential equations (Haken 1983; Wiener 1992; Zimmermann  
and Eber 2017).

( )i
j

q f q
t

¶ =
¶

. (2)

As long as interaction functions are sufficiently dif-
ferentiable, they can be developed into a Taylor series. 
For short time intervals, first-order terms suffice. Then, 
interactions are no more linearly effectuating new 
values, but implement linear modifications to exist-
ing values over time. Linear equation systems become 
linear differential equation systems based on the linear 
weighted adjacency matrix ,i jc . The solutions of these 
systems are generally given by complex exponential 
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functions allowing for escalating or dampening devel-
opment, as well as respective oscillations (Eber 2021a, 
2021b, 2022).

,
( ) ( ) gt gti

i j j i
q t c q q t Ae Be g

t
¶ Þ + Î

¶ å  . (3)

Against this background, development of these 
systems on the time axis is mostly escalating or oscillat-
ing, and, only in rare cases, stabilising (Re( ) 0g <  and 
Im( ) 0g = ). Therefore, in general, dynamic systems are to 
be understood as mainly non-predictable. Due to the huge 
number of options to develop starkly, this is in fact one of 
the qualitative definitions of ‘complexity’ (Strogatz 2001; 
Newman 2003; Liening 2017).

3.2  Equilibrium states

Dynamic systems develop with time and inherently seek 
states of (stable) equilibrium, which takes time with dura-
tions out of a widely varying range up to infinity. There-
fore, the only static state vectors occurring are given by 
states of equilibrium, in which the behaviour in close 
proximity of equilibrium as well as the dynamical paths 
towards equilibrium states play a role. Systems far off 
equilibrium show indeterminate (‘chaotic’) behaviour, in 
which investigating is limited to very general statements, 
in particular, mostly not offering detailed individual infor-
mation (White et al. 2004; Liening 2017).

3.3  Predictability of complex systems

Clearly, only equilibrium states are predictable, and these 
too only if the systems rest at these state vectors or remain 
at least close to them. Sudden modifications pushing the 
system, in no time, away from stability initiate a period 
of unpredictable behaviour until stabilising again. Moreo-
ver, the newly achieved state of equilibrium is not neces-
sarily a causal consequence of the previous situation but 
could be any stable state randomly approached and being 
caught in.

Referring only to a stable – or at least – metastable 
equilibrium situation, the state vectors are stable, again 
determined by N variables; the required number of KPIs 
also needs to cover this space. Systems with no existing 
equilibrium states or far off these are principally not 
predictable, hence not manageable and therefore of no 
interest.

4   Methodology - manageable 
systems

4.1  Definition of manageability

The state vector is always in or very close to (stable) equi-
librium states. Developing with time while remaining 
close to equilibrium requires relatively slow changes. Only 
then, this equals a static as well as a causal system and 
will principally allow deriving the number of observables.

This requires the stabilising mechanisms to be about 
one order of magnitude faster than any external modifica-
tions, be these perturbations or some deliberately induced 
steering input (Eber 2019a).

Stabilisation is only enforced by strong (hence, short) 
damping loops. All other existing loops are either clearly 
destabilising due to their parameters or of higher orders. 
So far, they certainly do not contribute to stabilising.

4.2  Externalising damping loops

Short dampening loops inducing stability are necessarily 
local and can therefore be understood as locally limited 
units that are affected only very little by external changes 
(Figure 1). Furthermore, as they provide stabilised output, 
the transfer of modification is also starkly reduced. Treating 
these mechanisms as subsystems located outside the con-
sidered system therefore simplifies the situation and renders 
only the remaining system’s complexity to contribute to 
unpredictable behaviour (Bertalanffy 1969; Haken 1983).

4.3  Reducing complexity

The complexity is given by the inherent parameter a  derived 
from the number of interactions, as well as the virtual contri-
bution via recursiveness b and localisation J. All of these 
are constructed from tight coupling, which leads to the 

Fig. 1: Externalising damping loops increase the stability of a 
system by breaking long causal chains.
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requirement to decouple a significant number of ties (Separa-
tion/Separability) (White at al. 2004; Eber 2020). In contrast 
to static systems, where the degrees of freedom are reduced 
with interactions, here, stability is gained with defunctional-
ising ties. Then, at least, the dynamic components are driven 
to inactivity, and the dimension of the solution space is again 
determined by the parameters alone. Operationally, this can 
easily be achieved by carefully introducing control loops and 
respective overproduction/overtime (Eber 2019a). 

5   Research results (application) - 
assessment of complex systems

In this paper, complexity is not restricted to structural 
values, i.e. whether a tie exists or not, but also needs 
to take into account the strength of a tie. This ‘linear 
approach’ uses the transfer parameters ,i jc , given as the 
adjacency matrix by the respective linearised impact as 
the measure for the strength, providing the following:

( )
,ln(1 ) / lnlin

i j
i j

c Na
¹

= + å . (4)

Although normalisation of tie strengths becomes an 
issue here, this motivates using the strength of the impact 
that a node has on another node to investigate the role of 
nodes spanning the space of solutions as well as nodes 
possibly serving as sensible KPIs. This approach is known 
as ‘cross impact analysis’ (Gordon and Hayward 1968; 
Vester 1995), which turns out to be helpful in the current 
context.

5.1  Adjacency matrix

Cross impact analysis traditionally uses well-defined tran-
sition probabilities between states as the adjacency matrix 
to be investigated. As these are not available, a well- 
determined value representing the unidirectional cou-
pling of two nodes needs to be identified.

From the differential equation of control (Eber 2019b), 
the time constant contrt of repairing measures is known as 
a function of the resources available for control and the 
local strength of control.

( ) ( )
, , , ,/ /C Ci

i j i i contr i contr i i j
qR q q R
t

t t¶= = -D Þ = D
¶

. (5)

Relating this to the specific time reserve Rest availa-
ble between the participating nodes allows defining the 
 coupling parameter , /i j contr Restc t=  of this particular tie 

(see Figure 2). This parameter is normalised in a two-
fold way: ,i jc  equals one if the control mechanisms allow 
ruling out the expected deviations down to a factor of 

1e-  within the time reserves. A value of zero indicates 
no coupling at all, while higher values respectively 
represent the most critical interactions whereby local 
deviations are widely carried into the network. Hence, 
according to Zimmermann and Eber (2014), ,i jc  is also 
referred to as the ‘criticality’ of the respective interac-
tion; however, this term is not used in the context of this  
paper.

Clearly, this value ,i jc represents no transition proba-
bility but can easily be understood respectively by trans-
forming into a linear parameter ,ˆi jc :

The integral over the decreasing function 
,/

0,( ) i Ct
i iq t q e t-D = D  from the point of incidence zero to infin-

ity, i.e. the total deviation over the complete time frame is 
as follows:

, ,/ /
0, 0, , 0, ,0 0

i C i Ct t
total i i i C i i Cq e dt q e qt tt t

¥¥ - -D = D = -D = Dò .  (6)

Fig. 2: Coupling value , /i j c Restc t= as the coverage of the devia-
tion controlled by the given time reserves.

Fig. 3: Comparison of the transition probability 
,1/

,ˆ i j
i j e cc -= to the 

coupling value ,i jc .
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In contrast, the remaining total deviation after the 
time reserve Re , ,/s i C i jt t c= is then

, ,

, , , ,

, ,

/ /
0, 0, ,/ /

1/ 1/
0, ,

i C i C

i C i j i C i j

i j i j

t t
total i i i C

i i C total

q e dt q e

q e e

t t

t c t c

c c

t

t

¥¥ - -

- -

D = D = -D

= D = D

ò
. (7)

Hence, the share of total deviation, which, not covered 
with a certain value of ,i jc , is ,1/ i je c- , identifying ,1/

,ˆ i j
i j e cc -=  

as a sensible parameter describing the deviation share 
transported over a certain tie.

Obviously, this parameter is approximately linear 
around ,ˆ 1i jc =  according to Figure 3. Development into a 
Taylor Series around ,ˆ 1i jc =  yields a useful approxima-
tion, which is certainly accurate to a sufficient degree:

1/ 1/ 1/

1
1

1 1/ 2

1

ˆ ( 1)

( 1) /

e e e

e e

c c c
c

c

c
c

c c
c

c c

- - -

=
=

- -

=

é ù¶é ù= + - ê úë û ¶ë û

é ù= + - ë û



; (8)

[ ]1 1 1 1ˆ ( 1) 1 ( 1)e e e ec c c c- - - -+ - = + - = . (9)

From this, the adjacency matrix is given as ,ˆi jc . This 
clearly points out that any organisational system can only 
be assessed sensibly if all elements without exception are 
precisely known and all interactions are well investigated. 
Since the scaling factor will in no way change the prin-
cipal results, the coupling parameters ,ˆi jc and ,i jc can be 
used as the normalised measure for the given interaction.

5.2  Cross impact analysis

Cross impact analysis refers to analysing the adjacency 
matrix ,ˆi jc that describes the weighted interaction of a 
number of elements. First-order investigation, hence, 
implies the properties of the ,ˆi jc directly, while higher-or-
der analysis takes into account indirect interactions via 
many steps and loops by analysing higher powers of ,ˆi jc  
as well (Zimmermann and Eber 2014). Since parallel paths 
of different lengths are cumulative, the total matrix to be 
investigated is as follows:

( ) ( )
, , , ,

1 1

ˆ ˆ ˆ ˆ
m

m k k
i j i j i j i j

k k
c c c c

¥
¥

= =

= Þ =å å ,  (10)

where each element represents the cumulated weight of 
all paths that the respective node participates in. This is 
added up to path lengths of m, forming the m-th-order 
analysis and theoretically valid for infinite powers, which 

is, however, numerically not sensible. In the end, the 
characteristics extracted are as follows:
1. The ‘active sum (AS)’, which is the cumulation of all 

interactions where i is the source, i.e. a measure of the 
degree to which the node i influences the remaining 
system.

( ) ( )
,ˆm m

i i j
j

AS c= å .   (11)

2. The ‘passive sum (PS)’, which is the cumulation of 
all interactions where j  is the sink, i.e. the degree of 
being influenced all over the system.

( ) ( )
,ˆm m

j i j
i

PS c= å . (12)

3. Finally, the ‘recursiveness’ represents the degree to 
which a node i  participates in loops, i.e. the value on 
the diagonal.

( ) ( )
,ˆm m

i i iR c= . (13)

The interpretation of the roles for particular nodes 
follows from the characteristics plotted on a graph using 
a position given by AS vs. PS (see, e.g. Figure 4; Gordon 
and Hayward 1968; Vester 1995; Zimmermann and Eber 
2014).

Nodes located in the active area (top left) are highly 
influencing while not being significantly influenced by 
other nodes. Thus, they are effective levers to manage the 
system.

Reactive nodes (bottom right) represent the opposite 
character, being mainly influenced by the system, yet 
themselves not strongly influencing. They are useful as 
indicators of the current state.

Buffering nodes (bottom left) serve as inert volume, 
mainly not participating in the dynamics of the system.

Fig. 4: Characteristic roles of participating nodes based on active 
sums and passive sums.
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Finally, the so-called ‘critical’ section (top right) com-
prises risky positions, likely to cause instabilities. These 
influence the system as strongly as they are influenced by 
the system. Carefully note that the term ‘critical’ used here 
is different from the definition of the coupling ,ˆi jc that 
forms the adjacency matrix. The nodes located in this area 
strongly contribute to the unstable character of a system 
since any modification at these points tends to initiate 
further modifications, instead of reducing consequences 
and, hence, calming the system down.

The Q index ( ) ( ) ( )/m m m
i i iQ AS PS= stands for the angle 

differentiating between an active and reactive charac-
ter, while the P index ( ) ( ) ( )m m m

i i iP AS PS= × distinguishes 
between inert buffering characters and being critical.

6   Research results (application) - 
effectuating manageability of 
systems

6.1  Stabilising organisational systems

Against the background of a respective cross impact anal-
ysis, any organisational system can be assessed correctly 
and be modified accordingly to become manageable.

Complex and therefore unpredictable behaviour is 
obviously dictated by critical nodes, which are deter-
minedly initiated by causal loops. These are not necessar-
ily direct causal loops but, according to the understanding 
of cross impact analysis, reflect the overall tendency to 
return to volatility if modified in a blurred way all over the 
system. Nevertheless, these nodes are sensitive to their 

input and strongly effectuate consequences. Therefore, 
it is necessary to subject them to respective local control 
systems that compensate for their sensitivity and stabi-
lise the output. Thereby, likewise-treated nodes will move 
from the critical position to the buffering or reactive range.

Besides this effect, the recursive character of the 
system is reduced inevitably, and the system becomes 
manageable. The final indicator for a stable system is given 
by vanishing recursiveness of all nodes and respectively 
by the vanishing trace of the cumulated adjacency matrix:

( ) ( )
, ,ˆ ˆ 0m m

i j i i
i

Trc c= å  . (14)

Ideally, in the end, all nodes are either purely active 
or reactive if not completely decoupled and are therefore 
buffering.

6.2  Structure of causal systems

As soon as all loops are eliminated successfully, a purely 
causal, i.e. a rankable structure, is left. Using the most 
basic approach, one source and one sink are available, 
expanding and converging causally with interoperabil-
ity or impact x z=  over the ranks 0...r = G, as depicted in 
Figure 5.

Then, the AS of each node is ( ) r
iAS r x G-= , rising poten-

tially with the ranks as all consecutive nodes throughout 
the expanding tree structure are equally affected.

The PS is likewise ( ) r
iPS r x= , representing the influ-

ential structure of the converging tree.
This purely causal structure leads to a distribution of 

node characters, which clearly signals the causality, as 
shown in Figure 6:

Fig. 5. Structure of a causally expanding (a)/converging (b) tree, reflecting the most simple causal system.
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The remaining degree of criticality d  derived from the 
causal structure is given by the origin cutoff share of the 
diagonal, which is elaborated from the AS and respective 
PS at / 2G :

( ) ( ) / 2/ 2 / 2i iAS PS x GG = G = .  (15)

Normalising, we obtain

( ) ( )( ) ( ) / 2 / 2/ 2 / 2 /N N
i iAS PS x x xG G GG = G = = ,  (16)

and, hence, for the relative share d  of the diagonal, we get

( )2 ( )2

/ 2

2 / 2 /

2 / 2

.

N NAS PSd x x

x x

x

G G

G -G

-G

= + = +

= =

=

  (17)

 

Clearly, with substantial networks ( 1.3x > ), the 
remaining criticality given by the causal system is 

neglectable, with longer causal chains ( 30...90G » ) being 
even more so (Figure 7).

Causal systems with more active nodes and respective 
reactive indicators can easily be modelled by operating a 
number of identical networks in parallel cumulating the 
number of nodes per rank. This approach models a similar 
number of source nodes and sink nodes. As long as the 
interoperability is still described by the average number 
of in-ties or out-ties, nothing else is to be observed. Then, 
only the number of nodes per rank is scaled, not their 
location on the AS/PS graph. Therefore, the remaining 
criticality is not affected.

Hence, we state that the remaining causal structure after 
eliminating all loops in order to create a manageable system 
does not contribute significantly to the complexity. Thus, 
aiming at the least possible criticality converts the original 
organisational system into a manageable system, operated 
by the remaining most active nodes while the operation is 
indicated by the remaining most reactive nodes.

7  Conclusion
Surely, the approach offered here is strongly simplified. 
Nevertheless, even with this basis representing most 
simple organisational systems, strong conclusions may 
be drawn. Reality, eventually maintaining e.g. non-linear 
interactions and subsystems, instead of linearly coupled 
basic variables, will certainly not present less-complex 
patterns of behaviour. Hence, from this approach, we 
derive the following conclusions.

First, stability, i.e. the volatility of all variables, needs 
to be observed. The character of the system’s behaviour 
absolutely rests on stability. Hence, any organisation, i.e. 
any system that is described by complexity >0 - which is, in 
particular, any organisation beyond completely separated 
players and elements, even a purely linear chain - is funda-
mentally complex, hence most likely instable and, thus not 
manageable at all. In this context, therefore, the question of 
the number of controlling KPIs becomes meaningless.

Only by actively introducing decomplexifying meas-
ures, i.e. local control applied on the entirety of elements 
as well as significant tolerance margins for all values, 
manageability can be achieved. These measures clearly 
consume resources and are not for free. Maintaining sta-
bility in this background demands observing the remain-
ing resources made available for control as well as the 
degree of the system consuming the tolerance margins. 
This allows for assessing the distance of the system to the 
limits of controllable deviations.

Fig. 7. Causal remains of criticality vs. length of causal chains 
(maximum rank) of expanding/converging trees.

Fig. 6. Cross impact analysis of a causal expanding/converging tree 
vs. impact ( )x z= .
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Only then, the structure of an organisation can be 
surveyed using a respective cross impact analysis, which 
reveals the remaining share of complexity. This part inevi-
tably signifies the share of unmanageability to be accepted.

Beyond this share, the number of KPIs required to 
control and, in particular, steer the organisation is given 
by the number of remaining variables of ‘active’ charac-
ter, i.e. located in the upper left corner of the Cross-Impact 
diagram. The number of ‘reactive’ variables allows observ-
ing the organisation’s behaviour and to initiate respective 
measures for control.

Thus, appropriate measures to transform complex 
organisational systems into fundamentally manageable 
organisations with well-determined degrees of freedom 
are provided.

These theoretical findings seem to be mainly self- 
consistent. However, further research is recommended 
to validate the results on a practical basis. Hence, we 
propose a sufficient number of case studies elaborating 
the chosen KPIs of existing projects and investigating the 
stability of the development vs. the predictability of the 
controlling variables. Against this background, not only a 
substantiation of the presented theory would be possible, 
even the sensibility of the set of KPIs could be quantified 
appropriately.
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