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ABSTRACT • The study presents a novel computer-aided vision system for the detection of wood defects us-
ing deep learning techniques. Our study utilizes a dataset consisting of over 43000 labelled wood surface defects 
found in a comprehensive collection of 20276 wood images. To enable rapid decision-making on the production 
line, a binary classification approach was employed, distinguishing between defective and perfect wood samples. 
Only flawless wood can be used in production. Wood with one or more defects is not used in production and must 
be removed from the production line. Deep learning-based convolutional neural networks (CNNs) were optimized 
and used for the detection of defective and perfect wood. Using the transfer learning approach, experiments 
were performed with VGG-16, MobileNet, ResNet-50, DenseNet-121, Xception and InceptionV3 architectures. 
To decide the best optimization, the analysis of Adam, RMSprop, Adagrad, SGD and Adadelta optimization algo-
rithms were tested on CNN architectures. In addition, different numbers of neurons, namely 256, 512, 1024 and 
2048 neurons, were used and wood defect detection was performed with optimum parameters. As a result of the 
experiments, it was found that the RMSprop optimization algorithm of the Xception architecture reached 97.57 % 
accuracy, which is the most successful result with 512 neurons.

KEYWORDS: wood defect; anomaly detection; computer vision; transfer learning image classification

SAŽETAK • Predstavljen je novi računalno potpomognuti vizualni sustav za detekciju grešaka drva primjenom 
tehnika dubokog učenja. Ovo se istraživanje koristi skupom podataka koji se sastoji od preko 43 000 označenih 
grešaka na površini drva pronađenih u opsežnoj zbirci od 20 276 slika drva. Kako bismo omogućili brzo donošenje 
odluka na proizvodnoj liniji, primijenili smo pristup binarne klasifikacije, razlikujući uzorke drva s greškama i 
bez njih. U proizvodnji se može upotrebljavati samo drvo bez grešaka. Drvo s jednom ili više grešaka ne rabi se u 
proizvodnji i mora se ukloniti s proizvodne trake. Konvolucijske neuronske mreže utemeljene na dubokom učenju 
(CNN) optimizirane su i primijenjene za otkrivanje drva s greškama i bez njih. Primjenom pristupa transfernog 
učenja eksperimenti su izvedeni uz pomoć arhitektura VGG-16, MobileNet, ResNet-50, DenseNet-121, Xcepti-
on i InceptionV3. Kako bi se odabrala najbolja metoda optimizacije, analiza optimizacijskih algoritama Adam, 
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RMSprop, Adagrad, SGD i Adadelta testirana je na CNN arhitekturama. Osim toga, korišteni su različiti brojevi 
neurona (256, 512, 1024 i 2048), a otkrivanje grešaka drva provodilo se optimalnim parametrima. Kao rezultat 
istraživanja utvrđeno je da je RMSprop optimizacijskim algoritmom arhitekture Xception postignuta 97,57 %-tna 
točnost, što je najuspješniji rezultat s 512 neurona.

KLJUČNE RIJEČI: greške drva; otkrivanje anomalija; računalni vid; transferno učenje klasifikacije slika

1 	 INTRODUCTION
1. 	UVOD

Woodworking industry places great importance 
on examining defects on the product surface during the 
quality control process. This step ensures consistent 
product quality and enhances production efficiency. 
Defective products must be identified and removed 
from the production line as early as possible. Wood 
products require particular attention, as defects can sig-
nificantly affect their commercial value. These defects 
can be caused by reasons such as poor-quality raw ma-
terials and ineffective production processes. In some 
countries, the use of raw wood materials is declining 
due to these defects. Today, wood products are manu-
factured to strict surface treatment specifications and 
modern wood processing industries require a robust 
wood defect detection and identification system. Visual 
quality audits are currently carried out by trained per-
sonnel.

Nevertheless, due to the need for the classifica-
tion of various types of wood defects and inadequacy 
of human expertise in practical scenarios, the utiliza-
tion of convolutional neural networks has become im-
perative for identifying flaws in industrial products. 
Although these systems may not be feasible for actual 
industrial applications, the novel approach has been 
specifically designed to promptly detect and categorize 
defects as they occur.

In wood production, computer analysis and im-
age recognition are extensively utilized for identifying 
surface defects on wooden materials. This method is 
favored for its cost-effectiveness and lack of additional 
equipment requirements. Moreover, it seamlessly inte-
grates with operator intervention. Nonetheless, the ac-
curacy of this approach relies on the specific design of 
the image analysis algorithm, particularly in the realm 
of digital image processing for wood defect detection. 
The detection process entails various pre-processing 
steps such as converting to grayscale, equalizing the 
histogram, applying spatial or frequency domain filter-
ing, and extracting defect features. Subsequently, ma-
chine learning algorithms are employed to classify the 
images. Overall, the utilization of image analysis and 
machine learning techniques plays a crucial role in the 
wood defect detection process (Xie, 2013).

Accurate identification outcomes in wood defect 
detection rely on the extraction of defect characteris-
tics and making decisions based on these characteris-

tics. Wood surface attributes encompass different ele-
ments, such as grayscale co-occurrence matrix, color 
matrix, color histogram, geometric features, and tex-
ture features. However, the intricate nature of wood 
surfaces makes feature extraction challenging, result-
ing in heightened complexity in decision-making algo-
rithms. To tackle this issue, Principal Component Anal-
ysis (PCA) is frequently used to effectively merge the 
extracted features, leading to enhanced accuracy in 
defect recognition.

Various methodologies have been used by re-
searchers to extract features for detecting defects on 
wood surfaces. In a study by Zhang et al. (2015), the 
wavelet transform and Local Binary Patterns (LBP) al-
gorithm were employed to extract image characteris-
tics associated with both deceased and living knots. 
Another study conducted by Li et al. (2021) used the 
OTSU algorithm and mathematical morphology to ex-
tract characteristics of insect eyes, living knots, and 
deceased knots on wood surfaces. They also used the 
Sobel operator to extract edge contours of wood sur-
face defects. Additionally, Li et al. (2019) improved 
the precision of wood surface defect classification by 
constructing correlated histograms of wood surface 
image elements and conducting feature extraction. 
These studies collectively emphasize the importance of 
feature extraction in detecting wood defects and dem-
onstrate the use of various algorithms and techniques 
to enhance accuracy and efficiency in recognizing de-
fects on wood surfaces.

These studies emphasize the significance of effec-
tively integrating and extracting characteristics for pre-
cise identification and categorization of wood defects. In 
the realm of examining image features for wood defect 
detection, convolutional neural networks (CNNs) are 
frequently used. CNNs enhance decision-making effi-
ciency by utilizing nonlinear discriminant functions 
(Packianather and Drake, 2005). In a study conducted 
by Luo (2019), various neural network models, includ-
ing the backpropagation (BP) neural network, support 
vector machine (SVM) and CNN, were compared in 
terms of their effectiveness in classifying wood defects. 
The findings clearly demonstrated that both the CNN 
and SVM models outperformed the BP neural network 
model in terms of accuracy in detecting and categorizing 
wood defects. This indicates that the CNN and SVM 
models are more suitable and capable of achieving high-
er classification accuracy, particularly in the field of 
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wood defect detection. In conclusion, the application of 
CNNs and SVMs in wood defect detection highlights 
their effectiveness in accurately classifying wood de-
fects based on image features. The enhanced perfor-
mance of these models underscores the importance of 
selecting the appropriate neural network architectures to 
enhance the accuracy of wood defect detection and cat-
egorization (Luo, 2019).

With the advancements in deep learning algo-
rithms, researchers have increasingly turned to CNN 
models for accurately classifying wood surface de-
fects. Wang et al. (2021) have developed diverse 
frameworks based on CNN models for this purpose. 
Urbonas et al. (2019) achieved a detection accuracy of 
96.1 % in identifying wood surface defects through the 
implementation of the R-CNN method. Shi et al. 
(2020) improved both the speed and accuracy of defect 
detection by combining the mask R-CNN method with 
the neural architecture search (NAS) technique when 
dealing with wood veneer defects. In the context of 
solid wood panel defect detection, Fan (2020) conduct-
ed an extensive analysis utilizing models like R-CNN, 
Fast R-CNN, and Faster R-CNN. They devised a hu-
man-computer interactive system for detecting defects 
in solid wood panels and used SQL Server software 
tools to create tables containing image information. 
These studies underscore the growing utilization of 
deep learning approaches and CNN models in precise-
ly detecting and categorizing wood surface defects. 
Table 1 provides a summary of machine learning-based 
studies on wood defect detection.

Computer vision technology used in wood pro-
duction is a highly effective tool for the detection and 
classification of defects on wood surfaces. Properly 
configured and calibrated computerized vision systems 
can be used to increase productivity and improve prod-
uct quality in wood production. Using specialized al-
gorithms including pattern recognition, feature extrac-
tion and classification, these systems can quickly and 
accurately detect defects in wood surfaces. This paper 
will examine how computer vision technology can be 

used for wood defect detection and why this technolo-
gy is important for the wood industry.  The highlights 
of this study are as follows:
-	 This is the first study in the literature on binary 

classification for this dataset.
-	 With the help of deep learning architectures for 

wood defect detection, binary classification is per-
formed as defective and perfect.

-	 A high level of success is achieved in wood defect 
detection with 97.57 % accuracy in two classifica-
tions as defective and perfect.

-	 Within the scope of wood defect detection, six dif-
ferent CNN architectures, five different optimiza-
tion algorithms and four different neuron numbers 
are used.

-	 The structure of well-known CNN architectures is 
updated by adding batch normalization and dropout 
layers. The training of the new architecture is start-
ed with the transfer learning method and fine-tuned 
by retraining with the images in the data set.

-	 Existing wood defect detection methods have been 
found to have certain limitations, particularly in 
terms of speed and accuracy on the production line. 
The distinctive characteristics of wood products, 
along with the presence of multiple defect types, 
make image segmentation and feature extraction 
challenging. To address these issues, a novel ap-
proach using a fully convolutional neural network 
(CNN) has been proposed for classifying imperfect 
and perfect wood. This method surpasses previous 
techniques and eliminates the need for extensive 
image pre-processing and feature extraction. Con-
sequently, it enables faster and more precise detec-
tion and identification of wood defects.

The rest of the article is organized as follows: In 
Section 2, the material and dataset are introduced, and 
pre-processing, CNN architectures and optimization 
algorithms used in the method are presented. In Sec-
tion 3, the findings of the study and their comparison 
with existing studies are presented. Finally, Section 4 
provides conclusions and some recommendations.

Table 1 Studies on wood defect detection, accuracy and defect types
Tablica 1. Istraživanja o otkrivanju grešaka drva, točnosti rezultata i vrste grešaka

Rank
Rang Study / Istraživanje Identified defect types

Utvrđene vrste grešaka
Accuracy
Točnost

1 Ren et al., 2017 “Encased knot, leaf knot, edge knot, and sound knot” 91.55 %
2 Zhang et al., 2015 “Live knot, dead knot, and crack” 92.00 %
3 Yu et al., 2019 “Live knots, dead knots, pinholes, and cracks” 92.00 %
4 Zhang et al., 2016 “Live knot, dead knot, and leaf knot” 93.00 %
5 Li et al., 2017 “Live knot, dead knot, and crack” 94.00 %
6 Li et al., 2019 “Crack and the mineral line” 94.30 %
7 Ding et al., 2020 “Live knots, dead knots, and checking” 96.10 %
8 Urbanos et al., 2020 “Branch, core, split, and stain defects” 96.10 %
9 Yang et al., 2020 “Dead knot, live knot, worm hole, decay” 96.72 %
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2 	 MATERIALS AND METHODS
2. 	MATERIJALI I METODE

2.1 	 Dataset
2.1. 	Skup podataka

To address the limited availability of comprehen-
sive databases in the woodworking industry, a large-
scale dataset of wood surface defects was collected for 
experimentation purposes. The dataset consisted of 
20276 instances from sawn timber surfaces. Among 
these instances, 1992 images were defect-free, while 
18284 images exhibited one or more surface defects. 
The dataset encompassed a total of 10 commonly ob-
served wood surface defects. Fused knots and falling 
knots were the most prevalent defects, accounting for 
58.8 % and 41.2 % of occurrences, respectively. This 
dataset provides a valuable resource for research and 
development in the field of wood defect detection and 
analysis (Kodytek et al., 2021a).

The dataset comprises over 43000 annotated 
wood surface anomalies found in a collection of 20276 
wood images. The dataset encompasses ten prevalent 
defect types, namely fused knots, fallen knots, cracked 
knots, cracks, resins, piths, ures, missing knots, blue 
stain, and overgrowth defects. The images have a reso-
lution of 2800 × 1024 pixels and are saved in the BMP 
format. The data was directly gathered from a wood 
production line during the manufacturing process 
(Kodytek et al., 2021b). Figure 1 presents typical ex-
amples of wood defects in the dataset.

2.2 	 Data augmentation and data pre-
processing

2.2. 	Pojačanje podataka i prethodna obrada 
podataka

Data augmentation is the process of adding data 
to increase and stabilize the number of data to be pro-
cessed (Purnama et al., 2019). High-rate sampling and 
under sampling methods are widely used on unbal-
anced datasets. Studies show that data augmentation 
improves success in classification problems performed 
with deep learning network architectures (Lopez et al., 
2017; Ayan and Ünver, 2018). In order to prevent im-
perfect and perfect class imbalance in the dataset and 

to increase the performance of the deep learning archi-
tecture, the number of images in the dataset is increased 
by applying techniques such as horizontal and vertical 
rotations, angle changes up to a maximum of 355 de-
grees, zooming with a minimum value of 1.1 and a 
maximum value of 1.5, random contrast and brightness 
enhancement with a maximum value of 0.2. Wood im-
ages are converted from 2800 × 1024 pixels bmp for-
mat to 300 × 300 jpeg format.

2.3 	 Deep learning
2.3. 	Duboko učenje

Deep learning primarily relies on artificial neural 
networks as its foundation. These architectures can 
process vast amounts of data by learning from their 
representations. Consequently, deep neural networks 
possess more hidden layers in comparison to tradition-
al neural networks (Deng and Yu, 2014). Within deep 
neural networks, labelled input values are passed 
through nonlinear activation functions, applying spe-
cific weights, to produce an output (Schmidhuber, 
2015). The objective of training a deep neural network 
is to optimize these weights in order to minimize the 
error value (Ergün and Kılıç, 2021). This study focuses 
on presenting the deep learning architectures that have 
been used.

2.3.1 	 Convolutional Neural Network (CNN)
2.3.1. 	 Konvolucijska neuronska mreža

CNNs are a class of multilayer perceptrons in-
spired by the visual processing center in animals. These 
networks have demonstrated remarkable success in a 
wide range of domains, including image and sound 
processing, natural language processing, and biomedi-
cine. Notably, CNNs have achieved particularly im-
pressive outcomes in the field of image processing. 
Their ability to capture spatial dependencies in data has 
made them a powerful tool for tasks such as image rec-
ognition, object detection, and image segmentation. 
The versatility and effectiveness of CNNs have con-
tributed to their widespread adoption and continued 
advancement in various fields of study. Forward propa-
gation algorithms in CNNs employ different error rate 
minimization algorithms, one of which is the back-

Figure 1 Typical examples of wood defects within the dataset used in the study: (A) Live Knot, (B) Dead Knot, (C) Quartz-
ity, (D) Knot with crack, (E) Knot missing, (F) Crack, (G) Overgrown, (H) Resin, (I) Marrow (J) Blue stain
Slika 1. Tipični primjeri grešaka drva unutar skupa podataka primijenjenih u istraživanju: (A) zdrava kvrga, (B) mrtva kvrga, 
(C) inkrustacija kvarca, (D) ispucala kvrga, (E) ispala kvrga, (F) pukotina, (G) obrasla kvrga, (H) smolenica, (I) srčika (J) 
plavilo
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propagation algorithm. In the backpropagation algo-
rithm, the error value from the forward propagation 
stage undergoes derivative operations from the output 
layer to the input layer, enabling error backpropagation 
(Tüfekçi and Karpat, 2019). CNNs are deep learning 
architectures that extract distinctive features from pixel 
matrices of images, using these features for class pre-
diction (LeCun et al., 1998). They have widespread use 
in computer vision applications including image clas-
sification, object detection, image segmentation, voice 
recognition, text and video processing, and also medi-
cal image analysis (Pacal et al., 2020).

A CNN is comprised of three primary elements: 
convolutional layers, pooling layers, and fully connect-
ed layers. Figure 2 illustrates the CNN architecture used 
for image classification. In the convolutional layer, the 
input image undergoes convolution with kernels or fil-
ters to generate feature maps that capture important pat-
terns and features. The pooling layer follows, reducing 
the size of each feature map to minimize the number of 
weights, a process also referred to as sub-sampling. Sev-
eral pooling methods, including general pooling, maxi-
mum pooling and average pooling, can be used. As the 
feature matrix obtained from convolution and pooling 
layers is typically multidimensional, it is flattened into a 
one-dimensional vector before being passed to the fully 
connected layer. The fully connected layer is where the 
deep neural network is trained using the converted one-
dimensional feature vector, enabling classification tasks 
to be performed (Ergün and Kılıç, 2021).

Convolutional Layer
The convolution layer is a vital component of a 

CNN and plays a central role in image processing. 
Since images are usually stationary, the patterns found 
in one region can also occur in other regions. By taking 
a small section of a large image and sliding it across the 
entire image (input), each point can be transformed to 
a single location (output). These small sections that 
move over the larger image are referred to as filters or 
kernels. The filters are constructed using the back-
propagation technique. (LeCun and Bengio, 1995).

Sub-sampling or Pooling Layer
Pooling in a CNN refers to the process of down-

sampling an image. It involves selecting a portion of 
the output and subsampling it to obtain a single output 
value. There are different types of pooling techniques, 
such as maximum pooling, average pooling and mean 
pooling. Pooling reduces the computational burden by 
reducing the number of parameters, while also provid-
ing the network with the ability to handle variations in 
shape, size and scale (Atacak et al., 2022).

Fully-connected Layer 
The final component of the CNN consists of the 

fully connected layer (FC Layer). In this layer, each 
neuron connects to all neurons in the previous layer, 
and neurons in the current layer collectively contribute 
to production (Sultana et al., 2019).

2.3.2 	 VGG-16
2.3.2. 	 VGG-16

The VGG-16 architecture is composed of a total 
of 21 layers. Among these layers, 13 are convolutional 
layers, five are maximum pooling layers, and three are 
fully connected layers. One notable characteristic of 
this network is that all layers have a spatial size of 3×3 
pixels. The architecture of VGG-16 can be visualized 
in Figure 2. For input, the VGG-16 architecture ex-
pects a vector of dimensions 224×224×3, representing 
an image with width, height, and three-color channels. 
The output of the network is a vector with 1000 values, 
indicating the predicted class to which the image be-
longs (Simonyan and Zisserman, 2014).

2.3.3 	 MobileNet
2.3.3. 	 MobileNet

MobileNet, a compact and highly efficient deep 
CNN model, is renowned for its outstanding perfor-
mance and smaller size compared to other popular mod-
els. Its exceptional efficiency is achieved by utilizing 
depth-wise separable convolutions, a technique where a 
single filter is applied to each input channel, followed by 
1×1 point-wise convolutions that merge the outputs of 
the depth-based layers. This strategy significantly re-
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Figure 2 Building block of a typical CNN
Slika 2. Sastav tipičnog CNN-a
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duces both the model’s size and computational require-
ments. In MobileNet, every layer is accompanied by 
batch normalization and ReLU activation, except for the 
fully connected layer, which connects to the softmax 
layer responsible for classification tasks. MobileNet 
consists of a total of 28 layers, excluding the depth and 
point convolutions (Howard et al., 2017). 

2.3.4 	 ResNet50
2.3.4. 	 ResNet50

Unlike previous CNN architectures, the ResNet 
architecture uses residual blocks. In residual blocks, 
input x passes through the convolution layers to pro-
duce the result F(x). This result is added to the input x 
to obtain the output H(x) = F(x) + x. This method en-
sures that residual values from the previous layer are 
not ignored. Residual blocks are an important feature 
that distinguishes the ResNet architecture from others. 
ResNet is available in versions with different depths, 
18-34-50-101 and a maximum of 152 layers, and has a 
very low error rate (He et al., 2016). In this study, a 
50-layer architecture is used.

2.3.5 	 DenseNet121
2.3.5. 	 DenseNet121

DenseNet, a network architecture, is designed to 
enhance the information flow among layers, allowing 
each layer to receive supplementary inputs from pre-
ceding layers and transmit its feature maps to the sub-
sequent layer. This architecture offers a notable advan-
tage by promoting feature propagation, which 
facilitates the reuse of learned features and reduces the 
overall number of network parameters. Specifically, 
the DenseNet architecture comprises 121 layers, dense 
blocks, and three transition layers. There are various 
versions of DenseNet, differing in the number of lay-
ers, such as DenseNet121, DenseNet169, and 
DenseNet201 (Huang et al., 2017). 

2.3.6 	 Inception-V3
2.3.6. 	 Inception-V3

The model has undergone training by a top-tier 
hardware expert in the industry and boasts over 20 mil-
lion parameters. It comprises both symmetric and 
asymmetric building blocks, with each block incorpo-
rating diverse components like convolutional layers, 
average and maximum pooling, merging operations, 
dropout layers, and fully connected layers. Addition-
ally, batch normalization is implemented on the activa-
tion layer, and Softmax is used for classification pur-
poses (Ali et al., 2021). 

2.3.7 	 Xception
2.3.7. 	 Xception

Xception is a CNN model based on the Incep-
tion-V3 architecture. It introduces several improve-

ments to reduce time and space complexity. The model 
uses a linear stack of depth-wise separable convolution 
layers and incorporates residual connections. The key 
feature of Xception is the deeply separable convolu-
tion, which separates the learning of channel-based and 
spatial-based features. This helps capture complex pat-
terns while reducing computational complexity. Addi-
tionally, Xception employs residual connectivity to ad-
dress issues of vanishing gradients and representational 
bottlenecks by creating shortcuts within the network. 
Overall, Xception offers improved efficiency and per-
formance compared to Inception-V3, making it a popu-
lar choice for various computer vision tasks (He et al., 
2016).

2.4 	 Optimization algorithms
2.4. 	Optimizacijski algoritmi

Optimization techniques are used to minimize er-
rors that can arise during program execution. These 
techniques are commonly referred to as gradient de-
scent. Optimization methods involve a systematic ap-
proach that consists of multiple steps. The number of 
steps performed during this process is known as the 
learning rate. It is crucial to select an appropriate value 
for the learning rate. Choosing a small learning rate 
extends the solution process, while a large learning rate 
can result in overshooting the minimum point. SGD, 
Adagrad, RMSProp, Adadelta and Adam algorithms 
are among the most widely used optimization methods 
(Bosch et al., 2007; Frome et al., 2007; Seyyarer and 
Aydın, 2017; Cebeci, 2020).

In this study, Adam, Adagrad, Adadelta, SGD and 
RMSprop algorithms are used.

2.5 	 Transfer learning
2.5. 	Transferno učenje

When there is not enough data in image analysis 
studies, a transfer learning approach is usually pre-
ferred for studies with CNN architectures. This ap-
proach is to use the parameters of a network that has 
already been trained on a similar task in the new task. 
The CNN trained for the new task is initialized using 
the weights of the pre-trained network, and the param-
eters are updated by retraining a set number of times 
(Weiss et al., 2016; Fırıldak and Talu, 2019). In this 
study, six different architectures of the selected CNN, 
five different optimization algorithms and four differ-
ent neuron numbers (256, 512, 1024, 2048) were test-
ed. In order to determine the best optimization algo-
rithm compatible with CNN architectures, 30 (6×5) 
experiments were performed with 256 neurons. Then, 
after determining the optimization algorithm that gave 
the best result, 24 (6×4) experiments were performed 
using 256, 512, 1024 and 2048 neurons. In total, 54 
experiments were performed.
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2.6 	 Experimental installation
2.6. 	Postavljanje eksperimenta

The dataset used for this research was divided 
into two categories: imperfect and perfect wood imag-
es. Due to the limited number of perfect wooden im-
ages in the dataset used, the number of images in the 
training set was increased in order to balance the data 
distribution and increase the performance of the net-
work. With this increase, the number of perfect wood-
en images becomes equal to the number of defective 
wooden images. However, data augmentation is per-
formed only on the training set. The dataset consisted 
of a total of 20276 images, including 1992 perfect 
wood images and 18284 defective wood images. The 
dataset was randomly divided into three subsets: 70 % 
for training, 15 % for validation, and 15 % for testing.

6 different well-known CNN architectures (VG-
GNet, ResNet50, MobileNet, DenseNet121, Xception 
and InceptionV3) were trained for wood defect detec-
tion using images. Each of the architectures was trained 
using the same hyperparameters. Instead of starting 
education from scratch, the transfer learning method 
was preferred. With this method, it is aimed to prevent 
overfitting, save time and increase accuracy. ImageNet 
weights were used for the weights of the network. 
Well-known transfer learning architectures have fea-
ture extractor layers and an additional classifier soft-
max layer. It also uses the “adam” activation function 
for activation within the network. For the experiments, 
first the batch normalization layer, the fully connected 
layer and the dropout layers with a ratio of 0.25 were 
added to the softmax layer of these architectures. The 
purpose of this is to prevent overfitting of the network.

In order to provide comparative and comprehen-
sive analysis, different optimizers such as Adam, RM-
Sprop, Adadelta, Adagrad and SGD were used in the 
experiments. At the same time, for the most successful 
optimizer, 256, 512, 1024 and 2048 neurons are added 
to each of the architectures and their performances are 
measured separately.

The learning rates of the networks at the begin-
ning of the training were determined as standard 
0.0001, and the validation loss was checked in each 
training cycle, and if the loss did not decrease for 5 
epochs, the learning rate was reduced by 50 %. Thus, it 
is aimed to use dynamic learning rate. Since the study 
involved many experiments and comparative analysis, 
the number of epochs was determined as 20, consider-
ing the training times. Batch size was set to 64, consid-
ering the ram and graphics card capacity and data size.

Experiments were carried out in the Kaggle ker-
nels cloud environment using Google. The infrastruc-
ture is on the Nvidia Tesla P100 graphics card. Python 
programming language was used in the application 
software.

2.7 	 Evaluation metrics
2.7. 	Mjerni podatci za ocjenjivanje

Accuracy
Chicco and Jurman (2020) presented that the ac-

curacy metric is a ratio between correctly estimated 
data points and all the data points in the dataset. Eq. 1 
expresses the formula of accuracy metrics.

	 	 (1)

TP, TN, FP, and FN are abbreviations that represent the 
terms true positive, true negative, false positive, and 
false negative.
Precision

The precision score is expressed as a score be-
tween true positive and all the predicted number of 
samples which are presented as positive (Power, 2020). 
Eq. 2 indicates that precision score. 

	 	 (2)

Recall
Power (2020) defined the recall score which is a 

ratio between true positive instances and the actual 
number of samples represented as positive. Eq. 3 illus-
trates the recall score. 

	 	 (3)

F1 Score
According to Chicco and Jurman (2020), the F1 

score is a metric that calculates the harmonic mean of 
precision and recall, as described in Eq. 4.

	(4)

Regarding all evaluation metrics, the worst value 
is 0, whereas the best value is 1. 
AUC

The Area Under the Curve (AUC) quantifies the 
extent of discrimination ability of a classification ar-
chitecture by measuring the area beneath the ROC 
Curve. It provides a measure of how well the architec-
ture can differentiate between positive and negative 
examples. As the AUC value increases, indicating a 
larger area under the curve, the discrimination ability 
of the architecture improves (Adegun and Viriri, 2020).
Error Rate

Error Rate indicates the ratio of the absolute dif-
ference between the true value and the value obtained 
by the classifier (Ergün and Kılıç, 2021).

3 	 RESULTS AND DISCUSSION
3. 	REZULTATI I RASPRAVA

This section contains wood defect classification 
results of 6 different transfer learning architectures. 
Experimental results are performed with different 
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numbers of fully connected layer neurons and different 
optimization algorithms added to the architectures, and 
the results are presented comparatively. First, architec-
tures were trained with optimization algorithms and 
the most successful optimizer was determined. In the 
next stage, experiments were carried out by combining 
the most successful optimizer with different fully con-
nected layer neurons. The performance of the architec-
tures used to classify imperfect and perfect timbers is 
shown in Table 2. Experiments are performed with the 
augmented and balanced dataset. 

Table 2 shows that the most successful results of 
the different architectures used for the experiments were 
obtained with the RMSprop optimizer. The most suc-
cessful result was obtained as 97.47 % with the VGG-
Net-16 architecture with 256 neurons. The results show 
that SGD and Adadelta optimizers produce lower results 
and fail more than others. Adagrad is the optimizer that 
provides results closest to RMSprop in all architectures. 
Although Adam provided the most successful perfor-
mance in large-scale image classification competitions 
such as ImageNet, it fell behind RMSprop and Adagrad 
in this study for the detection of wood defects.

Experiments were conducted with four different 
variables, 256, 512, 1024 and 2048 neurons, with the 
RMSprop optimization algorithm that gives the best 
result as shown in Table 3.

In the experiments conducted with different neu-
ron numbers using the RMSprop algorithm, the follow-
ing accuracy was found: VGG16 1024 neurons - 97.50 
%, Mobilenet 256 - neurons 97.37 %, Resnet50 256 - 
neurons 97.34 %, DenseNet121 2048 neurons - 97.34 
%, Inceptionv3 2048 neurons - 97.24 %. Increasing the 
ResNet50 architecture with 256 neurons did not im-
prove accuracy. The Xception architecture achieved 
the highest accuracy at 512 neurons. In Densenet121 
and InceptionV3 architectures, the highest accuracy 
was achieved at 2048 neurons. Among all experiments, 
the Xception architecture RMSprop optimization algo-
rithm gave the highest accuracy result of 97.57 % with 
512 neurons. 

Although the Xception architecture reaches 97.57 
% accuracy, the training and testing time is more than 2 
times that of the MobileNet architecture. MobileNet ar-
chitecture reaches 97.37 % accuracy, which is close to 
the highest result in the shortest time. At the same time, 

Table 2 The best results of CNN architectures and optimization algorithms after 20 epochs
Tablica 2. Najbolji rezultati CNN arhitekturâ i optimizacijskih algoritama nakon 20 epoha

CNN model
CNN model

Optimization algorithm
Optimizacijski algoritam

Precision
Preciznost

Recall
Opoziv

F1-score ROC Time
Vrijeme

Accuracy
Točnost

VGG16 Adam 0.9706 0.9698 0.9701 0.9884 309.44 s 0.9698
VGG16 RMSprop* 0.9754 0.9747 0.9750 0.9914 309.19 s 0.9747*
VGG16 Adagrad 0.9705 0.9711 0.9707 0.9918 309.92 s 0.9711
VGG16 SGD 0.9549 0.9566 0.9530 0.9885 308.92 s 0.9566
VGG16 Adadelta 0.9616 0.9586 0.9597 0.9833 312.30 s 0.9586
MobileNet Adam 0.9720 0.9701 0.9708 0.9866 148.97 s 0.9701
MobileNet RMSprop* 0.9749 0.9737 0.9742 0.9880 156.01 s 0.9737*
MobileNet Adagrad 0.9633 0.9612 0.9620 0.9840 146.99 s 0.9612
MobileNet SGD 0.9542 0.9533 0.9537 0.9781 145.91 s 0.9533
MobileNet Adadelta 0.9316 0.9316 0.9316 0.9565 145.02 s 0.9316
ResNet50 Adam 0.9709 0.9684 0.9693 0.9899 260.55 s 0.9684
ResNet50 RMSprop* 0.9740 0.9734 0.9736 0.9920 258.28 s 0.9734*
ResNet50 Adagrad 0.9715 0.9701 0.9706 0.9851 259.85 s 0.9701
ResNet50 SGD 0.9695 0.9635 0.9653 0.9880 264.58 s 0.9635
ResNet50 Adadelta 0.9567 0.9556 0.9561 0.9817 260.07 s 0.9556
DenseNet121 Adam* 0.9715 0.9714 0.9715 0.9911 268.23 s 0.9714*
DenseNet121 RMSprop 0.9653 0.9648 0.9651 0.9878 267.61 s 0.9648
DenseNet121 Adagrad 0.9689 0.9668 0.9676 0.9868 266.89 s 0.9668
DenseNet121 SGD 0.9692 0.9665 0.9665 0.9882 266.62 s 0.9665
DenseNet121 Adadelta 0.9580 0.9536 0.9553 0.9797 267.39 s 0.9536
XCeption Adam 0.9711 0.9678 0.9689 0.9892 389.93 s 0.9678
XCeption RMSprop* 0.9756 0.9756 0.9734 0.9911 383.37 s 0.9724*
XCeption Adagrad 0.9662 0.9635 0.9645 0.9823 384.23 s 0.9635
XCeption SGD 0.9626 0.9579 0.9596 0.9828 383.87 s 0.9579
XCeption Adadelta 0.9585 0.9464 0.9501 0.9774 385.66 s 0.9464
InceptionV3 Adam 0.9699 0.9691 0.9695 0.9887 200.64 s 0.9691
InceptionV3 RMSprop* 0.9732 0.9717 0.9723 0.9915 198.71 s 0.9717*
InceptionV3 Adagrad 0.9649 0.9619 0.9630 0.9873 199.61 s 0.9619
InceptionV3 SGD 0.9643 0.9615 0.9626 0.9852 199.06 s 0.9615
InceptionV3 Adadelta 0.9444 0.9352 0.9386 0.9676 199.59 s 0.9352
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the InceptionV3 architecture, which is low in terms of 
time, reaches 97.24 % accuracy with 2048 neurons.

The confusion matrix of the test set of the Xcep-
tion architecture, which achieved the most successful 

accuracy rate according to the experiments, is shown in 
Figure 3.

The ROC curve shows how well classifiers sepa-
rate positive and negative examples. One side of the 
ROC curve gives the true positive rate, and the other 
side gives the false positive rate. The area under the 
curve shows the AUC score. The ROC curve showing 

Table 3 CNN architectures, RMSprop optimizer and neuron count performances
Tablica 3. CNN arhitekture, RMSprop optimizator i performanse brojenja neurona

CNN model
CNC model

Optimization algorithm 
/ number of neurons

Optimizacijski algoritam 
/ broj neurona

Precision
Preciznost

Recall
Opoziv

F1-score
F1-rezultat ROC Time

Vrijeme
Accuracy
Točnost

VGG16 RMSprop / 256 0.9754 0.9747 0.9750 0.9914 309.19 s 0.9747
VGG16 RMSprop / 512 0.9730 0.9730 0.9730 0.9905 308.68 s 0.9730
VGG16 RMSprop / 1024* 0.9754 0.9750 0.9752 0.9920 309.74 s 0.9750*
VGG16 RMSprop / 2048 0.9729 0.9724 0.9726 0.9906 308.78 s 0.9724
MobileNet RMSprop / 256* 0.9749 0.9737 0.9742 0.9880 156.01 s 0.9737*
MobileNet RMSprop / 512 0.9704 0.9698 0.9700 0.9813 145.78 s 0.9698
MobileNet RMSprop / 1024 0.9722 0.9704 0.9711 0.9883 145.86 s 0.9704
MobileNet RMSprop / 2048 0.9751 0.9734 0.9740 0.9910 147.48 s 0.9734
ResNet50 RMSprop / 256* 0.9740 0.9734 0.9736 0.9920 258.28 s 0.9734
ResNet50 RMSprop / 512 0.9628 0.9632 0.9630 0.9885 258.92 s 0.9632
ResNet50 RMSprop / 1024 0.9741 0.9724 0.9730 0.9910 259.27 s 0.9724
ResNet50 RMSprop / 2048 0.9726 0.9717 0.9721 0.9906 259.00 s 0.9717
DenseNet121 RMSprop / 256 0.9653 0.9648 0.9651 0.9878 267.61 s 0.9648
DenseNet121 RMSprop / 512 0.9697 0.9684 0.9689 0.9893 266.79 s 0.9684
DenseNet121 RMSprop / 1024 0.9734 0.9724 0.9728 0.9909 267.34 s 0.9724
DenseNet121 RMSprop / 2048* 0.9748 0.9734 0.9739 0.9915 267.08 s 0.9734*
XCeption RMSprop / 256 0.9756 0.9756 0.9734 0.9911 383.37 s 0.9724
XCeption RMSprop / 512* 0.9769 0.9757 0.9761 0.9870 383.81 s 0.9757*
XCeption RMSprop / 1024 0.9755 0.9753 0.9754 0.9923 383.54 s 0.9753
XCeption RMSprop / 2048 0.9636 0.9642 0.9639 0.9737 383.84 s 0.9642
InceptionV3 RMSprop / 256 0.9732 0.9717 0.9723 0.9915 198.71 s 0.9717
InceptionV3 RMSprop / 512 0.9737 0.9714 0.9722 0.9928 198.73 s 0.9714
InceptionV3 RMSprop / 1024 0.9706 0.9691 0.9697 0.9871 198.59 s 0.9691
InceptionV3 RMSprop / 2048* 0.9720 0.9724 0.9721 0.9901 199.45 s 0.9724*
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the discrimination ability of the Xception architecture, 
which achieved the most successful results, is shown in 
Figure 4.

4 	 CONCLUSIONS
4. 	ZAKLJUČAK

Wood defect detection is an important issue in 
quality and production processes in the woodworking 
industry worldwide. In this study, deep learning-based 
classification is performed for the detection of imper-
fect and perfect wood images, and the performance of 
the architectures used for classification is compared. 
Deep learning architectures are classified by learning 
features from the representation of the data. The size 
and diversity of the data set increases the classification 
performance. For this reason, the data is divided into 
70 % training, 15 % validation and 15 % testing. In the 
dataset set, 12798 imperfect and 12798 perfect wood 
images are separated for training. 25596 images are al-
located for training. For validation, 2473 images are 
separated into 15 % of the defective wood images. For 
validation, 299 images are reserved as 15 % of the per-
fect wood images. For the test, 2473 images are allo-
cated as 15% of the defective wood images. For test-
ing, 299 images are allocated as 15 % of perfect wood 
images. Data balancing is done only in training. Data 
augmentation is done to equalize the number of perfect 
wood images to the number of imperfect wood images 
to make the data balanced. Horizontal and vertical 
flips, angle changes, zooming, random contrast and 
brightness enhancement techniques are used in the 
training phase to improve the performance of the clas-
sification architecture and prevent overfitting.

VGG-16, MobileNet, DenseNet-121, ResNet-50, 
Xception, InceptionV3 architectures are used for the 
experiments. To determine the best optimization algo-
rithm for the architectures, Adam, RMSprop, Adagrad, 
SGD, Adadelta are used. Experiments are performed 
with 256, 512, 1024, 2048 neurons to determine the 
performance of the architecture and optimization algo-
rithms.

Experiments on the dataset used Xception archi-
tecture - RMSprop algorithm - 512 neurons with 97.57 
% classification accuracy and 99.11 % ROC score. The 
most unsuccessful result was achieved by the Mo-
bileNet architecture - Adadelta optimization algorithm 
- 93.16 % classification accuracy with 256 neurons. 
These results could not be compared since no binary 
classification has ever been done in the literature for 
this dataset. In the light of the results, it can be said that 
a very successful performance was obtained for defect 
detection in wood with heterogeneous and 10 different 
defects. In future studies, it is aimed to increase the 
classification success by automatically segmenting the 

defect region due to the noise in the images to be used 
in wood defect detection, enabling deep learning archi-
tectures to better see distinctive features and improving 
the classifier hyper-parameters.
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