Lower bounds for the number of local nearrings on groups of order p^{3*}

Iryna Raievska and Maryna Raievska †

Institute of Mathematics, University of Warsaw, 2 Banacha St., 02-097 Warsaw, Poland Department of Algebra and Topology, Institute of Mathematics of NAS of Ukraine, 3 Tereshchenkivs'ka St., 01 024 Kyiv, Ukraine

Received May 10, 2022; accepted January 30, 2024

Abstract. Lower bounds for the number of local nearrings on groups of order p^3 are obtained. On each non-metacyclic non-abelian or metacyclic abelian groups of order p^3 there exist at least p + 1 non-isomorphic local nearrings.

AMS subject classifications: 16Y30, 20D15

Keywords: local nearring, p-group, metacyclic group, non-metacyclic group

1. Introduction

A study of local nearrings was first initiated in [11] and it was found that the additive group of a finite zero-symmetric local nearring is a p-group. In [12], it is shown that, up to isomorphism, there exist p-1 local zero-symmetric nearrings with elementary abelian additive groups of order p^2 in which the subgroups of non-invertible elements have order p, that is, those nearrings which are not nearfields. Together with the fundamental paper [22] and [5], a complete description of all zero-symmetric local nearrings of order p^2 is obtained. For instance, every nearring with identity on a cyclic group is a commutative ring.

Note that there is no nearring with identity whose additive group is isomorphic to the quaternion group Q_8 [4]. The dihedral group D_4 of order 8 cannot be the additive group of local nearrings [14]. The existence of local nearrings on finite abelian pgroups is proved in [13], i.e. every non-cyclic abelian p-group of order $p^n > 4$ is the additive group of a zero-symmetric local nearring which is not a ring. Also, it is established in [18] that an arbitrary non-metacyclic Miller–Moreno p-group of order $p^n > 8$ is the additive group of some local nearring, and the multiplicative group of such nearring has order $p^{n-1}(p-1)$. All nearrings with identity up to the order of 31 are contained in the package SONATA [1] of the computer algebra system GAP [21].

In [17], it is proved that, up to an isomorphism, there exist at least p local nearrings on elementary abelian additive groups of order p^3 which are not nearfields. Lower bounds for the number of local nearrings on groups of order p^3 are obtained.

https://www.mathos.unios.hr/mc

^{*}This work was partially supported by the Polish Academy of Sciences (PAN) and the National Academy of Sciences (NAS).

[†]Corresponding author. *Email address:* raeirina@imath.kiev.ua (I. Raievska), raemarina@imath.kiev.ua (M. Raievska)

^{©2024} School of Applied Mathematics and Informatics, University of Osijek

It is established that on each non-metacyclic non-abelian or metacyclic abelian groups of order p^3 there exist at least p + 1 non-isomorphic local nearrings.

2. Preliminaries

We will give the basic definitions.

Definition 1. A non-empty set R with two binary operations "+" and " \cdot " is a nearring if:

- 1) (R, +) is a group with neutral element 0;
- 2) (R, \cdot) is a semigroup;
- 3) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in R$.

Such a nearring is called a left nearring. If axiom 3) is replaced by an axiom $(x + y) \cdot z = x \cdot z + y \cdot z$ for all $x, y, z \in R$, then we get a right nearring.

The group (R, +) of a nearring R is denoted by R^+ and called the *additive group* of R. It is easy to see that for each subgroup M of R^+ and for each element $x \in R$ the set $xM = \{x \cdot y | y \in M\}$ is a subgroup of R^+ and in particular $x \cdot 0 = 0$. If, in addition, $0 \cdot x = 0$ for all $x \in R$, then the nearring R is called *zero-symmetric*. Furthermore, R is a *nearring with identity i* if the semigroup (R, \cdot) is a monoid with identity element i. In the latter case, the group of all invertible elements of the monoid (R, \cdot) is denoted by R^* and called the *multiplicative group* of R. A subgroup M of R^+ is called R^* -invariant if $rM \leq M$ for each $r \in R^*$, and (R, R)-subgroup if $xMy \subseteq M$ for arbitrary $x, y \in R$.

The following assertion is well-known (see, for instance, [5], Theorem 3).

Lemma 1. The exponent of the additive group of a finite nearring R with identity i is equal to the additive order of i which coincides with the additive order of every invertible element of R.

Definition 2. A nearring R with identity is called **local** if the set L of all noninvertible elements of R forms a subgroup of the additive group R^+ .

Throughout this paper, L will denote the subgroup of non-invertible elements of R.

The following lemma characterizes the main properties of finite local nearrings (see [2], Lemma 3.2).

Lemma 2. Let R be a local nearring with identity i. Then the following statements hold:

- 1) L is an (R, R)-subgroup of R^+ ;
- 2) each proper R^* -invariant subgroup of R^+ is contained in L;
- 3) the set i + L forms a subgroup of the multiplicative group R^* .

Finite local nearrings with a cyclic subgroup of non-invertible elements are described in [16, Theorem 1].

Theorem 1. Let R be a local nearring of order p^n with n > 1, whose subgroup L is cyclic and non-trivial. Then the additive group R^+ is either cyclic or an elementary abelian group of order p^2 . In the first case, R is a commutative local ring, which is isomorphic to the residual ring $\mathbb{Z}/p^n\mathbb{Z}$ with $n \ge 2$; in the other case, there exist p non-isomorphic such nearrings R with |L| = p, from which p-1 are zero-symmetric nearrings and their multiplicative groups R^* are isomorphic to a semidirect product of two cyclic subgroups of orders p and p-1.

As a direct consequence of Theorem 1, we have the following result.

Corollary 1. Let R be a local nearring of order p^3 which is not isomorphic to $\mathbb{Z}/p^3\mathbb{Z}$ or is not a nearfield. Then the subgroup of non-invertible elements L is an elementary abelian group of order p^2 .

The following statement contains a classification of groups of order p^3 (see [6]).

Proposition 1. Let G be a group of order p^3 . The defining relations of such nonisomorphic groups are given:

Abelian groups:

- 1) $a^{p3} = 1.$
- 2) $a^{p^2} = 1, b^p = 1, ab = ba.$
- 3) $a^p = b^p = c^p = 1$, ab = ba, ac = ca, cb = bc.

Non-abelian groups of order $2^3 = 8$:

- 4) a dihedral group, $a^4 = 1$, $b^2 = 1$, $a^{-1}b = ba$.
- 5) a quaternion group, $a^4 = 1$, $b^2 = a^2$, $a^{-1}b = ba$.

Non-abelian groups of order p^3 , p is odd:

- 6) $a^{p^2} = 1, b^p = 1, b^{-1}ab = a^{1+p}.$
- 7) $a^p = 1, b^p = 1, c^p = 1, ab = bac, ac = ca, bc = cb.$

Next, we denote by G_1 a group with relations 7), by G_2 a group with relations 6), and by G_3 a group with relations 2) of Proposition 1.

We define group G_1 to be the additively written group generated by a, b, c subject to the relations ap = bp = cp = 0, a + b = b + a + c, a + c = c + a, b + c = c + b.

The following two lemmas are given in [18].

Lemma 3. Let $k, l \in \mathbb{N}$. Then in G_1 , the equalities -ak - bl + ak + bl = c(kl) and bl + ak = -c(kl) + ak + bl hold.

Proof. Since -b + a + b = a + c, we have -bl + a + bl = a + cl. Then

$$-bl + ak + bl = (a + cl)k = ak + ckl.$$

Therefore, -ak - bl + ak + bl = ckl.

Lemma 4. Let $k, l, r \in \mathbb{N}$. Then in G_1 , we have $(ak+bl)r = akr + blr - ckl\binom{r}{2}$.

Proof. The proof will be carried out by induction on r. For r = 1, the equality is valid. Let for r the equality hold, i.e.,

$$(ak+bl)r = akr + blr - ckl\binom{r}{2}.$$

Let us prove the equality for r + 1:

$$(ak+bl)(r+1) = akr + blr + ak + bl - ckl\binom{r}{2}$$

= $ak(r+1) + bl(r+1) - cklr - ckl\binom{r}{2}$
= $ak(r+1) + bl(r+1) - ckl(r + \binom{r}{2})$
= $ak(r+1) + bl(r+1) - ckl\binom{r+1}{2}$.

Therefore, the equality is valid for any r.

Let additively written groups of type H have a finite representation in the form

$$\langle a, b | ap^k, bp, -b + a + b - a(1 + p^{k-1}) \rangle,$$

where $k \ge 2$ and p is prime (see [8]).

The number of non-isomorphic nearrings with identity on groups of type H is given in [8]. It is obvious that for k = 2 and p > 2 a group of type H will be isomorphic to the group G_2 .

As noted above, there exist local nearrings on all abelian groups. Also, according to [18] and [8], there exist local nearrings on G_1 and G_2 , respectively. So, we have the following result.

Proposition 2. On each group of order p^3 with p > 2 there exists a local nearring.

Denote by n(G) the number of all non-isomorphic local nearrings on the group G.

3. Nearrings with identity whose additive groups are isomorphic to G_1

Let R be a nearring with identity whose additive group of R^+ is isomorphic to G_1 . Then $R^+ = \langle a \rangle + \langle b \rangle + \langle c \rangle$ for some elements a, b and c of R satisfying the relations ap = 0, bp = 0, cp = 0, a + b = b + a + c, a + c = c + a and b + c = c + b. In particular, each element $x \in R$ is uniquely written in the form $x = ax_1 + bx_2 + cx_3$ with coefficients $0 \leq x_1 < p, 0 \leq x_2 < p$ and $0 \leq x_3 < p$.

We will show that there does not exist a nearring in which the identity is in the center of the additive group G_1 . Note that the subgroup $\langle c \rangle$ is the center of G_1 .

Remark 1. Let c be an identity of R, i. e. xc = cx = x for each $x \in R$. Furthermore, for each $x \in R$ there exist coefficients $\alpha(x)$, $\beta(x)$, $\gamma(x)$, $\lambda(x)$, $\mu(x)$ and $\nu(x)$ such that $xb = a\alpha(x) + b\beta(x) + c\gamma(x)$ and $xa = a\lambda(x) + b\mu(x) + c\nu(x)$. It is clear that they are uniquely defined modulo p, so that some mappings $\alpha : R \to \mathbb{Z}_p$, $\beta : R \to \mathbb{Z}_p$, $\gamma : R \to \mathbb{Z}_p$, $\lambda : R \to \mathbb{Z}_p$, $\mu : R \to \mathbb{Z}_p$ and $\nu : R \to \mathbb{Z}_p$ are determined.

Further, using Lemma 3, we derive

$$\begin{aligned} xc &= -xa - xb + xa + xb = -c\nu(x) - b\mu(x) - a\lambda(x) - c\gamma(x) - b\beta(x) - a\alpha(x) \\ &+ a\lambda(x) + b\mu(x) + c\nu(x) + a\alpha(x) + b\beta(x) + c\gamma(x) \\ &= -b\mu(x) - a\lambda(x) - b\beta(x) - a\alpha(x) + a\lambda(x) + b\mu(x) + a\alpha(x) + b\beta(x) \\ &= -b\mu(x) + c\lambda(x)\beta(x) - b\beta(x) - a\lambda(x) - a(\alpha(x) - \lambda(x)) \\ &+ b\mu(x) + a\alpha(x) + b\beta(x) = c\lambda(x)\beta(x) - b(\mu(x) + \beta(x)) - a\alpha(x) \\ &+ b\mu(x) + a\alpha(x) + b\beta(x) = c\lambda(x)\beta(x) - b(\mu(x) + \beta(x)) \\ &- a\alpha(x) - c\mu(x)\alpha(x) + a\alpha(x) + b\mu(x) + b\beta(x) \\ &= c(\lambda(x)\beta(x) - \mu(x)\alpha(x)) - b(\mu(x) + \beta(x)) + b\mu(x) + b\beta(x) \\ &= c(\lambda(x)\beta(x) - \mu(x)\alpha(x)) \neq x. \end{aligned}$$

Therefore, there does not exist a nearring in which the identity is in the center of the additive group G_1 .

Since the order of the element a is equal to the exponent of group G, then by Lemma 1 we can assume that a is an identity of R, i.e. ax = xa = x for each $x \in R$. Furthermore, for each $x \in R$ there exist coefficients $\alpha(x)$, $\beta(x)$ and $\gamma(x)$ such that $xb = a\alpha(x) + b\beta(x) + c\gamma(x)$. It is clear that they are uniquely defined modulo p, so that some mappings $\alpha \colon R \to \mathbb{Z}_p$, $\beta \colon R \to \mathbb{Z}_p$ and $\gamma \colon R \to \mathbb{Z}_p$ are determined.

Nearrings with identity and local nearrings on non-metacyclic Miller–Moreno groups were studied in [18] and [15]. Lemmas 5, 6, 9 are based on the results of these papers.

Lemma 5. Let R be a nearring whose additive group is G_1 with identity a. If $x = ax_1 + bx_2 + cx_3$, $y = ay_1 + by_2 + cy_3 \in R$, $xb = a\alpha(x) + b\beta(x) + c\gamma(x)$, then

$$xy = a(x_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2) + c(-x_1x_2\binom{y_1}{2}) - \alpha(x)\beta(x)\binom{y_2}{2} - x_2\alpha(x)y_1y_2 + x_3y_1 + \gamma(x)y_2 + x_1\beta(x)y_3 - x_2\alpha(x)y_3).$$

Moreover, for the mappings $\alpha \colon R \to \mathbb{Z}_p$, $\beta \colon R \to \mathbb{Z}_p$ and $\gamma \colon R \to \mathbb{Z}_p$ the following statements hold:

- (0) $\alpha(0) \equiv 0 \pmod{p}$, $\beta(0) \equiv 0 \pmod{p}$ and $\gamma(0) \equiv 0 \pmod{p}$ if and only if the nearring R is zero-symmetric;
- (1) $\alpha(xy) \equiv x_1 \alpha(y) + \alpha(x)\beta(y) \pmod{p}$,
- (2) $\beta(xy) \equiv x_2 \alpha(y) + \beta(x)\beta(y) \pmod{p}$,

(3)
$$\gamma(xy) \equiv -x_1 x_2 {\binom{\alpha(y)}{2}} - \alpha(x)\beta(x) {\binom{\beta(y)}{2}} - x_2 \alpha(x)\alpha(y)\beta(y)$$

 $+x_3 \alpha(y) + \gamma(x)\beta(y) + x_1\beta(x)\gamma(y) - x_2\alpha(x)\gamma(y) \pmod{p}.$

Proof. Since $0 \cdot a = a \cdot 0 = 0$, it follows that R is a zero-symmetric nearring if and only if

$$0 = 0 \cdot b = a\alpha(0) + b\beta(0) + c\gamma(0),$$

or equivalently $\alpha(0) \equiv 0 \pmod{p}$, $\beta(0) \equiv 0 \pmod{p}$ and $\gamma(0) \equiv 0 \pmod{p}$. Moreover, since c = -a - b + a + b and due to the left distributive law we have $0 \cdot c = -0 \cdot a - 0 \cdot b + 0 \cdot a + 0 \cdot b = 0$, whence

$$0 \cdot x = 0 \cdot (ax_1 + bx_2 + cx_3) = (0 \cdot a)x_1 + (0 \cdot b)x_2 + (0 \cdot c)x_3 = 0,$$

so that statement (0) holds.

Further, using Lemma 3, we derive

$$\begin{aligned} xc &= -xa - xb + xa + xb = -cx_3 - bx_2 - ax_1 - c\gamma(x) - b\beta(x) - a\alpha(x) \\ &+ ax_1 + bx_2 + cx_3 + a\alpha(x) + b\beta(x) + c\gamma(x) \\ &= -bx_2 - ax_1 - b\beta(x) - a\alpha(x) + ax_1 + bx_2 + a\alpha(x) + b\beta(x) \\ &= -bx_2 + cx_1\beta(x) - b\beta(x) - ax_1 - a(\alpha(x) - x_1) + bx_2 + a\alpha(x) + b\beta(x) \\ &= cx_1\beta(x) - b(x_2 + \beta(x)) - a\alpha(x) + bx_2 + a\alpha(x) + b\beta(x) \\ &= cx_1\beta(x) - b(x_2 + \beta(x)) - a\alpha(x) - cx_2\alpha(x) + a\alpha(x) \\ &+ bx_2 + b\beta(x) = c(x_1\beta(x) - x_2\alpha(x)) - b(x_2 + \beta(x)) \\ &+ bx_2 + b\beta(x) = c(x_1\beta(x) - x_2\alpha(x)). \end{aligned}$$

Further, using the left distributive law, we obtain

$$xy = (ax_1 + bx_2 + cx_3)y_1 + (a\alpha(x) + b\beta(x) + c\gamma(x))y_2 + (cx_1\beta(x) - x_2\alpha(x))y_3.$$

By Lemma 4, we get

$$(ax_1 + bx_2)y_1 = ax_1y_1 + bx_2y_1 - cx_1x_2\binom{y_1}{2},$$
$$(a\alpha(x) + b\beta(x))y_2 = a\alpha(x)y_2 + b\beta(x)y_2 - c\alpha(x)\beta(x)\binom{y_2}{2}$$

and

$$bx_2y_1 + a\alpha(x)y_2 = a\alpha(x)y_2 + bx_2y_1 - cx_2\alpha(x)y_1y_2.$$

Hence and using the left distributive law, we have

$$xy = a(x_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2) + c(-x_1x_2\binom{y_1}{2} - \alpha(x)\beta(x)\binom{y_2}{2} - x_2\alpha(x)y_1y_2 + x_3y_1 + \gamma(x)y_2 + x_1\beta(x)y_3 - x_2\alpha(x)y_3).$$

The associativity of multiplication in R implies that for all $x, y \in R$

$$(xy)b = x(yb)$$

According to $xb = a\alpha(x) + b\beta(x) + c\gamma(x)$, we obtain

(xy)b =
$$a\alpha(xy) + b\beta(xy) + c\gamma(xy)$$

and $yb = a\alpha(y) + b\beta(y) + c\gamma(y)$. Substituting the last equation into the right part of equality 1), we also have

$$\begin{aligned} x(yb) &= a(x_1\alpha(y) + \alpha(x)\beta(y)) + b(x_2\alpha(y) + \beta(x)\beta(y)) \\ &+ c(-x_1x_2\binom{\alpha(y)}{2} - \alpha(x)\beta(x)\binom{\beta(y)}{2} - x_2\alpha(x)\alpha(y)\beta(y) \\ &+ x_3\alpha(y) + \gamma(x)\beta(y) + x_1\beta(x)\gamma(y) - x_2\alpha(x)\gamma(y)). \end{aligned}$$

Since equality 1) implies the congruence of the corresponding coefficients in formulas 2) and 3), we obtain statements (1)-(3).

4. Local nearrings whose additive groups are isomorphic to G_1

Let R be a local nearring whose additive group of R^+ is isomorphic to G_1 . Then $R^+ = \langle a \rangle + \langle b \rangle + \langle c \rangle$ for some elements a, b and c of R satisfying the relations ap = 0, bp = 0, cp = 0, a + b = b + a + c, a + c = c + a and b + c = c + b. In particular, each element $x \in R$ is uniquely written in the form $x = ax_1 + bx_2 + cx_3$ with coefficients $0 \leq x_1 < p$, $0 \leq x_2 < p$ and $0 \leq x_3 < p$.

Since order of the element a is equal to the exponent of group G, then by Lemma 1 we can assume that a is an identity of R, i.e., ax = xa = x for each $x \in R$. Furthermore, for each $x \in R$ there exist coefficients $\alpha(x)$, $\beta(x)$ and $\gamma(x)$ such that $xb = a\alpha(x) + b\beta(x) + c\gamma(x)$. It is clear that they are uniquely defined modulo p, so that some mappings $\alpha : R \to \mathbb{Z}_p$, $\beta : R \to \mathbb{Z}_p$ and $\gamma : R \to \mathbb{Z}_p$ are determined.

By Corollary 1, L is the normal subgroup of order p^2 in R. Since L contains the derived subgroup of R^+ , it follows that $L = \langle b \rangle + \langle c \rangle$ and subgroup $\langle c \rangle$ is the center of R^+ . Since $R^* = R \setminus L$, it follows that $R^* = \{ax_1 + bx_2 + cx_3 \mid x_1 \neq 0 \pmod{p}\}$ and $x = ax_1 + bx_2 + cx_3$ is invertible if and only if $x_1 \neq 0 \pmod{p}$.

Lemma 6. Let R be a local nearring whose additive group is G_1 with identity a. If $x = ax_1 + bx_2 + cx_3$, $y = ay_1 + by_2 + cy_3 \in R$, $xb = a\alpha(x) + b\beta(x) + c\gamma(x)$, then

$$x \cdot y = ax_1y_1 + b(x_2y_1 + \beta(x)y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + \gamma(x)y_2 + x_1\beta(x)y_3). \ (*)$$

Moreover, for the mappings $\beta \colon R \to \mathbb{Z}_p$ and $\gamma \colon R \to \mathbb{Z}_p$ the following statements hold:

- (0) $\alpha(0) \equiv 0 \pmod{p}$, $\beta(0) \equiv 0 \pmod{p}$ and $\gamma(0) \equiv 0 \pmod{p}$ if and only if the nearring R is zero-symmetric;
- (1) $\alpha(x) \equiv 0 \pmod{p};$

(2) if $\beta(x) \equiv 0 \pmod{p}$, then $x_1 \equiv 0 \pmod{p}$;

(3)
$$\beta(xy) \equiv \beta(x)\beta(y) \pmod{p};$$

(4) $\gamma(xy) \equiv \gamma(x)\beta(y) + x_1\beta(x)\gamma(y) \pmod{p}$.

Proof. Since $L = \langle b \rangle + \langle c \rangle$ and L is the (R, R)-subgroup in R^+ , by statement 1) of Lemma 2 it follows that $xb \in L$, hence $a\alpha(x) \in L$ for each $x \in R$. Thus $\alpha(x) \equiv 0$ (mod p) and we get statement (1). Substituting the obtained value of $\alpha(x) \equiv 0$ (mod p) into the formulas from Lemma 5, we obtain statements (3) and (4) of the lemma and the formula for the product xy. Putting y = c, we get $xc = c(x_1\beta(x))$. Hence, if $\beta(x) \equiv 0 \pmod{p}$, then xc = 0, and so $x \in L$. Therefore, $x_1 \equiv 0$ (mod p), as claimed in statement (2). Indeed, statement (0) repeats statement (0) of Lemma 5.

It is known that for such groups the commutator $D(R^+)$ coincides with the center $Z(R^+)$ and has the order p.

Lemma 7. The commutator $D(R^+)$ is an ideal in the local nearring R.

Proof. Let $x = ax_1 + bx_2 + cx_3$, $y = ay_1 + by_2 + cy_3 \in R$, $z = cz_3 \in D(R^+)$. Let us check whether $D(R^+)$ is an ideal in R, i.e., $(z + x)y - xy \in D(R^+)$. To do this, we use formula (*) for multiplying elements in R. We obtain

$$\begin{aligned} (z+x)y - xy \\ &= (cz_3 + ax_1 + bx_2 + cx_3)(ay_1 + by_2 + cy_3) - (ax_1 + bx_2 + cx_3)(ay_1 + by_2 + cy_3) \\ &= (ax_1 + bx_2 + c(x_3 + z_3))(ay_1 + by_2 + cy_3) - (ax_1 + bx_2 + cx_3)(ay_1 + by_2 + cy_3) \\ &= ax_1y_1 + b(x_2y_1 + \beta(x)y_2) + c(-x_1x_2 \binom{y_1}{2} + x_3y_1 + z_3y_1 + \gamma(z+x)y_2 + x_1\beta(x)y_3) \\ &- ax_1y_1 - b(x_2y_1 + \beta(x)y_2) - c(-x_1x_2 \binom{y_1}{2} + x_3y_1 + \gamma(x)y_2 + x_1\beta(x)y_3) \\ &= ax_1y_1 + b(x_2y_1 + \beta(x)y_2) - ax_1y_1 - b(x_2y_1 + \beta(x)y_2) + c(z_3y_1 + (\gamma(z+x) - \gamma(x))y_2) \\ &= ax_1y_1 + b(x_2y_1 + \beta(x)y_2) - ax_1y_1 - b(x_2y_1 + \beta(x)y_2) - c(x_1y_1(x_2y_1 + \beta(x)y_2)) \\ &- b(x_2y_1 + \beta(x)y_2) + c(z_3y_1 + (\gamma(z+x) - \gamma(x))y_2) \\ &= c(z_3y_1 + (\gamma(z+x) - \gamma(x))y_2 - x_1x_2y_1^2 - x_1y_1y_2\beta(x)) \in D(R^+). \end{aligned}$$

Therefore, $D(R^+)$ is an ideal of R.

Lemma 8. Let R be a local nearring whose additive group of R^+ is isomorphic to G_1 . If $x = ax_1 + bx_2 + cx_3$, $y = ay_1 + by_2 + cy_3 \in R$, then the mappings $\beta \colon R \to \mathbb{Z}_{p^2}$ and $\gamma \colon R \to \mathbb{Z}_p$ from (*) can be one of the following:

- 1) $\beta(x) = x_1^i$ and $\gamma(x) = 0$ (0 < i < p);
- 2) $\beta(x) = 1$ and $\gamma(x) = 0$;
- 3) $\beta(x) = x_1^2 \text{ and } \gamma(x) = x_1 x_2.$

Proof. 1) Since zero-symmetric local nearrings of order p^2 are classified in [12], it follows that all non-isomorphic factor-nearrings with derived subgroup $N = R/D(R^+)$ are described. That is, you can apply the multiplication formula from the specified work, pre-adapting it for the left local nearrings. It is clear that $N^+ = \langle a \rangle + \langle b \rangle$. Namely, let $x = ax_1 + bx_2$ and $y = ay_1 + by_2$ be elements of N; then

$$xy = ax_1y_1 + b(x_2y_1 + \rho(x_1)y_2).$$

Moreover, in [12, Theorem 1.6] and [12, Corollary 1.11] it was shown that there are, up to isomorphism, p-1 local nearrings (which are not nearfields) with the additive group of order p^2 and exponent p. These local nearrings are completely determined by maps $\rho: \mathbb{Z}_p \to \mathbb{Z}_p$ such that (i) $\rho(x) = 0$ if and only if x = 0 and (ii) ρ is a group endomorphism of $(\mathbb{Z}_p - \{0\}, \cdot)$ [10]. So ρ takes one of p-1 values for zero-symmetric nearrings.

On the other hand, by the formula (*) we have:

$$xy = ax_1y_1 + b(x_2y_1 + \beta(x)y_2).$$

Equating the coefficients for generators, we obtain: $\beta(x)y_2 = \rho(x_1)y_2$. Hence $\beta(x) = \rho(x_1)$. So there exist p - 1 different zero-symmetric nearrings.

2) It is obvious that the multiplication (*) with the functions $\beta(x) = 1$ and $\gamma(x) = 0$ is the constant nearring multiplication.

3) We will show further that for $\beta(x) = x_1^2$ and $\gamma(x) = x_1x_2$ the multiplication (*), i.e.

$$x * y = ax_1y_1 + b(x_2y_1 + x_1^2y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1x_2y_2 + x_1^3y_3),$$

is a nearring multiplication. By Lemma 6 (3) and (4), the functions $\beta(x)$ and $\gamma(x)$ need to satisfy the following conditions: $\beta(xy) = \beta(x)\beta(y)$ and $\gamma(xy) = \beta(y)\gamma(x) + x_1\beta(x)\gamma(y)$. We check that $\beta(xy) = (x_1y_1)^2 = x_1^2y_1^2 = \beta(x)\beta(y)$ and $\gamma(xy) = x_1y_1(x_2y_1 + x_1y_2) = x_1x_2y_1^2 + x_1^2y_1y_2 = \beta(y)\gamma(x) + x_1\beta(x)\gamma(y)$. Therefore, $\beta(x)$ and $\gamma(x)$ satisfy conditions (3) and (4) of Lemma 6.

It is easy to see that the element a is a multiplicative identity for (R, *) and $x * b = bx_1^2 + cx_1x_2$ for each $x \in R$. We show that with respect to the operations "+" and "*" the system (R, +, *) is a nearring with identity element a. Clearly, it suffices to check that if $z = az_1 + bz_2 + cz_3$ is an arbitrary element of R, then x * (y + z) = x * y + x * z and (x * y) * b = x * (y * b).

Indeed, we have

$$x * z = ax_1z_1 + b(x_2z_1 + x_1^2z_2) + c(-x_1x_2\binom{z_1}{2} + x_3z_1 + x_1x_2z_2 + x_1^3z_3)$$

and

$$b(x_2y_1 + x_1^2y_2) + a(x_1z_1) = a(x_1z_1) + b(x_2y_1 + x_1^2y_2) - c(x_1z_1(x_2y_1 + x_1^2y_2))$$

by Lemma 3. We get

$$\begin{aligned} x*y+x*z &= a(x_1y_1+x_1z_1)+b(x_2y_1+x_1^2y_2+x_2z_1+x_1^2z_2) \\ &+ c(-x_1x_2\binom{y_1}{2}+x_3y_1+x_1x_2y_2+x_1^3y_3 \\ &- x_1x_2\binom{z_1}{2}+x_3z_1+x_1x_2z_2+x_1^3z_3-x_1z_1(x_2y_1+x_1^2y_2)) \\ &= ax_1(y_1+z_1)+b(x_2(y_1+z_1)+x_1^2(y_2+z_2)) \\ &+ c(-x_1x_2\binom{(y_1+z_1)}{2}+x_3(y_1+z_1)+x_1x_2(y_2+z_2)+x_1^3(y_3+z_3-z_1y_2)). \end{aligned}$$

On the other hand, $y + z = (ay_1 + by_2 + cy_3) + (az_1 + bz_2 + cz_3) = a(y_1 + z_1) + a(y_1 + bz_2 + cz_3) = a(y_1 + z_1) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2 + cz_3) = a(y_1 + bz_2 + cz_3) + a(y_1 + bz_2) +$ $b(y_2 + z_2) + c(y_3 + z_3 - z_1y_2)$ because $by_2 + az_1 = az_1 + by_2 - cz_1y_2$ by Lemma 3. Therefore,

$$\begin{split} x*(y+z) = & ax_1(y_1+z_1) + b(x_2(y_1+z_1)+x_1^2(y_2+z_2)) \\ & + c(-x_1x_2\binom{(y_1+z_1)}{2} + x_3(y_1+z_1) + x_1x_2(y_2+z_2) + x_1^3(y_3+z_3-z_1y_2)). \end{split}$$

Therefore, x * (y + z) = x * y + x * z, as desired. Next, $y * b = by_1^2 + cy_1y_2$ and so $x * (y * b) = b(x_1^2y_1^2) + c(x_1x_2y_1^2 + x_1^3y_1y_2) = b(x_1^2y_1^2) + b$ $b(x_1y_1)^2 + c(x_1x_2(x_2y_1 + x_1^2y_2)).$

On the other hand, $(x * y) * b = (ax_1y_1 + b(x_2y_1 + x_1^2y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + b(x_2y_1 + x_1^2y_2)) + c(-x_1x_2\binom{y_1}{2} + x_1y_1 + b(x_2y_1 + x_1^2y_2)) + c(-x_1x_2\binom{y_1}{2} + x_1y_1 + b(x_2y_1 + x_1^2y_2)) + c(-x_1x_2\binom{y_1}{2} + x_1y_1 + b(x_2y_1 + x_1y_1 + b(x_2y_1 + x_1y_2))) + c(-x_1x_2\binom{y_1}{2} + x_1y_1 + b(x_2y_1 + x_1y_2)) + c(-x_1x_2\binom{y_1}{2} + x_1y_1 + x_1y_2) + c(-x_1x_2\binom{y_1}{2} + x_2\binom{y_1}{2} + x_2\binom{y_1}{2}$ $x_1x_2y_2 + x_1^3y_3 + b = b(x_1y_1)^2 + c(x_1x_2(x_2y_1 + x_1^2y_2)) = x * (y * b)$. Thus, the system (R, +, *) is a nearring with identity element a, and so multiplication "*" is a nearring multiplication, as desired.

So, we have examples of p + 1 nearring multiplications and we formulate the following result.

Theorem 2. There exist at least p+1 non-isomorphic local nearrings on each nonmetacyclic non-abelian groups of order p^3 .

Proof. The nearrings $R = (R, +, \cdot)$ with functions $\beta(x) = x_1^i$ and $\gamma(x) = 0$ (0 < i < p) are non-isomorphic zero-symmetric local nearrings according to the above and paper [12]. It is easy to check that the local nearrings $R = (R, +, \cdot)$ with functions $\beta(x) = 1$ and $\gamma(x) = 0$ are non-zero-symmetric. It is obvious that $R = (R, +, \cdot)$ with functions $\beta(x) = x_1^2$ and $\gamma(x) = x_1 x_2$ are zero-symmetric and non-isomorphic to the nearrings considered above. Therefore, there exist at least p+1 non-isomorphic local nearrings on each non-metacyclic non-abelian groups of order p^3 . \square

Example 1. Let $G \cong (C_5 \times C_5) \rtimes C_5$. If $x = ax_1 + bx_2 + cx_3$ and $y = ay_1 + by_2 + cy_3 \in C_5$. G and $(G, +, \cdot)$ is a local nearring, then by Lemma 8 " \cdot " is one of the following *multiplications:*

(1) $x \cdot y = ax_1y_1 + b(x_2y_1 + y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1y_3);$

- (2) $x \cdot y = ax_1y_1 + b(x_2y_1 + x_1^3(x)y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1x_2y_2 + x_1^4y_3);$
- (3) $x \cdot y = ax_1y_1 + b(x_2y_1 + x_1y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1^2y_3);$
- (4) $x \cdot y = ax_1y_1 + b(x_2y_1 + x_1^2y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1^3y_3);$
- (5) $x \cdot y = ax_1y_1 + b(x_2y_1 + x_1^3(x)y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1^4y_3);$
- (6) $x \cdot y = ax_1y_1 + b(x_2y_1 + x_1^4y_2) + c(-x_1x_2\binom{y_1}{2} + x_3y_1 + x_1^5y_3).$

A computer program verified that for p = 5, the nearring obtained in Lemma 8 (3) is indeed a local nearring (see Example 1 (2)) deposited on GitHub:

https://github.com/raemarina/Examples/blob/main/LNR_125-3.txt From the packages SONATA and LocalNR [19] we have the following number of non-isomorphic local nearrings:

$StructureDescription(R^+)$	$n(R^+)$]
$(C_3 \times C_3) \rtimes C_3$	4	
$(C_5 \times C_5) \rtimes C_5$	6].
$(C_7 \times C_7) \rtimes C_7$	8	
$(C_{11} \times C_{11}) \rtimes C_{11}$	12	

5. Local nearrings whose additive groups are isomorphic to G_2

Let R be a local nearring whose additive group of R^+ is isomorphic to G_2 . Then $R^+ = \langle a \rangle + \langle b \rangle$ for some elements a and b of R satisfying the relations $ap^2 = 0$, bp = 0 and -b + a + b = a(1 + p). In particular, each element $x \in R$ is uniquely written in the form $x = ax_1 + bx_2$ with coefficients $0 \le x_1 < p^2$ and $0 \le x_2 < p$.

By [8, Theorem 7.1], for p = 3 there exist three zero-symmetric nearrings with identity on G_2 , and for p > 3 one. At the same time, by [8, Theorem 4.2] there exists one non-zero-symmetric nearring with identity on G_2 . On the other hand, in [14], it was shown that for each group G_2 there exists a zero-symmetric local nearring. With the SONATA nearring library, it is easy to make sure that all nearrings with identity on G_2 of order 27 are local. The formula for multiplying elements of local nearrings on Miller–Moreno metacyclic groups is defined in [20]. Since G_2 is a Miller–Moreno metacyclic group, using [20, Corollary 2], for arbitrary elements $x = ax_1 + bx_2$ and $y = ay_1 + by_2$ of G_2 and putting $\alpha(x) = 0$ and $\beta(x) = 1$, we obtain the following multiplication formula:

$$x \cdot y = a(x_1y_1 - x_1x_2 \binom{y_1}{2}p) + b(x_2y_1 + y_2). \; (*\;*)$$

It is easy to see that $R = (G_2, +, \cdot)$ is a non-zero-symmetric local nearring.

The multiplication formula for arbitrary elements of a zero-symmetric local nearring on G_2 is given when proving [20, Theorem 2], namely:

$$x \cdot y = a(x_1y_1 - x_1x_2 \binom{y_1}{2}p) + b(x_2y_1 + \beta(x)y_2), \ (***)$$

where $\beta(x) = \begin{cases} 1, & \text{if } x_1 \not\equiv 0 \pmod{p}; \\ 0, & \text{if } x_1 \equiv 0 \pmod{p}. \end{cases}$

So, from the results presented in this section, we have:

- 1) $n(G_2) = 4$ for p = 3;
- 2) $n(G_2) = 2$ for p > 3. Moreover, the multiplication formulas in such nearrings are determined by formulas (* *) or (* * *).

6. Local nearrings whose additive groups are isomorphic to G_3

Let R be a local nearring, which is not a nearfield, whose additive group of R^+ is isomorphic to G_3 . Then $R^+ = \langle a \rangle + \langle b \rangle$ for some elements a and b of R satisfying the relations $ap^2 = 0$, bp = 0 and b + a = a + b. In particular, each element $x \in R$ is uniquely written in the form $x = ax_1 + bx_2$ with coefficients $0 \leq x_1 < p^2$ and $0 \leq x_2 < p$.

We can assume, without loss of generality, that a is an identity of R, i.e., ax = xa = x for each $x \in R$. Furthermore, for each $x \in R$ there exist coefficients $\alpha(x)$ and $\beta(x)$ such that $xb = a\alpha(x) + b\beta(x)$. It is clear that they are uniquely defined modulo p^2 and p, respectively, so that some mappings $\alpha : R \to \mathbb{Z}_{p^2}$ and $\beta : R \to \mathbb{Z}_p$ are determined.

Lemma 9. Let R be a local nearring, which is not a nearfield, whose additive group of R^+ is isomorphic to G_3 . If a coincides with identity element of R, $x = ax_1 + bx_2$, $y = ay_1 + by_2 \in R$, $xb = a\alpha(x) + b\beta(x)$, then

$$xy = a(x_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2). \; (****)$$

Moreover, for the mappings $\alpha \colon R \to \mathbb{Z}_{p^2}$ and $\beta \colon R \to \mathbb{Z}_p$ the following statements hold:

- (0) $\alpha(0) = \beta(0) = 0$ if and only if R is zero-symmetric;
- (1) $\alpha(a) = 0 \text{ and } \beta(a) = 1;$
- (2) $\alpha(x) \equiv 0 \pmod{p};$
- (3) $\alpha(xy) \equiv x_1 \alpha(y) + \alpha(x)\beta(y) \pmod{p};$
- (4) $\beta(xy) \equiv x_2 \alpha(y) + \beta(x)\beta(y) \pmod{p}$.

Proof. Since $0 \cdot a = a \cdot 0 = 0$, it follows that R is a zero-symmetric nearring if and only if $0 = 0 \cdot b = a\alpha(0) + b\beta(0)$ or equivalently, $\alpha(0) = \beta(0) = 0$. Moreover, since $b = ab = a\alpha(a) + b\beta(a)$, we have $\alpha(a) = 0$ and $\beta(a) = 1$, so that statements (0) and (1) hold.

Further, using the left distributive law, we derive

 $xy = (xa)y_1 + (xb)y_2 = (ax_1 + bx_2)y_1 + (a\alpha(x) + b\beta(x))y_2.$

We also have $(ax_1 + bx_2)y_1 = ax_1y_1 + bx_2y_1$ and $(a\alpha(x) + b\beta(x))y_2 = a\alpha(x)y_2 + b\beta(x)y_2$. Thus $xy = a(x_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2)$ and so statement (2) holds.

By Corollary 1, $L = \langle ap \rangle + \langle b \rangle$. Since $xL \subseteq L$ for each $x \in R$ by Lemma 2, we have $xb = a\alpha(x) + b\beta(x) \in L$, whence $\alpha(x) \equiv 0 \pmod{p}$ for each $x \in R$.

Finally, the associativity of multiplication in R implies that

$$(xy)b = x(yb) = a\alpha(xy) + b\beta(xy).$$

Furthermore, substituting $yb = a\alpha(y) + b\beta(y)$ instead of y into formula (* * * *), we also have

$$x(yb) = a(x_1\alpha(y) + \alpha(x)\beta(y)) + b(x_2\alpha(y) + \beta(x)\beta(y)).$$

Comparing the coefficients under a and b in two expressions obtained for x(yb), we derive statements (3) and (4) of the lemma.

Lemma 10. $\langle ap \rangle$ is an ideal of R.

Proof. Let $x = ax_1 + bx_2$, $y = ay_1 + by_2 \in R$, $z = apz_1 \in \langle ap \rangle$. Check whether $\langle ap \rangle$ is an ideal of R, i.e. $(z + x)y - xy \in \langle ap \rangle$. Using the formula (* * * *), we have

$$\begin{aligned} (z+x)y - xy &= (apz_1 + ax_1 + bx_2)(ay_1 + by_2) - (ax_1 + bx_2)(ay_1 + by_2) \\ &= (a(pz_1 + x_1) + bx_2)(ay_1 + by_2) - (ax_1 + bx_2)(ay_1 + by_2) \\ &= a((pz_1 + x_1)y_1 + \alpha(z + x)y_2) + b(x_2y_1 + \beta(z + x)y_2) \\ &- (a(z_1y_1 + \alpha(x)y_2) + b(x_2y_1 + \beta(x)y_2)) \\ &= a(pz_1y_1 + (\alpha(z + x) - \alpha(x))y_2) + b(\beta(z + x) - \beta(x))y_2 \\ &= a(pz_1y_1 + (\alpha(z + x) - \alpha(x))y_2) \in \langle ap \rangle, \end{aligned}$$

since $\beta(z+x) - \beta(x) = 0$.

Therefore, $\langle ap \rangle$ is an ideal of R.

Lemma 11. Let R be a local nearring, which is not a nearfield, whose additive group of R^+ is isomorphic to G_3 . If $x = ax_1 + bx_2$, $y = ay_1 + by_2 \in R$, then the mappings $\alpha \colon R \to \mathbb{Z}_{p^2}$ and $\beta \colon R \to \mathbb{Z}_p$ from (****) can be one of the following:

- (1) $\alpha(x) = 0$ and $\beta(x) = x_1^i \pmod{p}$ (0 < i < p);
- (2) $\alpha(x) = 0 \text{ and } \beta(x) = 1;$
- (3) $\alpha(x) = px_2 \text{ and } \beta(x) \equiv x_1 \pmod{p}$.

Proof. 1) Since zero-symmetric local nearrings of order p^2 are classified in [12], it follows that all non-isomorphic factor-nearrings with a derived subgroup $N = R/\langle ap \rangle$ are described. That is, you can apply the multiplication formula from the specified work, pre-adapting it for the left local nearrings. It is clear that $N^+ = \langle \overline{a} \rangle + \langle \overline{b} \rangle$. Namely, let $\overline{x} = \overline{a}x_1 + \overline{b}x_2$ and $\overline{y} = \overline{a}y_1 + \overline{b}y_2$ be elements of N; then

$$\overline{xy} = \overline{a}x_1y_1 + b(x_2y_1 + \rho(x_1)y_2).$$

Moreover, by [12, Theorem 1.6], ρ takes one of p-1 values for zero-symmetric nearrings.

On the other hand, by the formula (****) we have $\overline{xy} = \overline{a}x_1y_1 + \overline{b}(x_2y_1 + \beta(x)y_2)$.

Equating the coefficients for generators, we obtain $\beta(x)y_2 = \rho(x_1)y_2$. Hence $\beta(x) = \rho(x_1)$. So there exist p - 1 different zero-symmetric nearrings.

2) It is obvious that the multiplication (****) with the functions $\alpha(x) = 0$ and $\beta(x) = 1$ is the constant nearring multiplication.

3) By direct checking of conditions (3) and (4) of Lemma 9 for $\alpha(x) = px_2$ and $\beta(x) \equiv x_1 \pmod{p}$ and by using the multiplication (****), we prove the lemma.

So, we have examples of p + 1 nearring multiplications and we formulate the following result.

Theorem 3. There exist at least p + 1 non-isomorphic local nearrings on each metacyclic abelian groups of order p^3 .

Proof. Nearrings $R = (R, +, \cdot)$ with functions $\alpha(x) = 0$ and $\beta(x) = x_1^i \pmod{p}$ (0 < i < p) are non-isomorphic zero-symmetric local nearrings according to the above and paper [12]. It is easy to check that the local nearring $R = (R, +, \cdot)$ with functions $\alpha(x) = 0$ and $\beta(x) = 1$ is non-zero-symmetric.

Consider $R = (R, +, \cdot)$ with functions $\alpha(x) = px_2$ and $\beta(x) \equiv x_1 \pmod{p}$. In this case, we have $|\{xb = apx_2 + bx_1 | x \in R\}| = p^2$ and R is zero-symmetric. For example, in the above case with $\alpha(x) = 0$ and $\beta(x) = x_1 \pmod{p}$ we get $|\{xb = bx_1 | x \in R\}| = p$, and so R is non-isomorphic to the nearrings considered above. Therefore, there exist at least p+1 non-isomorphic local nearrings on each metacyclic abelian group of order p^3 .

From the packages SONATA and LocalNR we have the following number of non-isomorphic local nearrings:

$StructureDescription(R^+)$	$n(R^+)$
$C_9 \times C_3$	13
$C_{25} \times C_5$	31
$C_{49} \times C_7$	31
$C_{121} \times C_{11}$	47

Acknowledgement

The authors would like to thank the Institute of Mathematics of the Polish Academy of Sciences for hosting after evacuation from Ukraine. The authors are grateful IIE-SRF for the support of their fellowship at the University of Warsaw.

The authors thank the referees for recommending various improvements in the exposition of the paper.

References

 E. AICHINGER, F. BINDER, JU. ECKER, P. MAYR, C. NÖBAUER, SONATA - System of nearrings and their applications, GAP package, Version 2.8, 2015, available at (http://www.algebra.uni-linz.ac.at/Sonata/)

- [2] B. AMBERG, P. HUBERT, YA. SYSAK, Local near-rings with dihedral multiplicative group, J. Algebra. 273 (2004), 700–717.
- [3] T. H. H. BOYKETT, C. NÖBAUER, A class of groups which cannot be the additive groups of near-rings with identity, Contributions to general algebra 10, Proceedings of the Klagenfurt Conference, Klagenfurt, 1998, 89–99.
- [4] J. R. CLAY, Research in near-ring theory using a digital computer, BIT. 10(1970), 249-265.
- [5] J. R. CLAY, JR. MALONE, The near-rings with identities on certain finite groups, Math. Scand. 19(1966), 146–150.
- [6] M. JR. HALL, The Theory of Groups, MacMillan Company, New York, 1959.
- [7] J. E. KRIMMEL, A condition on near-rings with identity, Monatsh. Math. 77(1973), 52-54.
- [8] R. R. LAXTON, R. LOCKHART, The near-rings hosted by a class of groups, Proc. Edinb. Math. Soc. 23(1980), 69–86.
- [9] S. LIGH, Near rings with identities on certain groups, Monatsh. Math. 75(1971), 38–43.
- [10] C. J. MAXSON, Review on the paper [12], available at (http://mathscinet.imath.kiev.ua/mathscinet/article?mr=0236229)
- [11] C. J. MAXSON, On local near-rings, Math. Z. 106(1968), 197–205.
- [12] C. J. MAXSON, Local near-rings of cardinality p², Canad. Math. Bull. 11(1968), 555– 561.
- [13] C. J. MAXSON, On the construction of finite local near-rings (I): on non-cyclic abelian p-groups, Quart. J. Math. Oxford 21(1970), 449–457.
- [14] C. J. MAXSON, On the construction of finite local near-rings (II): on non-abelian pgroups, Quart. J. Math. Oxford 22(1971), 65–72.
- [15] I. YU. RAIEVSKA, Local nearrings on Miller-Moreno p-group, Bulletin of Taras Shevchenko National University of Kyiv; Series: Mathematics and Mechanics 25(2011), 43–45, in Ukrainian.
- [16] I. YU. RAIEVSKA, M. YU. RAIEVSKA, Local nearrings with restrictions on the multiplicative groups and the subgroups of non-invertible elements, Sci. Journ. Dragomanov Ped. Univ. Ser. 1. Phys.–Math. Sci. (Kiev) 14(2013), 134–145, in Ukrainian.
- [17] I. YU. RAIEVSKA, M. YU. RAIEVSKA, Local nearrings on elementary Abelian groups of order p³, Scientific Bulletin of Uzhhorod University; Series: Mathematics and Informatics 1(2021), 85–93, in Ukrainian.
- [18] I. YU. RAIEVSKA, M. YU. RAIEVSKA, YA. P. SYSAK, Local nearrings on nonmetacyclic Miller-Moreno groups, Bulletin of Taras Shevchenko National University of Kyiv; Series: Physics and Mathematics 3(2012), 39–46, in Ukrainian.
- [19] I. RAIEVSKA, M. RAIEVSKA M., Y. SYSAK, LocalNR, Package of local nearrings, Version 1.0.3, GAP package, 2021, available at (https://gap-packages.github.io/LocalNR)
- [20] I. YU. RAIEVSKA, YA. P. SYSAK, Finite local nearrings on metacyclic Miller-Moreno p-groups, Algebra Discrete Math. 13(2012), 111-127.
- [21] THE GAP GROUP, GAP Groups, Algorithms, and Programming, Version 4.11.0, 2020, available at (https://www.gap-system.org)
- [22] H. ZASSENHAUS, Über endliche Fastkörper, Abh. Math. Sem., Univ. Hamburg. 11(1935/36), 187–220.