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obtained. On each non-metacyclic non-abelian or metacyclic abelian groups of order p3
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1. Introduction

A study of local nearrings was first initiated in [11] and it was found that the additive
group of a finite zero-symmetric local nearring is a p-group. In [12], it is shown that,
up to isomorphism, there exist p−1 local zero-symmetric nearrings with elementary
abelian additive groups of order p2 in which the subgroups of non-invertible elements
have order p, that is, those nearrings which are not nearfields. Together with the
fundamental paper [22] and [5], a complete description of all zero-symmetric local
nearrings of order p2 is obtained. For instance, every nearring with identity on a
cyclic group is a commutative ring.

Note that there is no nearring with identity whose additive group is isomorphic to
the quaternion group Q8 [4]. The dihedral group D4 of order 8 cannot be the additive
group of local nearrings [14]. The existence of local nearrings on finite abelian p-
groups is proved in [13], i.e. every non-cyclic abelian p-group of order pn > 4 is the
additive group of a zero-symmetric local nearring which is not a ring. Also, it is
established in [18] that an arbitrary non-metacyclic Miller–Moreno p-group of order
pn > 8 is the additive group of some local nearring, and the multiplicative group of
such nearring has order pn−1(p−1). All nearrings with identity up to the order of 31
are contained in the package SONATA [1] of the computer algebra system GAP [21].

In [17], it is proved that, up to an isomorphism, there exist at least p local
nearrings on elementary abelian additive groups of order p3 which are not nearfields.
Lower bounds for the number of local nearrings on groups of order p3 are obtained.
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It is established that on each non-metacyclic non-abelian or metacyclic abelian
groups of order p3 there exist at least p+ 1 non-isomorphic local nearrings.

2. Preliminaries

We will give the basic definitions.

Definition 1. A non-empty set R with two binary operations “ + ” and “ · ” is a
nearring if:

1) (R,+) is a group with neutral element 0;

2) (R, ·) is a semigroup;

3) x · (y + z) = x · y + x · z for all x, y, z ∈ R.

Such a nearring is called a left nearring. If axiom 3) is replaced by an axiom (x +
y) · z = x · z + y · z for all x, y, z ∈ R, then we get a right nearring.

The group (R,+) of a nearring R is denoted by R+ and called the additive group
of R. It is easy to see that for each subgroup M of R+ and for each element x ∈ R
the set xM = {x · y|y ∈ M} is a subgroup of R+ and in particular x · 0 = 0. If,
in addition, 0 · x = 0 for all x ∈ R, then the nearring R is called zero-symmetric.
Furthermore, R is a nearring with identity i if the semigroup (R, ·) is a monoid with
identity element i. In the latter case, the group of all invertible elements of the
monoid (R, ·) is denoted by R∗ and called the multiplicative group of R. A subgroup
M of R+ is called R∗-invariant if rM ≤ M for each r ∈ R∗, and (R,R)-subgroup if
xMy ⊆M for arbitrary x, y ∈ R.

The following assertion is well-known (see, for instance, [5], Theorem 3).

Lemma 1. The exponent of the additive group of a finite nearring R with identity
i is equal to the additive order of i which coincides with the additive order of every
invertible element of R.

Definition 2. A nearring R with identity is called local if the set L of all non-
invertible elements of R forms a subgroup of the additive group R+.

Throughout this paper, L will denote the subgroup of non-invertible elements
of R.

The following lemma characterizes the main properties of finite local nearrings
(see [2], Lemma 3.2).

Lemma 2. Let R be a local nearring with identity i. Then the following statements
hold:

1) L is an (R,R)-subgroup of R+;

2) each proper R∗-invariant subgroup of R+ is contained in L;

3) the set i+ L forms a subgroup of the multiplicative group R∗.
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Finite local nearrings with a cyclic subgroup of non-invertible elements are de-
scribed in [16, Theorem 1].

Theorem 1. Let R be a local nearring of order pn with n> 1, whose subgroup L is
cyclic and non-trivial. Then the additive group R+ is either cyclic or an elementary
abelian group of order p2. In the first case, R is a commutative local ring, which is
isomorphic to the residual ring Z/pnZ with n ≥ 2; in the other case, there exist p
non-isomorphic such nearrings R with |L| = p, from which p−1 are zero-symmetric
nearrings and their multiplicative groups R∗ are isomorphic to a semidirect product
of two cyclic subgroups of orders p and p− 1.

As a direct consequence of Theorem 1, we have the following result.

Corollary 1. Let R be a local nearring of order p3 which is not isomorphic to
Z/p3Z or is not a nearfield. Then the subgroup of non-invertible elements L is an
elementary abelian group of order p2.

The following statement contains a classification of groups of order p3 (see [6]).

Proposition 1. Let G be a group of order p3. The defining relations of such non-
isomorphic groups are given:

Abelian groups:

1) ap3 = 1.

2) ap2 = 1, bp = 1, ab = ba.

3) ap = bp = cp = 1, ab = ba, ac = ca, cb = bc.

Non-abelian groups of order 23 = 8:

4) a dihedral group, a4 = 1, b2 = 1, a−1b = ba.

5) a quaternion group, a4 = 1, b2 = a2, a−1b = ba.

Non-abelian groups of order p3, p is odd:

6) ap2 = 1, bp = 1, b−1ab = a1+p.

7) ap = 1, bp = 1, cp = 1, ab = bac, ac = ca, bc = cb.

Next, we denote by G1 a group with relations 7), by G2 a group with relations 6),
and by G3 a group with relations 2) of Proposition 1.

We define group G1 to be the additively written group generated by a, b, c subject
to the relations ap = bp = cp = 0, a+ b = b+ a+ c, a+ c = c+ a, b+ c = c+ b.

The following two lemmas are given in [18].

Lemma 3. Let k, l ∈ N. Then in G1, the equalities −ak− bl+ ak+ bl = c(kl) and
bl + ak = −c(kl) + ak + bl hold.

Proof. Since −b+ a+ b = a+ c, we have −bl + a+ bl = a+ cl. Then

−bl + ak + bl = (a+ cl)k = ak + ckl.

Therefore, −ak − bl + ak + bl = ckl.
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Lemma 4. Let k, l, r ∈ N. Then in G1, we have (ak + bl)r = akr + blr − ckl
(
r
2

)
.

Proof. The proof will be carried out by induction on r. For r = 1, the equality is
valid. Let for r the equality hold, i.e.,

(ak + bl)r = akr + blr − ckl
(
r

2

)
.

Let us prove the equality for r + 1:

(ak + bl)(r + 1) = akr + blr + ak + bl − ckl
(
r

2

)
= ak(r + 1) + bl(r + 1)− cklr − ckl

(
r

2

)
= ak(r + 1) + bl(r + 1)− ckl(r +

(
r

2

)
)

= ak(r + 1) + bl(r + 1)− ckl
(
r + 1

2

)
.

Therefore, the equality is valid for any r.

Let additively written groups of type H have a finite representation in the form

〈a, b|apk, bp,−b+ a+ b− a(1 + pk−1)〉,

where k ≥ 2 and p is prime (see [8]).
The number of non-isomorphic nearrings with identity on groups of type H is

given in [8]. It is obvious that for k = 2 and p > 2 a group of type H will be
isomorphic to the group G2.

As noted above, there exist local nearrings on all abelian groups. Also, according
to [18] and [8], there exist local nearrings on G1 and G2, respectively. So, we have
the following result.

Proposition 2. On each group of order p3 with p > 2 there exists a local nearring.

Denote by n(G) the number of all non-isomorphic local nearrings on the group G.

3. Nearrings with identity whose additive groups are isomor-
phic to G1

Let R be a nearring with identity whose additive group of R+ is isomorphic to G1.
Then R+ = 〈a〉+ 〈b〉+ 〈c〉 for some elements a, b and c of R satisfying the relations
ap = 0, bp = 0, cp = 0, a + b = b + a + c, a + c = c + a and b + c = c + b. In
particular, each element x ∈ R is uniquely written in the form x = ax1 + bx2 + cx3
with coefficients 0 ≤ x1 < p, 0 ≤ x2 < p and 0 ≤ x3 < p.

We will show that there does not exist a nearring in which the identity is in the
center of the additive group G1. Note that the subgroup 〈c〉 is the center of G1.
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Remark 1. Let c be an identity of R, i. e. xc = cx = x for each x ∈ R. Fur-
thermore, for each x ∈ R there exist coefficients α(x), β(x), γ(x), λ(x), µ(x) and
ν(x) such that xb = aα(x) + bβ(x) + cγ(x) and xa = aλ(x) + bµ(x) + cν(x). It is
clear that they are uniquely defined modulo p, so that some mappings α : R→ Zp,
β : R→ Zp, γ : R→ Zp, λ : R→ Zp, µ : R→ Zp and ν : R→ Zp are determined.

Further, using Lemma 3, we derive

xc =− xa− xb+ xa+ xb = −cν(x)− bµ(x)− aλ(x)− cγ(x)− bβ(x)− aα(x)

+ aλ(x) + bµ(x) + cν(x) + aα(x) + bβ(x) + cγ(x)

=− bµ(x)− aλ(x)− bβ(x)− aα(x) + aλ(x) + bµ(x) + aα(x) + bβ(x)

=− bµ(x) + cλ(x)β(x)− bβ(x)− aλ(x)− a(α(x)− λ(x))

+ bµ(x) + aα(x) + bβ(x) = cλ(x)β(x)− b(µ(x) + β(x))− aα(x)

+ bµ(x) + aα(x) + bβ(x) = cλ(x)β(x)− b(µ(x) + β(x))

− aα(x)− cµ(x)α(x) + aα(x) + bµ(x) + bβ(x)

=c(λ(x)β(x)− µ(x)α(x))− b(µ(x) + β(x)) + bµ(x) + bβ(x)

=c(λ(x)β(x)− µ(x)α(x)) 6= x.

Therefore, there does not exist a nearring in which the identity is in the center of
the additive group G1.

Since the order of the element a is equal to the exponent of group G, then by
Lemma 1 we can assume that a is an identity of R, i.e. ax = xa = x for each x ∈ R.
Furthermore, for each x ∈ R there exist coefficients α(x), β(x) and γ(x) such that
xb = aα(x) + bβ(x) + cγ(x). It is clear that they are uniquely defined modulo p, so
that some mappings α : R→ Zp, β : R→ Zp and γ : R→ Zp are determined.

Nearrings with identity and local nearrings on non-metacyclic Miller–Moreno
groups were studied in [18] and [15]. Lemmas 5, 6, 9 are based on the results of
these papers.

Lemma 5. Let R be a nearring whose additive group is G1 with identity a. If
x = ax1 + bx2 + cx3, y = ay1 + by2 + cy3 ∈ R, xb = aα(x) + bβ(x) + cγ(x), then

xy =a(x1y1 + α(x)y2) + b(x2y1 + β(x)y2) + c(−x1x2
(
y1
2

)
− α(x)β(x)

(
y2
2

)
− x2α(x)y1y2 + x3y1 + γ(x)y2 + x1β(x)y3 − x2α(x)y3).

Moreover, for the mappings α : R → Zp, β : R → Zp and γ : R → Zp the following
statements hold:

(0) α(0) ≡ 0 (mod p), β(0) ≡ 0 (mod p) and γ(0) ≡ 0 (mod p) if and only if
the nearring R is zero-symmetric;

(1) α(xy) ≡ x1α(y) + α(x)β(y) (mod p),

(2) β(xy) ≡ x2α(y) + β(x)β(y) (mod p),
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(3) γ(xy) ≡ −x1x2
(
α(y)
2

)
− α(x)β(x)

(
β(y)
2

)
− x2α(x)α(y)β(y)

+x3α(y) + γ(x)β(y) + x1β(x)γ(y)− x2α(x)γ(y) (mod p).

Proof. Since 0 · a = a · 0 = 0, it follows that R is a zero-symmetric nearring if and
only if

0 = 0 · b = aα(0) + bβ(0) + cγ(0),

or equivalently α(0) ≡ 0 (mod p), β(0) ≡ 0 (mod p) and γ(0) ≡ 0 (mod p). More-
over, since c = −a − b + a + b and due to the left distributive law we have 0 · c =
−0 · a− 0 · b+ 0 · a+ 0 · b = 0, whence

0 · x = 0 · (ax1 + bx2 + cx3) = (0 · a)x1 + (0 · b)x2 + (0 · c)x3 = 0,

so that statement (0) holds.
Further, using Lemma 3, we derive

xc =− xa− xb+ xa+ xb = −cx3 − bx2 − ax1 − cγ(x)− bβ(x)− aα(x)

+ ax1 + bx2 + cx3 + aα(x) + bβ(x) + cγ(x)

=− bx2 − ax1 − bβ(x)− aα(x) + ax1 + bx2 + aα(x) + bβ(x)

=− bx2 + cx1β(x)− bβ(x)− ax1 − a(α(x)− x1) + bx2 + aα(x) + bβ(x)

= cx1β(x)− b(x2 + β(x))− aα(x) + bx2 + aα(x) + bβ(x)

= cx1β(x)− b(x2 + β(x))− aα(x)− cx2α(x) + aα(x)

+ bx2 + bβ(x) = c(x1β(x)− x2α(x))− b(x2 + β(x))

+ bx2 + bβ(x) = c(x1β(x)− x2α(x)).

Further, using the left distributive law, we obtain

xy =(ax1 + bx2 + cx3)y1 + (aα(x) + bβ(x) + cγ(x))y2

+ (cx1β(x)− x2α(x))y3.

By Lemma 4, we get

(ax1 + bx2)y1 = ax1y1 + bx2y1 − cx1x2
(
y1
2

)
,

(aα(x) + bβ(x))y2 = aα(x)y2 + bβ(x)y2 − cα(x)β(x)

(
y2
2

)
and

bx2y1 + aα(x)y2 = aα(x)y2 + bx2y1 − cx2α(x)y1y2.

Hence and using the left distributive law, we have

xy = a(x1y1 + α(x)y2) + b(x2y1 + β(x)y2) + c(−x1x2
(
y1
2

)
− α(x)β(x)

(
y2
2

)
− x2α(x)y1y2 + x3y1 + γ(x)y2 + x1β(x)y3 − x2α(x)y3).
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The associativity of multiplication in R implies that for all x, y ∈ R

1) (xy)b = x(yb).

According to xb = aα(x) + bβ(x) + cγ(x), we obtain

2) (xy)b = aα(xy) + bβ(xy) + cγ(xy)

and yb = aα(y) + bβ(y) + cγ(y). Substituting the last equation into the right part
of equality 1), we also have

x(yb) = a(x1α(y) + α(x)β(y)) + b(x2α(y) + β(x)β(y))

+ c(−x1x2
(
α(y)

2

)
− α(x)β(x)

(
β(y)

2

)
− x2α(x)α(y)β(y)

+ x3α(y) + γ(x)β(y) + x1β(x)γ(y)− x2α(x)γ(y)).

Since equality 1) implies the congruence of the corresponding coefficients in formulas
2) and 3), we obtain statements (1)–(3).

4. Local nearrings whose additive groups are isomorphic to G1

Let R be a local nearring whose additive group of R+ is isomorphic to G1. Then
R+ = 〈a〉+〈b〉+〈c〉 for some elements a, b and c of R satisfying the relations ap = 0,
bp = 0, cp = 0, a+ b = b+ a+ c, a+ c = c+ a and b+ c = c+ b. In particular, each
element x ∈ R is uniquely written in the form x = ax1 + bx2 + cx3 with coefficients
0 ≤ x1 < p, 0 ≤ x2 < p and 0 ≤ x3 < p.

Since order of the element a is equal to the exponent of groupG, then by Lemma 1
we can assume that a is an identity of R, i.e., ax = xa = x for each x ∈ R.
Furthermore, for each x ∈ R there exist coefficients α(x), β(x) and γ(x) such that
xb = aα(x) + bβ(x) + cγ(x). It is clear that they are uniquely defined modulo p, so
that some mappings α : R→ Zp, β : R→ Zp and γ : R→ Zp are determined.

By Corollary 1, L is the normal subgroup of order p2 in R. Since L contains the
derived subgroup of R+, it follows that L = 〈b〉+ 〈c〉 and subgroup 〈c〉 is the center
of R+. Since R∗ = R \ L, it follows that R∗ = {ax1 + bx2 + cx3 | x1 6≡ 0 (mod p)}
and x = ax1 + bx2 + cx3 is invertible if and only if x1 6≡ 0 (mod p).

Lemma 6. Let R be a local nearring whose additive group is G1 with identity a. If
x = ax1 + bx2 + cx3, y = ay1 + by2 + cy3 ∈ R, xb = aα(x) + bβ(x) + cγ(x), then

x · y = ax1y1 + b(x2y1 + β(x)y2) + c(−x1x2
(
y1
2

)
+ x3y1 + γ(x)y2 + x1β(x)y3). (∗)

Moreover, for the mappings β : R → Zp and γ : R → Zp the following statements
hold:

(0) α(0) ≡ 0 (mod p), β(0) ≡ 0 (mod p) and γ(0) ≡ 0 (mod p) if and only if
the nearring R is zero-symmetric;

(1) α(x) ≡ 0 (mod p);
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(2) if β(x) ≡ 0 (mod p), then x1 ≡ 0 (mod p);

(3) β(xy) ≡ β(x)β(y) (mod p);

(4) γ(xy) ≡ γ(x)β(y) + x1β(x)γ(y) (mod p).

Proof. Since L = 〈b〉+ 〈c〉 and L is the (R,R)-subgroup in R+, by statement 1) of
Lemma 2 it follows that xb ∈ L, hence aα(x) ∈ L for each x ∈ R. Thus α(x) ≡ 0
(mod p) and we get statement (1). Substituting the obtained value of α(x) ≡ 0
(mod p) into the formulas from Lemma 5, we obtain statements (3) and (4) of the
lemma and the formula for the product xy. Putting y = c, we get xc = c(x1β(x)).
Hence, if β(x) ≡ 0 (mod p), then xc = 0, and so x ∈ L. Therefore, x1 ≡ 0
(mod p), as claimed in statement (2). Indeed, statement (0) repeats statement (0)
of Lemma 5.

It is known that for such groups the commutator D(R+) coincides with the center
Z(R+) and has the order p.

Lemma 7. The commutator D(R+) is an ideal in the local nearring R.

Proof. Let x = ax1 + bx2 + cx3, y = ay1 + by2 + cy3 ∈ R, z = cz3 ∈ D(R+). Let us
check whether D(R+) is an ideal in R, i.e., (z + x)y − xy ∈ D(R+). To do this, we
use formula (∗) for multiplying elements in R. We obtain

(z+x)y − xy
=(cz3 + ax1 + bx2 + cx3)(ay1 + by2 + cy3)− (ax1 + bx2 + cx3)(ay1 + by2 + cy3)

=(ax1 + bx2 + c(x3 + z3))(ay1 + by2 + cy3)− (ax1 + bx2 + cx3)(ay1 + by2 + cy3)

= ax1y1+b(x2y1+β(x)y2)+c(−x1x2
(
y1
2

)
+x3y1+z3y1+γ(z+x)y2+x1β(x)y3)

− ax1y1 − b(x2y1 + β(x)y2)− c(−x1x2
(
y1
2

)
+ x3y1 + γ(x)y2 + x1β(x)y3)

= ax1y1 + b(x2y1 + β(x)y2)− ax1y1 − b(x2y1 + β(x)y2) + c(z3y1 + (γ(z + x)

− γ(x))y2) = ax1y1 − ax1y1 + b(x2y1 + β(x)y2)− c(x1y1(x2y1 + β(x)y2))

− b(x2y1 + β(x)y2) + c(z3y1 + (γ(z + x)− γ(x))y2)

= c(z3y1 + (γ(z + x)− γ(x))y2 − x1x2y21 − x1y1y2β(x)) ∈ D(R+).

Therefore, D(R+) is an ideal of R.

Lemma 8. Let R be a local nearring whose additive group of R+ is isomorphic to
G1. If x = ax1 + bx2 + cx3, y = ay1 + by2 + cy3 ∈ R, then the mappings β : R→ Zp2
and γ : R→ Zp from (∗) can be one of the following:

1) β(x) = x1
i and γ(x) = 0 (0 < i < p);

2) β(x) = 1 and γ(x) = 0;

3) β(x) = x21 and γ(x) = x1x2.
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Proof. 1) Since zero-symmetric local nearrings of order p2 are classified in [12], it fol-
lows that all non-isomorphic factor-nearrings with derived subgroup N = R/D(R+)
are described. That is, you can apply the multiplication formula from the specified
work, pre-adapting it for the left local nearrings. It is clear that N+ = 〈a〉 + 〈b〉.
Namely, let x = ax1 + bx2 and y = ay1 + by2 be elements of N ; then

xy = ax1y1 + b(x2y1 + ρ(x1)y2).

Moreover, in [12, Theorem 1.6] and [12, Corollary 1.11] it was shown that there are,
up to isomorphism, p−1 local nearrings (which are not nearfields) with the additive
group of order p2 and exponent p. These local nearrings are completely determined
by maps ρ : Zp → Zp such that (i) ρ(x) = 0 if and only if x = 0 and (ii) ρ is a group
endomorphism of (Zp−{0}, ·) [10]. So ρ takes one of p−1 values for zero-symmetric
nearrings.

On the other hand, by the formula (∗) we have:

xy = ax1y1 + b(x2y1 + β(x)y2).

Equating the coefficients for generators, we obtain: β(x)y2 = ρ(x1)y2. Hence β(x) =
ρ(x1). So there exist p− 1 different zero-symmetric nearrings.

2) It is obvious that the multiplication (∗) with the functions β(x) = 1 and
γ(x) = 0 is the constant nearring multiplication.

3) We will show further that for β(x) = x21 and γ(x) = x1x2 the multiplica-
tion (∗), i.e.

x ∗ y = ax1y1 + b(x2y1 + x21y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x1x2y2 + x31y3),

is a nearring multiplication. By Lemma 6 (3) and (4), the functions β(x) and γ(x)
need to satisfy the following conditions: β(xy) = β(x)β(y) and γ(xy) = β(y)γ(x) +
x1β(x)γ(y). We check that β(xy) = (x1y1)2 = x21y

2
1 = β(x)β(y) and γ(xy) =

x1y1(x2y1 +x1y2) = x1x2y
2
1 +x21y1y2 = β(y)γ(x)+x1β(x)γ(y). Therefore, β(x) and

γ(x) satisfy conditions (3) and (4) of Lemma 6.

It is easy to see that the element a is a multiplicative identity for (R, ∗) and
x ∗ b = bx21 + cx1x2 for each x ∈ R. We show that with respect to the operations
“ + ” and “ ∗ ” the system (R,+, ∗) is a nearring with identity element a. Clearly,
it suffices to check that if z = az1 + bz2 + cz3 is an arbitrary element of R, then
x ∗ (y + z) = x ∗ y + x ∗ z and (x ∗ y) ∗ b = x ∗ (y ∗ b).

Indeed, we have

x ∗ z = ax1z1 + b(x2z1 + x21z2) + c(−x1x2
(
z1
2

)
+ x3z1 + x1x2z2 + x31z3)

and

b(x2y1 + x21y2) + a(x1z1) = a(x1z1) + b(x2y1 + x21y2)− c(x1z1(x2y1 + x21y2))
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by Lemma 3. We get

x ∗ y + x ∗ z = a(x1y1 + x1z1) + b(x2y1 + x21y2 + x2z1 + x21z2)

+ c(−x1x2
(
y1
2

)
+ x3y1 + x1x2y2 + x31y3

− x1x2
(
z1
2

)
+ x3z1 + x1x2z2 + x31z3 − x1z1(x2y1 + x21y2))

= ax1(y1 + z1) + b(x2(y1 + z1) + x21(y2 + z2))

+c(−x1x2
(

(y1+z1)

2

)
+x3(y1+z1)+x1x2(y2+z2)+x31(y3+z3−z1y2)).

On the other hand, y + z = (ay1 + by2 + cy3) + (az1 + bz2 + cz3) = a(y1 + z1) +
b(y2 + z2) + c(y3 + z3 − z1y2) because by2 + az1 = az1 + by2 − cz1y2 by Lemma 3.
Therefore,

x ∗ (y + z) =ax1(y1 + z1) + b(x2(y1 + z1) + x21(y2 + z2))

+c(−x1x2
(

(y1+z1)

2

)
+x3(y1+z1)+x1x2(y2+z2)+x31(y3+z3−z1y2)).

Therefore, x ∗ (y + z) = x ∗ y + x ∗ z, as desired.
Next, y ∗ b = by21 + cy1y2 and so x ∗ (y ∗ b) = b(x21y

2
1) + c(x1x2y

2
1 + x31y1y2) =

b(x1y1)2 + c(x1x2(x2y1 + x21y2).
On the other hand, (x ∗ y) ∗ b = (ax1y1 + b(x2y1 + x21y2) + c(−x1x2

(
y1
2

)
+ x3y1 +

x1x2y2 + x31y3) ∗ b = b(x1y1)2 + c(x1x2(x2y1 + x21y2) = x ∗ (y ∗ b). Thus, the system
(R,+, ∗) is a nearring with identity element a, and so multiplication “∗” is a nearring
multiplication, as desired.

So, we have examples of p + 1 nearring multiplications and we formulate the
following result.

Theorem 2. There exist at least p+ 1 non-isomorphic local nearrings on each non-
metacyclic non-abelian groups of order p3.

Proof. The nearrings R = (R,+, ·) with functions β(x) = x1
i and γ(x) = 0 (0 <

i < p) are non-isomorphic zero-symmetric local nearrings according to the above and
paper [12]. It is easy to check that the local nearrings R = (R,+, ·) with functions
β(x) = 1 and γ(x) = 0 are non-zero-symmetric. It is obvious that R = (R,+, ·) with
functions β(x) = x21 and γ(x) = x1x2 are zero-symmetric and non-isomorphic to
the nearrings considered above. Therefore, there exist at least p+ 1 non-isomorphic
local nearrings on each non-metacyclic non-abelian groups of order p3.

Example 1. Let G ∼= (C5×C5)oC5. If x = ax1+bx2+cx3 and y = ay1+by2+cy3 ∈
G and (G,+, ·) is a local nearring, then by Lemma 8 “ · ” is one of the following
multiplications:

(1) x · y = ax1y1 + b(x2y1 + y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x1y3);
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(2) x · y = ax1y1 + b(x2y1 + x31(x)y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x1x2y2 + x41y3);

(3) x · y = ax1y1 + b(x2y1 + x1y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x21y3);

(4) x · y = ax1y1 + b(x2y1 + x21y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x31y3);

(5) x · y = ax1y1 + b(x2y1 + x31(x)y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x41y3);

(6) x · y = ax1y1 + b(x2y1 + x41y2) + c(−x1x2
(
y1
2

)
+ x3y1 + x51y3).

A computer program verified that for p = 5, the nearring obtained in Lemma 8 (3)
is indeed a local nearring (see Example 1 (2)) deposited on GitHub:

https://github.com/raemarina/Examples/blob/main/LNR_125-3.txt

From the packages SONATA and LocalNR [19] we have the following number of
non-isomorphic local nearrings:

StructureDescription(R+) n(R+)
(C3 × C3) o C3 4
(C5 × C5) o C5 6
(C7 × C7) o C7 8

(C11 × C11) o C11 12

.

5. Local nearrings whose additive groups are isomorphic to G2

Let R be a local nearring whose additive group of R+ is isomorphic to G2. Then
R+ = 〈a〉 + 〈b〉 for some elements a and b of R satisfying the relations ap2 = 0,
bp = 0 and −b + a + b = a(1 + p). In particular, each element x ∈ R is uniquely
written in the form x = ax1 + bx2 with coefficients 0 ≤ x1 < p2 and 0 ≤ x2 < p.

By [8, Theorem 7.1], for p = 3 there exist three zero-symmetric nearrings with
identity on G2, and for p > 3 one. At the same time, by [8, Theorem 4.2] there exists
one non-zero-symmetric nearring with identity on G2. On the other hand, in [14], it
was shown that for each group G2 there exists a zero-symmetric local nearring. With
the SONATA nearring library, it is easy to make sure that all nearrings with identity
on G2 of order 27 are local. The formula for multiplying elements of local nearrings
on Miller–Moreno metacyclic groups is defined in [20]. Since G2 is a Miller–Moreno
metacyclic group, using [20, Corollary 2], for arbitrary elements x = ax1 + bx2 and
y = ay1 + by2 of G2 and putting α(x) = 0 and β(x) = 1, we obtain the following
multiplication formula:

x · y = a(x1y1 − x1x2
(
y1
2

)
p) + b(x2y1 + y2). (∗ ∗)

It is easy to see that R = (G2,+, ·) is a non-zero-symmetric local nearring.
The multiplication formula for arbitrary elements of a zero-symmetric local near-

ring on G2 is given when proving [20, Theorem 2], namely:

x · y = a(x1y1 − x1x2
(
y1
2

)
p) + b(x2y1 + β(x)y2), (∗ ∗ ∗)
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where β(x) =

{
1, if x1 6≡ 0 (mod p);
0, if x1 ≡ 0 (mod p).

So, from the results presented in this section, we have:

1) n(G2) = 4 for p = 3;

2) n(G2) = 2 for p > 3. Moreover, the multiplication formulas in such nearrings
are determined by formulas (∗ ∗) or (∗ ∗ ∗).

6. Local nearrings whose additive groups are isomorphic to G3

Let R be a local nearring, which is not a nearfield, whose additive group of R+ is
isomorphic to G3. Then R+ = 〈a〉 + 〈b〉 for some elements a and b of R satisfying
the relations ap2 = 0, bp = 0 and b + a = a + b. In particular, each element x ∈ R
is uniquely written in the form x = ax1 + bx2 with coefficients 0 ≤ x1 < p2 and
0 ≤ x2 < p.

We can assume, without loss of generality, that a is an identity of R, i.e., ax =
xa = x for each x ∈ R. Furthermore, for each x ∈ R there exist coefficients α(x)
and β(x) such that xb = aα(x) + bβ(x). It is clear that they are uniquely defined
modulo p2 and p, respectively, so that some mappings α : R→ Zp2 and β : R→ Zp
are determined.

Lemma 9. Let R be a local nearring, which is not a nearfield, whose additive group
of R+ is isomorphic to G3. If a coincides with identity element of R, x = ax1 + bx2,
y = ay1 + by2 ∈ R, xb = aα(x) + bβ(x), then

xy = a(x1y1 + α(x)y2) + b(x2y1 + β(x)y2). (∗ ∗ ∗ ∗)

Moreover, for the mappings α : R → Zp2 and β : R → Zp the following statements
hold:

(0) α(0) = β(0) = 0 if and only if R is zero-symmetric;

(1) α(a) = 0 and β(a) = 1;

(2) α(x) ≡ 0 (mod p);

(3) α(xy) ≡ x1α(y) + α(x)β(y) (mod p);

(4) β(xy) ≡ x2α(y) + β(x)β(y) (mod p).

Proof. Since 0 · a = a · 0 = 0, it follows that R is a zero-symmetric nearring if and
only if 0 = 0 · b = aα(0) + bβ(0) or equivalently, α(0) = β(0) = 0. Moreover, since
b = ab = aα(a) + bβ(a), we have α(a) = 0 and β(a) = 1, so that statements (0) and
(1) hold.

Further, using the left distributive law, we derive

xy = (xa)y1 + (xb)y2 = (ax1 + bx2)y1 + (aα(x) + bβ(x))y2.

We also have (ax1 + bx2)y1 = ax1y1 + bx2y1 and (aα(x) + bβ(x))y2 = aα(x)y2 +
bβ(x)y2. Thus xy = a(x1y1 +α(x)y2)+b(x2y1 +β(x)y2) and so statement (2) holds.
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By Corollary 1, L = 〈ap〉 + 〈b〉. Since xL ⊆ L for each x ∈ R by Lemma 2, we
have xb = aα(x) + bβ(x) ∈ L, whence α(x) ≡ 0 (mod p) for each x ∈ R.

Finally, the associativity of multiplication in R implies that

(xy)b = x(yb) = aα(xy) + bβ(xy).

Furthermore, substituting yb = aα(y) + bβ(y) instead of y into formula (∗ ∗ ∗ ∗), we
also have

x(yb) = a(x1α(y) + α(x)β(y)) + b(x2α(y) + β(x)β(y)).

Comparing the coefficients under a and b in two expressions obtained for x(yb), we
derive statements (3) and (4) of the lemma.

Lemma 10. 〈ap〉 is an ideal of R.

Proof. Let x = ax1 + bx2, y = ay1 + by2 ∈ R, z = apz1 ∈ 〈ap〉. Check whether 〈ap〉
is an ideal of R, i.e. (z + x)y − xy ∈ 〈ap〉. Using the formula (∗ ∗ ∗ ∗), we have

(z + x)y − xy =(apz1 + ax1 + bx2)(ay1 + by2)− (ax1 + bx2)(ay1 + by2)

=(a(pz1 + x1) + bx2)(ay1 + by2)− (ax1 + bx2)(ay1 + by2)

= a((pz1 + x1)y1 + α(z + x)y2) + b(x2y1 + β(z + x)y2)

− (a(z1y1 + α(x)y2) + b(x2y1 + β(x)y2))

= a(pz1y1 + (α(z + x)− α(x))y2) + b(β(z + x)− β(x))y2

= a(pz1y1 + (α(z + x)− α(x))y2) ∈ 〈ap〉,

since β(z + x)− β(x) = 0.
Therefore, 〈ap〉 is an ideal of R.

Lemma 11. Let R be a local nearring, which is not a nearfield, whose additive group
of R+ is isomorphic to G3. If x = ax1 + bx2, y = ay1 + by2 ∈ R, then the mappings
α : R→ Zp2 and β : R→ Zp from (∗ ∗ ∗ ∗) can be one of the following:

(1) α(x) = 0 and β(x) = x1
i (mod p) (0 < i < p);

(2) α(x) = 0 and β(x) = 1;

(3) α(x) = px2 and β(x) ≡ x1 (mod p).

Proof. 1) Since zero-symmetric local nearrings of order p2 are classified in [12], it
follows that all non-isomorphic factor-nearrings with a derived subgroupN = R/〈ap〉
are described. That is, you can apply the multiplication formula from the specified
work, pre-adapting it for the left local nearrings. It is clear that N+ = 〈a〉 + 〈b〉.
Namely, let x = ax1 + bx2 and y = ay1 + by2 be elements of N ; then

xy = ax1y1 + b(x2y1 + ρ(x1)y2).

Moreover, by [12, Theorem 1.6], ρ takes one of p − 1 values for zero-symmetric
nearrings.

On the other hand, by the formula (∗ ∗ ∗ ∗) we have xy = ax1y1+b(x2y1+β(x)y2).
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Equating the coefficients for generators, we obtain β(x)y2 = ρ(x1)y2. Hence
β(x) = ρ(x1). So there exist p− 1 different zero-symmetric nearrings.

2) It is obvious that the multiplication (∗ ∗ ∗ ∗) with the functions α(x) = 0 and
β(x) = 1 is the constant nearring multiplication.

3) By direct checking of conditions (3) and (4) of Lemma 9 for α(x) = px2
and β(x) ≡ x1 (mod p) and by using the multiplication (∗ ∗ ∗ ∗), we prove the
lemma.

So, we have examples of p + 1 nearring multiplications and we formulate the
following result.

Theorem 3. There exist at least p + 1 non-isomorphic local nearrings on each
metacyclic abelian groups of order p3.

Proof. Nearrings R = (R,+, ·) with functions α(x) = 0 and β(x) = x1
i (mod p)

(0 < i < p) are non-isomorphic zero-symmetric local nearrings according to the
above and paper [12]. It is easy to check that the local nearring R = (R,+, ·) with
functions α(x) = 0 and β(x) = 1 is non-zero-symmetric.

Consider R = (R,+, ·) with functions α(x) = px2 and β(x) ≡ x1 (mod p). In
this case, we have |{xb = apx2 + bx1|x ∈ R}| = p2 and R is zero-symmetric. For
example, in the above case with α(x) = 0 and β(x) = x1 (mod p) we get |{xb =
bx1|x ∈ R}| = p, and so R is non-isomorphic to the nearrings considered above.
Therefore, there exist at least p+1 non-isomorphic local nearrings on each metacyclic
abelian group of order p3.

From the packages SONATA and LocalNR we have the following number of
non-isomorphic local nearrings:

StructureDescription(R+) n(R+)
C9 × C3 13
C25 × C5 31
C49 × C7 31
C121 × C11 47

.
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