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Abstract. For n, k ≥ 2, the k-generalized Fibonacci sequence
{
F

(k)
n

}
is defined by each

term being the sum of the k preceding terms with the initial values 0, 0, . . . , 0, 1 (k terms).
In this paper, we prove that the system

ab + 1 = F (k)
x

ac + 1 = F (k)
y

bc + 1 = F (k)
z

has no solution for 1 ≤ a < b < c with a ≤ 103 and some positive integers x, y and z.
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1. Introduction

For n, k ≥ 2 integers, the k−generalized Fibonacci sequence
{
F

(k)
n

}
is given by the

recurrence relation
F (k)
n = F

(k)
n−1 + F

(k)
n−2 + · · ·+ F

(k)
n−k

with initial conditions F
(k)
−(k−2) = F

(k)
−(k−3) = . . . = F

(k)
0 = 0 (k − 1 terms) and

F
(k)
1 = 1. If k = 2, then we get the Fibonacci sequence denoted by {Fn}, while we

obtain the Tribonacci sequence {Tn} when k = 3. Now, we give the definition of
Diophantine m−tuples.

Definition 1. A Diophantine m−tuple is a set of m distinct positive integers
{a1, a2, . . . , am} such that aiaj + 1 is a square for all 1 ≤ i < j ≤ m.

When m = 3, it is called a Diophantine triple. For example, the set {1, 3, 8} is a
Diophantine triple. More generally, {F2n, F2n+2, F2n+4} is a family of Diophantine
triples for all n ∈ Z≥1.

In number theory, finding Diophantinem−tuples, in particular linear recurrences,
is a very popular research topic. Recently, some authors proposed variations of Dio-
phantine triples in linear recurrences. Luca and Szalay [12, 13] gave a different
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perspective by replacing the square in Definition 1 with Fibonacci and Lucas num-
bers. Afterwards, Alp, Irmak and Szalay [1] showed that there are no balancing
Diophantine triples. Then, Irmak and Szalay [11] generalized the previous result.
Namely, they showed that there is no solution to the system ab+1 = ux, ac+1 = uy
and bc+ 1 = uz with 1 ≤ a < b < c such that un = Aun−1 − un−2, u0 = 0, u1 = 1
for A ≥ 2 and n ≥ 4. Recently, the authors in [7] handled a Tribonacci version of
this problem by proving that there are only finitely triples (a, b, c) such that

ab+ 1 = Tx

ac+ 1 = Ty

bc+ 1 = Tz

holds for 1 < a < b < c and k ≥ 2. This problem was generalized in [8] by replacing
the Tribonacci numbers by k−generalized Fibonacci numbers.

In this paper, motivated by [8], we investigate the solutions to the system

ab+ 1 = F (k)
x

ac+ 1 = F (k)
y (1)

bc+ 1 = F (k)
z

for 1 ≤ a < b < c and a ≤ 103 for some positive integers x, y and z.
The difference between our result and paper [8] is: Although the authors in [8]

prove that system (1) has only finitely many solutions for 1 < a < b < c integers,
they did not give any information about what the solutions might be. In this paper,
we put an upper bound on the smallest integer a. Thanks to this bound, we show
that there is no solution of system (1). To do this, we use Baker’s method on lower
bounds for linear forms in logarithms of algebraic numbers. Our result is as follows:

Theorem 1. Assume that k ≥ 2. There is no sextuple of positive integers (a, b, c;x, y, z)
with 1 ≤ a < b < c and a ≤ 103 that satisfies system (1).

This theorem encourages us to offer the following conjecture.

Conjecture 1. There is no solution of system (1) in positive integers (a, b, c;x, y, z)
with 1 ≤ a < b < c.

Note that the condition 1 ≤ a < b < c implies that 4 ≤ x < y < z. Now, we
present several lemmas to prove Theorem 1.

2. Preliminary results

It is known that the characteristic polynomial of the k-generalized Fibonacci num-
bers is ϕ (x) = xk−xk−1−· · ·−1 and has just one root outside the unit circle. This
root is called the dominant root and it is denoted by α. We know that it is located

between 2
(
1− 2−k

)
and 2 (see [15]). The following Binet-like formula for F

(k)
n was

given by Dresden and Du [6]:

F (k)
n =

k∑
i=1

αi − 1

2 + (k + 1) (αi − 2)
αn−1
i ,
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where α = α1, . . . , αk are the roots of ϕ (x) . They also proved the following result.
Let fk (x) = x−1

2+(k+1)(x−2) .

Lemma 1. For k ≥ 2 and n ≥ 2− k, the inequality∣∣∣F (k)
n − fk (α)αn−1

∣∣∣ < 1

2

holds.

By using this lemma, the nth term of the k−generalized Fibonacci sequence can
be written as

F (k)
n = fk (α)αn−1 + ξn, (2)

where |ξn| < 1
2 .

Bravo and Luca (Lemma 1 in [3]) gave upper and lower bounds for the k−generalized
Fibonacci numbers.

Lemma 2. For n ≥ k + 2 and k ≥ 2,

αn−2 < F (k)
n < αn−1

and

αn−2.5 < F (k)
n − 1 < αn−1.

The following result is Lemma 4 in [3].

Lemma 3. Let k ≥ 2. If r > 1 is an integer satisfying r − 1 < 2k/2, then

fk (α)αr−1 = 2r−2 +
δr,k
2

+ 2r−1ηk + ηkδr,k,

where δr,k and ηk are real numbers such that

|δr,k| < 2r−k/2 and |ηk| < 21−kk.

Together with (2), we note that the terms of the sequence
{
F

(k)
n

}
can be written

as

F (k)
n = fk (α)αn−1 + ξn

= 2n−2 +
δn,k

2
+ 2n−1ηk + ηkδn,k + ξn. (3)

The following result was given by Gómez Ruiz and Luca (see Lemma 3.2 in [9]).

Lemma 4. For k ≥ 2, n ≥ 1, the inequality

(F
(k)
n+2 − 1)(F (k)

n − 1) ≤ (F
(k)
n+1 − 1)2

holds.
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By this lemma, we deduce that

F
(k)
n−s − 1

F
(k)
n+t−s − 1

≤ F
(k)
n − 1

F
(k)
n+t − 1

(4)

holds for all positive integers s, t with n ≥ s+ 3.

Cooper and Howard [5] gave the following formulas for F
(k)
n .

Lemma 5. For k ≥ 2 and n ≥ k + 2,

F (k)
n = 2n−2 +

bn+k
k+1 c−1∑
j=1

Cn,j2
n−(k+1)j−2,

where

Cn,j = (−1)j
[(
n− jk
j

)
−
(
n− jk − 2

j − 2

)]
.

We note by Lemma 5 that

F (k)
n =


0, if n = 0,

1, if n = 1,

2n−2, if 2 ≤ n ≤ k + 1,

2n−2 − (n− k)2n−k−3, if k + 2 ≤ n ≤ 2k + 2.

(5)

We deduce the following lemma by using Lemma 3 given in [10].

Lemma 6. For k + 2 ≤ n ≤ 2k/2, the following estimates hold:

(i)F (k)
n = 2n−2

(
1 + ζ

′
(n, k)

)
, where | ζ

′
(n, k) |< 2n

2k
.

(ii)F (k)
n = 2n−2

(
1− n− k

2k+1
ζ

′′
(n, k)

)
, where | ζ

′′
(n, k) |< 4n2

22k+2
.

Let η be an algebraic number and

f (X) = a0

d∏
i=1

(
X − η(i)

)
∈ Z [X]

the minimal primitive polynomial of η over the integers having a positive leading
coefficient a0. The logarithmic height of η is given by

h (η) =
1

d

(
log a0 +

d∑
i=1

log
(

max
{∣∣∣η(i)

∣∣∣ , 1})) .
Matveev [14] proved the following deep theorem.
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Theorem 2. Let K be a number field of degree D over Q, γ1, γ2, . . . , γt positive real
numbers of K, and b1, b2, . . . , bt rational integers. Put

B ≥ max {|b1| , |b2| , . . . , |bt|} ,

and
Λ = γb11 . . . γbtt − 1.

Let A1, . . . , At be real numbers such that

Ai ≥ max {Dh (γi) , |log γi| , 0.16} , i = 1, . . . , t.

Then, assuming that Λ 6= 0, we have

|Λ| > exp
(
−1.4 · 30t+3 · t4.5 ·D2 (1 + logD) (1 + logB)A1 . . . At

)
.

Lemma 7. Assume that 1 ≤ a < b < c are integers with a ≤ 103. If (x, y, z) is the
solution to equation system (1), then the inequalities

x+ y − 32 ≤ z ≤ x+ y

hold.

Proof. By using (1), we get(
F (k)
x − 1

)(
F (k)
y − 1

)
= a2

(
F (k)
z − 1

)
.

Together with Lemma 2 and 1 ≤ a ≤ 103, the inequalities

αx+y−5 <
(
F (k)
x − 1

)(
F (k)
y − 1

)
< 106αz−1 < αz+27.71

and
αz−2.5 < F (k)

z − 1 ≤
(
F (k)
x − 1

)(
F (k)
y − 1

)
< αx+y−2

hold. If we compare the upper and lower bounds of the above inequalities, then we
get the claimed result.

3. The proof of Theorem 1

3.1. An upper bound for x in terms k

Since 1 ≤ a < b < c, then 4 ≤ x. Firstly, assume that 4 ≤ x < y < z < k + 2. By
using (5), equation (1) turns to

(2x−2 − 1)(2y−2 − 1) = a2(2z−2 − 1). (6)

If z ≥ 9, then there is a primitive prime factor of 2z−2 − 1 which can not divide
2x−2 − 1 and 2y−2 − 1. So, z ≤ 8. For 4 ≤ x < y < z ≤ 8 and 1 ≤ a ≤ 103, we do
not find any solution to equation (6).
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Assume that 4 ≤ x < y < k+ 2 ≤ z. Since z ≤ x+ y, then z ≤ 2k+ 1. By using
(5), we have

(2x−2 − 1)(2y−2 − 1) = a2(2z−2 − (z − k)2z−k−2). (7)

Now, we use the 2−adic order of an integer n, denoted by ν2(n), defined as the
exponent of the highest power of 2 that divides n. After taking the 2−adic order of
equation (7), we get

ν2((2x−2 − 1)(2y−2 − 1)) = ν2(a2(2z−2 − (z − k)2z−k−2))

= ν2(a22z−k−2(2k − (z − k)))

= ν2(a2) + ν2(2z−k−2) + ν2(2k − (z − k))

= 2ν2(a) + (z − k − 2) + ν2(2k − (z − k)).

Since ν2((2x−2 − 1)(2y−2 − 1)) = 0, then ν2(a) = 0, z − k − 2 = 0 and ν2(2k −
(z − k)) = 0 must hold, thus a must be an odd integer. Since z − k − 2 = 0, then
ν2(2k − (z − k)) = ν2(2k − (k + 2− k)) = ν2(2k − 2) = 1, which is not possible.

Now, assume that 4 ≤ x < k + 2 ≤ y < z. By the fact that

x >

(
1− k

k + 1

)
z − 2, (8)

(see [8] p. 1455) we get z < (k + 1)(k + 4). For k ≤ 142 and 1 ≤ a ≤ 103, we run
Mathematica to find the solution to the equation

(2x−2 − 1)(F (k)
y − 1) = a2(F (k)

z − 1).

We do not find any solutions. Since the case k > 142 coindices with Section 3.3, we
omit the details for now.

From now on, assume that k ≥ 2 and x ≥ k + 2. The system of equations (1)
gives that (

F (k)
x − 1

)(
F (k)
y − 1

)
= a2

(
F (k)
z − 1

)
. (9)

If we use (2) for the terms F
(k)
x , F

(k)
y and F

(k)
z , then we get∣∣f2

k (α)αx+y−2 − a2fk (α)αz−1
∣∣ =

∣∣a2 (ξz − 1) + (1− ξy) fk (α)αx−1

+ (1− ξx) fk (α)αy−1 + (ξy − 1) (1− ξx)
∣∣ .

After dividing both sides by a2fk (α)αz−1, we get∣∣∣∣1− fk (α)αx+y−z−1

a2

∣∣∣∣ < 1

2fk (α)αz−1
+

1

2αz−x +
1

2αz−y +
1

4fk (α)αz−1

<
1

αz−1
+

1

2αz−x +
1

2αz−y +
1

2αz−1
,

where we used 1/2 < fk (α) and |ξi − 1| < 3/2 for i = x, y, z. By Lemma 7, we
deduce the following inequalities:∣∣∣∣1− fk (α)αx+y−z−1

a2

∣∣∣∣ < 3

αx−32
<

1.3 · 1010

αx
. (10)
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In order to apply Theorem 2, we take t = 2, D = k,

γ1 = fk (α) /a2, γ2 = α

with
b1 = 1, b2 = x+ y − z − 1.

Let
Λ := γb11 γ

b2
2 − 1.

To see Λ 6= 0, we assume on the contrary that Λ = 0. It gives that a2α−(x+y−z−1) =
fk (α) . We know that a, α and α−1 are algebraic integers. Therefore, a2 and
α−(x+y−z−1) are also algebraic integers. Since the product of two algebraic integers
is also an algebraic integer, then a2α−(x+y−z−1) = fk (α) is an algebraic integer. But
this is a contradiction since fk (α) is an algebraic number which is not an algebraic
integer (see Lemma 2 (i) in [4]). So, we arrive at the claimed fact that Λ 6= 0.

Since h(x/y) ≤ h(x) + h(y), then

h(fk (α) /a2) ≤ h(fk (α)) + h(a2)

≤ h(fk (α)) + 6 log 10

≤ 4 log k + 6 log 10 = log(106k4).

So, we can take A1 = k log(106k4) and logα < 0.7 = A2 (see [2]). By Lemma 7, we
take B = 32. Applying Theorem 2 to get a lower bound for |Λ| and comparing this
with inequality (10), we get

exp
(
−C · (1 + log 32)

(
k log(106k4)

)
0.7
)
<

1.3 · 1010

αx
,

where C = 1.4 · 305 · 24.5k2 (1 + log k) . The above inequality yields

x < 3 · 1011k3 (log k)
2
. (11)

Thus, we found an upper bound for x depending on k. From now on, we separate
two cases depending on k.

3.2. The case of small k

Assume that k ≤ 142. So, x < 2.11 · 1019. Suppose first that x ≤ 39. By (8), we
deduce that z ≤ 5683. For intervals 2 ≤ k ≤ 142, 4 ≤ x ≤ 39 and 4 ≤ x < z ≤ 5683,
we do not find any solution. Now, we assume x ≥ 40 and Γ := (x+ y − z − 1) logα−
log
(
a2
)

+ log fk (α) . Then, according to (10), we get

∣∣1− eΓ
∣∣ < 3

αx−32
<

1

2
.

This gives ∣∣∣∣(x+ y − z − 1)− log(fk(α)/a2)

logα

∣∣∣∣ < 6

(logα)αx−32
< 0.27. (12)
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Thus, x+ y− z− 1 is the closest integer to log(fk(α)/a2)/ logα. Every choice (k, a)
determines x+ y − z − 1 uniquely. We get

‖ log(fk(α)/a2)/ logα‖ < 6

(logα)αx−32
,

where ‖δ‖ is the distance to the nearest integer δ. Then there follows

x < 32 +
log(‖(log(fk(α)/a2)/ logα)‖−16(logα)−1)

logα
.

For the range 1 ≤ a ≤ 103 and 2 ≤ k ≤ 142, we have x ≤ 170. This bound is
significantly smaller than 2.11 ·1019. For 1 ≤ a ≤ 103, 2 ≤ k ≤ 142 and 4 ≤ x ≤ 170,
we choose a for fixed k and x such that

F (k)
x − 1 ≡ 0 (mod a).

After doing this, we can determine b easily since F
(k)
x = ab+ 1. As an example, we

give all possible quadruples (a, b, k, x) for a = 100, 2 ≤ k ≤ 142 and 4 ≤ x ≤ 170 in
Table 1. By the system of equations (1), we deduce

bF (k)
y − aF (k)

z = b− a.

Replacing F
(k)
y and F

(k)
z with fk(α)αy−1 and fk(α)αz−1 up to error terms we get

| fk(α)(bαy−1 − aαz−1) |≤ b− a+ b/2 + a/2 < 3b/2,

so ∣∣∣∣αz−y − b

a

∣∣∣∣ ≤ 3b

2afk(α)αy−1
<

3F
(k)
x

a2αy−1
<

3

a2αy−x .

For all possible quadruples (a, b, x, k), we find

∣∣∣∣αz−y − b

a

∣∣∣∣ > 1.86 · 10−11.

This gives that y − x ≤ 53. Since x ≤ 170, then y ≤ 223. We get z ≤ 393 as
z ≤ x + y. When we run Mathematica again for these ranges, we do not find any
solution.
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a k b x
100 2 5731478440138170841 101
100 3 1819976 33
100 3 193413225694157139589 86
100 3 7455279114146399174405820972944 126
100 3 104231474492951572664456508043769360152 153
100 4 357888291765073737616 81
100 5 273216628841081891273326618048 109
100 6 66417785663251578609454911997720785364315267 156
100 7 9554271045 42
100 7 1188962767680 49
100 7 2368371264315 50
100 7 8942494568691641122893 82
100 7 2216720361815965764027530 90
100 7 136211997423281766986544439137 106
100 7 16950638377816534043010778307968 113
100 7 33765064758209786319035012176799 114
100 7 31603029345657117543863449797162015920687142 154
100 8 647530578 38
100 9 11095521105671370588 72
100 9 6290944899536644442893900679592583312850690048 161
100 10 172843062354 46
100 10 6061474345574595264831610675 101
100 10 433001952102395119843136858451317459440888200888 167
100 13 51603626262316465903503484055716 114
100 15 3396856447630948497531417354494062756 130
100 15 14582263681780421297349091832547817402195217613 162
100 16 2950263200494827602 70
100 18 28537604459557341748579122993023499276910592 153
100 19 11528742258952110 62
100 19 13936330866528320614820309859432314605404 142
100 20 425331256834605571043870985817686016 127
100 21 41943 24
100 21 737861494634530734 68
100 24 7136211453650213545639831782996091154202624 151
100 25 13611272974669296714235155848528784261 132
100 26 435561069443292965498610827889971686277 137
100 27 25961475975265115286426167017472 113
100 37 57089907683938445946775318391524906128816210 154
100 41 43980465111 44
100 41 850705917285517911249446356268435374 128
100 42 773712524549316469021737 88
100 48 1784059615882129769546299841639811861530542 149
100 61 46116860184273879 64
100 63 1701411834604692311229447492834689024 129
100 70 27875931498163278926057815957686741630976 143
100 81 48357032784585166988247 84
100 101 50706024009129176059868128215 104
100 121 53169119831396634916152282411213783 124
100 141 55751862996326557853839295681620903764951 144

Table 1: All quadruples (a, k, b, x) for a = 100, 2 ≤ k ≤ 142 and 4 ≤ x ≤ 170 satisfying the

equation ab+ 1 = F
(k)
n .
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3.3. The case of large k

We assume that k > 142. If 4 ≤ x < k + 2 ≤ y < z. By (8), we get

z < (k + 1)(k + 4) < 2k/2.

If x ≥ k + 2, then we know that x < 3 · 1011k3 (log k)
2
. By (8), we obtain

z < 3 · 1011k3(k + 1)(log k)2 < 2k/2.

In any case, the conditions of Lemma 3 are fullfilled. Since

a2 =
(F

(k)
x − 1)(F

(k)
y − 1)

(F
(k)
z − 1)

,

then we have the following after using equation (3):∣∣2x+y−4 − a22z−2
∣∣ < ∣∣∣∣2x−2

(
δy,k
2

+ 2x−1ηk + ηkδy,k +
3

2

)∣∣∣∣
+

∣∣∣∣2y−2

(
δx,k

2
+ 2y−1ηk + ηkδx,k +

3

2

)∣∣∣∣
+

∣∣∣∣(δy,k2
+ 2x−1ηk + ηkδy,k +

3

2

)(
δx,k

2
+ 2y−1ηk + ηkδx,k +

3

2

)∣∣∣∣
+

∣∣∣∣a2

(
δz,k
2

+ 2z−1ηk + ηkδz,k +
3

2

)∣∣∣∣ .
Together with Lemma 3, we get∣∣2x+y−4 − a22z−2

∣∣ < 2x−2

(
6

2y

2k/2
+

3

2

)
+ 2y−2

(
6

2x

2k/2
+

3

2

)
+

(
6

2x

2k/2
+

3

2

)(
6

2y

2k/2
+

3

2

)
+ a2

(
6

2z

2k/2
+

3

2

)
< 12

2x+y−2

2k/2
+ 3

2x−2

2
+ 3

2y−2

2

+ 36
2x+y

2k
+ 9

2x

2k/2
+ 9

2y

2k/2
+

9

4
+ 6 · 106 2z

2k/2
+ 3

106

2
.

After dividing both sides by 2z−2, we obtain∣∣a2 − 2x+y−z−2
∣∣ < 12

2x+y−2

2k/22z−2
+ 3

2y−2

2z−2

+ 36
2x+y

2k2z−2
+ 9

2x

2k/22z−2
+ 9

2y

2k/22z−2
+

9

4 · 2z−2

+ 6 · 106 2z

2k/22z−2
+ 3

106

2z−1

≤ 12 · 232

2k/2
+ 3

229

2k
+

9 · 236

2k
+

9

2k/2
+

9

2k
+

24 · 106

2k/2
+ 3

106

2k

<
5.16 · 1010

2k/2
+

6.21 · 1011

2k
+

1

4
,
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where we used the inequalities z − (x+ y) > −32, y − 32 < z − x and k + 2 < y.
Assume that a2 − 2x+y−z−2 6= 0. Then we have

1

2
≤ min

1≤a≤103

−2≤x+y−z−2≤30

∣∣a2 − 2x+y−z−2
∣∣ < 5.16 · 1010

2k/2
+

6.21 · 1011

2k
.

This gives k ≤ 75. But, this is impossible since k > 142.
Assume that a2 − 2x+y−z−2 = 0. This yields that a = 2u and x+ y− z− 2 = 2u

for u ∈ {0, 1, 2, . . . , 9}. Let x ≥ k + 2. With (1) and (4), we have

22u =
(F

(k)
x − 1)(F

(k)
y − 1)

F
(k)
x+y−2u−2 − 1

>
(F

(k)
x − 1)(F

(k)
k+2 − 1)

F
(k)
x+k−2u − 1

=
(F

(k)
x − 1)(2k − 2)

F
(k)
x+k−2u − 1

≥
(F

(k)
k+2 − 1)(2k − 2)

F
(k)
2k−2u+2 − 1

.

Since F
(k)
2k−2u+2 − 1 = 22k−2u − (k − 2u+ 2)2k−2u−1 − 1, see (5), we deduce

(2k − 2)2 < 22u(22k−2u − (k − 2u+ 2)2k−2u−1 − 1).

This yields k ≤ 23 for u ∈ {0, 1, 2, . . . , 9}, which is not possible since k > 142.

From now on, assume that x < k+ 2. Since F
(k)
x − 1 = 2x−2− 1 and a | F (k)

x − 1,
then a = 1 and x+ y − 2 = z. So, we get the equation

(2x−2 − 1)(F (k)
y − 1) = F

(k)
x+y−2 − 1. (13)

If y = k + 2 or y = k + 3, then the above equation turns to the following equations:

(2x−2 − 1)(2k − 2) = 2x+k−2 − x · 2x−3 − 1

and
(2x−2 − 1)(2k+1 − 4) = 2x+k−1 − (x+ 1)2x−2 − 1,

respectively. None of the above equations is possible since their left-hand sides are
even and their right-hand sides are odd. If y = k + 4, then we get

(2x−2 − 1)(2k+2 − 9) = 2x+k − (x+ 2)2x−1 − 1,

which yields
(2x− 5)2x−2 + 10 = 2k+2.

After taking the 2-adic order of both sides, we get

ν2((2x− 5)2x−2 + 10) = 1 and ν2(2k+2) = k + 2.

So k + 2 = 1, which is a contradiction.
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Now, we can assume, y ≥ k+ 5. Firstly, assume that x < k/2. By using Lemma
6 (i), we can write

Fy = 2y−2(1 + ζ
′

y)

and

Fx+y−2 = 2x+y−4(1 + ζ
′
),

where
∣∣∣ζ ′

y

∣∣∣ < 2y
2k

∣∣∣ζ ′
∣∣∣ < 2(x+y−2)

2k . If we put them into equation (13) there follows:

(2x−2 − 1)(2y−2(1 + ζ
′

y)− 1) = 2x+y−4(1 + ζ
′
)− 1.

After several calculations, we get∣∣2y−2 − 2
∣∣ =

∣∣2x+y−4(ζy − ζ)− 2x−2 − 2y−2ζy
∣∣

< 2x+y−4(|ζy|+ |ζ|) + 2x−2 + 2y−2 |ζy|

<
2x+y−4(x+ 2y − 2)

2k−1
+ 2x−2 +

2y−2y

2k−1
.

If we divide both sides by 2y−2, then∣∣∣∣1− 1

2y−3

∣∣∣∣ < (x+ 2y − 2)

2k−x+1
+

1

2y−x
+

y

2k−1

holds. Since x < k/2, k+ 5 ≤ y < (k+ 1)(k+ 4) < 2k/2 and k/2 < y− x, we obtain

1

2
<

∣∣∣∣1− 1

2y−3

∣∣∣∣ < k/2 + 3(k + 1)(k + 4)− 1

2k/2−1
.

This yields k < 23, which is not possible.

From now on, assume that k/2 ≤ x. If we use the estimates given in Lemma 6

(ii) for the terms F
(k)
y and F

(k)
x+y−2, then we get

(2x−2 − 1)

(
2y−2

(
1− y − k

2k+1
+ ζ

′′

y

)
− 1

)
= 2x+y−4

(
1− x+ y − 2− k

2k+1
+ ζ

′′
)
− 1.

(14)
Then∣∣∣∣ (x− 2)2x+y−4

2k+1
− 2y−2

∣∣∣∣ =

∣∣∣∣2x+y−4(ζ
′′
− ζ

′′

y )− 2y−2(y − k)

2k+1
+ 2y−2ζ

′′

y + 2x−2 − 2

∣∣∣∣
<

2x+y−2((k + (k + 1)(k + 4))2 + ((k + 1)(k + 4))2)

22k+2

+
2y−2((k + 1)(k + 4)− k)

2k+1
+

2y−2((k + 1)(k + 4))2

22k
+ 2x−2 + 2

holds, where we used
∣∣∣ζ ′′
∣∣∣ < 4(x+y−2−k)2

22k+2 < 4(k+(k+1)(k+4))2

22k+2 ,
∣∣∣ζ ′′

y

∣∣∣ < 4y2

22k+2 <
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4((k+1)(k+4))2

22k+2 . After dividing both sides by 2x+y−4, we obtain∣∣x− 2− 2k−x+3
∣∣

2k+1
<

4((k + (k + 1)(k + 4))2 + ((k + 1)(k + 4))2)

22k+2

+
((k + 1)(k + 4)− k)

2k+x−1
+

4((k + 1)(k + 4))2

22k+x
+

1

2y−2
+

1

2x+y−5

<
4((k + (k + 1)(k + 4))2 + ((k + 1)(k + 4))2)

22k+2

+
((k + 1)(k + 4)− k)

23k/2−1
+

4((k + 1)(k + 4))2

25k/2
+

1

2k+3
+

1

23k/2
,

where we used k/2 ≤ x and k + 5 ≤ y. Since x < k + 2 and k − x + 3 > 0, then
x− 2− 2k−x+3 ∈ Z. If

∣∣x− 2− 2k−x+3
∣∣ ≥ 1, we have:

1

2k+1
<

4((k + (k + 1)(k + 4))2 + ((k + 1)(k + 4))2)

22k+2
+

((k + 1)(k + 4)− k)

23k/2−1

+
4((k + 1)(k + 4))2

25k/2
+

1

2k+3
+

1

23k/2
,

which gives k ≤ 23, which is not possible.
Assume that x− 2− 2k−x+3 = 0. Then equation (14) reduces to

2x+y−4ζ
′′

y − 2x−2 − 2y−2 +
2y−2(y − k)

2k+1
− 2y−2ζ

′′

y + 2 = 2x+y−4ζ
′′
.

Then we have∣∣2y−2 − 2
∣∣ =

∣∣∣∣2x+y−4
(
ζ

′′

y − ζ
′′
)
− 2x−2 +

2y−2(y − k)

2k+1
− 2y−2ζ

′′

y

∣∣∣∣
<

2x+y−2y2

22k+2
+

2x+y−2(x+ y − 2)2

22k+2
+ 2x−2 +

2y−2(y − k)

2k+1
+

2yy2

22k+2
.

When we divide both sides by 2y−2, then we get

1

2
<

∣∣∣∣1− 1

2y−3

∣∣∣∣ < 2xy2

22k+2
+

2x(x+ y − 2)2

22k+2
+

1

2y−x
+

(y − k)

2k+1
+

4y2

22k+2

<
((k + 1)(k + 4))2 + ((k + 1)(k + 4) + k)2

2k
+

1

4
+

(k + 1)(k + 4)− k
2k+1

+
4((k + 1)(k + 4))2

22k+2
,

where we used x < k+ 2 and 2 ≤ y−x. This gives k ≤ 21, which is a contradiction.
Finally, we complete the proof of Theorem 1.
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