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Abstract. The flow of a fluid through a pipe subjected to heating is studied. The fluid is
governed by the pressure drop, and the heat exchange between the fluid and the environ-
ment is described by Newton’s cooling law. The longitudinal heat expansion of the pipe
is taken into account. Error estimates for the asymptotic approximation in the extended
domain are derived.
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1. Intoduction

The study of fluid flows subjected to heating has been initiated by situations oc-
curring in heat exchangers, underground piping structures, geothermal systems, etc.
(see [1, 5, 6, 7, 8]). In such systems, pipe walls are subjected to a large temperature
gradient during heat transfer, and as materials expand when heated and contract
when cooled, pipes also expand and contract at different temperatures. We assume
that longitudinal expansion is described by the law of linear heat expansion: The
length changes by an amount proportional to the original length and the tempera-
ture change. The proportionality coefficient is the heat expansion, a small parameter
of size 10−5, which allows us to search for an approximate solution by asymptotic
analysis. The asymptotic behavior of the solutions of partial differential equations
with respect to a small parameter, which is a physical parameter [9] or a feature
of the domain shape, is intensively studied in applied mathematics. Domains are
usually considered to be rods, plates [3], tubes [1, 2, 11], etc., as well as some unions
of these elements [12]. The problem is usually recognized for its engineering im-
portance and studied in mechanics, without rigorous estimates for the difference
between the exact solution and the approximate solution. They were later studied
mathematically. The mathematical justification implies the estimation of the dif-
ference between the exact solution and its asymptotic approximation or gives some
convergence theorems.
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In the present paper, we study the asymptotic behavior of the fluid temperature
in a heat conduction problem in a dilated pipe. The temperature is the solution
of the convection-diffusion equation with a steady state Poiseuille velocity. Due to
the pipe dilation, the fluid domain is no longer fixed and changes depending on the
unknown temperature. By introducing a suitable change of variables, the domain
becomes fixed, but the PDE becomes nonlinear. The existence and uniqueness
of the solution was considered [10], as well as the asymptotic behavior on a fixed
domain [9]. The main goal of this paper is to give an analysis of the approximation
on the original extended domain. In Section 2, we give a problem statement and
observation on the difference between the pipe length for the exact fluid temperature
and its approximation, as well as a note on variable change functions for exact and
approximated solutions.

The study of thin structures is motivated by the engineering of industrial equip-
ment, so in Section 3 we assume that the pipe has a circular cross-section and denote
by the small parameter δ the ratio between the thickness and the length of the pipe.
For the chosen parameters, we give a graphical representation of the variable change
function, the first order approximation and corrector. This visualization illustrates
the importance of considering the approximation on the original, unfixed domain.
In Section 4, error estimates are derived mathematically.

2. Flow through a dilated pipe

We assume that the cylindrical domain is filled with a fluid and that the fluid inside
the pipe is heated (or cooled) by the surrounding medium and its temperature is
described by a stationary convection-diffusion equation. Due to the temperature
change, the pipe changes its length in the longitudinal direction, which is equal
to 1 at the reference temperature, while the cross-section remains constant and is
assumed to be circular in this paper. The length change in the longitudinal direction
is proportional to the temperature change. Since the fluid temperature equation is
considered in a dilated domain, the average temperature change of the pipe is also
considered in a dilated domain. Thus, the length change is described by the heat
expansion law

lθε = 1 + ε

∫ lθε

0

〈θε〉(ξ) dξ, (1)

where lθε stands for the pipe’s length, ε� 1 is a small parameter denoting the heat
expansion coefficient and θε is the increment in the temperature, i.e. the difference
between the temperature of the pipe or fluid and a reference temperature. The mean
temperature over the pipe’s cross-section is given by 〈θε〉. This value is approximated
by the mean value of the fluid temperature per cross-section ω. Namely,

〈θε〉(·) =
1

|ω|

∫
ω

θε(·, y, z) dydz

is used instead of 1/|∂ω|
∫
∂ω
θε(·, y, z) dSy,z.
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Figure 1: The flow domain Bθε

The fluid-pipe system is heated by the surrounding medium of the exterior temper-
ature f = f(ξ, y, z) of class C1 and we consider the stationary convection-diffusion
equation for the fluid temperature in the domain Bθε = (0, lθε) × ω supplemented
with the mixed Dirichlet-Robin boundary conditions:

− κ
(
∂2θε

∂ξ2
+
∂2θε

∂y2
+
∂2θε

∂z2

)
+ u

∂θε

∂ξ
= 0 in Bθε (2)

κ
∂θε

∂n
= σ(f − θε) on Γθε = (0, lθε)× ∂ω (3)

θε(0, ·, ·) = θl, θ
ε(lθε , ·, ·) = θr on ω. (4)

The positive constants κ and σ are independent of ε and stand for thermal con-
ductivity of the fluid and the heat transfer coefficient, respectively, n denotes the
exterior unit normal on the lateral boundary Γθε , while θl and θr are prescribed
constant temperatures on the ends of the pipe. We study the laminar regime of the
flow (governed by a prescribed pressure drop) and therefore assume that the fluid
velocity u has Poiseuille form:

u = (pl − pr)v,

where v is the parabolic profile described by

−µ4v = 1 in ω
v = 0 on ∂ω.

Here µ stands for the viscosity of the fluid, while pl and pr represent the prescribed
(constant) pressures at the pipe’s left and right end, respectively.

The main difficulty arises from the nonlinearity of the coupled system due the
fact that the domain Bθε depends on the solution θε. The existence and unique-
ness of the weak solution θε ∈ H1(Bθε) ∩ L∞(Bθε) under the assumption that
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ε is small enough have been proven in [10]. We emphasize that the assumption
ε ·max{|θl|, |θr|, ‖g‖L∞} < 1/4, by a maximum principle (see [10, Proposition 1.]),
yields

ε|〈θε〉| < 1

4
. (5)

It is obvious that one cannot hope to derive the exact solution of such nonlinear
problem. Therefore we study the appropriate asymptotic model defined on the fixed
fluid domain obtained by introducing the variable change

x = ξ − ε
∫ ξ

0

〈θε〉(s) ds. (6)

Due to the inequality (5), this mapping is strictly increasing bijection from Bθε in
B1 = (0, 1) × ω. Considering the heat law (1), one can imagine that the variable
ξ of the dilated pipe is connected to the corresponding coordinate x ∈ (0, 1) of the
unexpanded pipe. In view of that, we introduce a new unknown temperature

T ε(x, y, z) = θε(ξ, y, z)

and the exterior temperature

g(x, y, z) = f(ξ, y, z).

Taking into account the introduced substitutions and

dx

dξ
= 1− ε〈θε〉(ξ) = 1− ε〈T ε〉(x), (7)

∂θε

∂ξ
=
(
1− ε〈T ε〉

)∂T ε
∂x

∂2θε

∂ξ2
=

(
−ε
〈
∂T ε

∂x

〉
∂T ε

∂x
+
(
1− ε〈T ε〉

)∂2T ε

∂x2

)(
1− ε〈T ε〉

)
,

problem (2)–(4) reads:

− κ
(
4T ε + ε

(
−2〈T ε〉∂

2T ε

∂x2
−
〈
∂T ε

∂x

〉
∂T ε

∂x

)
+ε2〈T ε〉 ∂

∂x

(
〈T ε〉∂T

ε

∂x

))
+ u (1− ε〈T ε〉) ∂T

ε

∂x
= 0 in B1 (8)

κ
∂T ε

∂n
= σ(g − T ε) on Γ1 = (0, 1)× ∂ω (9)

T ε(0, ·, ·) = θl, T
ε(1, ·, ·) = θr on ω. (10)

Due to the nonlinearity of the problem, we do not expect to find an exact solution,
but rather look for an approximation. Considering the small parameter ε, we expand
the temperature T ε in an asymptotic series by powers of ε as follows:

T ε = T0 + εT1 + · · ·+ εkTk + · · ·
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The substitution of the introduced expansion in the heat equation and the collection
of the members with the same powers of ε leads to a system of linear elliptic PDEs

− κ4T0 + u
∂T0

∂x
= 0 (11)

− κ4Tk + u
∂Tk
∂x

= βεk, k > 1,

where βεk depends on Tm, 0 ≤ m < k, and their derivatives with respect to x. The
expressions for βεk are long and tedious and we give it only for k = 1:

βε1 = −2κ〈T0〉
∂2T0

∂x2
− κ

〈
∂T0

∂x

〉
∂T0

∂x
+ u〈T0〉

∂T0

∂x

and omit others. By using the same approach to impose the boundary conditions
we get

κ
∂T0

∂n
= σ(g − T0), T0(0, ·, ·) = θl, T0(1, ·, ·) = θr (12)

κ
∂Tk
∂n

= −σTk, Tk(0, ·, ·) = 0, T0(1, ·, ·) = 0.

The obtained system is recursive and in each step the right-hand side of the equation
is known from the previous equation. Therefore, the existence, uniqueness and
regularity of the solutions Tk ∈ H2(B1) are obvious (e. g. see [4]).

Moreover, paper [9] considers the evaluation of the difference between the exact
solution of (8)–(10) and the derived asymptotic solution, and the following error
estimate holds:

‖T ε − (T0 + εT1 + · · ·+ εkTk)‖H1(B1) ≤ Cεk+1, (13)

where C is a constant independent of ε. In what follows, the positive constant C
denotes a generic constant independent of ε (and δ in the next section).

Note that the problem was formulated at the beginning for θε and that the do-
main of θε, i.e. dilation of the pipe, is determined by the corresponding temperature
T ε. By using the asymptotic approximation, the domain itself, as well as the length
of the pipe, is no longer determined exactly. Let us state the result on the error
estimation for the pipe dilation.

Observation 1. Let lθε be the length of the pipe corresponding to the solution θε of
the original problem (2)–(4), and let lεk be the approximation of the length of the pipe
corresponding to the solution T εk = T0 + εT1 + · · ·+ εkTk of the asymptotic problem.
Then the following estimate holds:

|lθε − lεk| ≤ Cεk+2.

Proof. By changing variable (6) we deduce

dx = dξ − ε〈θε〉(ξ) dξ = (1− ε〈T ε〉(x)) dξ
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lθε = 1 + ε

∫ lθε

0

〈θε〉(ξ) dξ = 1 + ε

∫ 1

0

〈T ε〉(x)

1− ε〈T ε〉(x)
dx.

From inequality (5) it follows that the expressions 1− ε〈T ε〉(x) and 1− ε〈T εk〉(x) are
bounded from below by a positive real number (e.g. 3/4 for a sufficiently small ε).
Therefore, we have

|lθε − lεk| =
∣∣∣∣ε ∫ 1

0

(
〈T ε〉(x)

1− ε〈T ε〉(x)
− 〈T εk〉(x)

1− ε〈T εk〉(x)

)
dx

∣∣∣∣
=

∣∣∣∣ε ∫ 1

0

〈T ε〉(x)− 〈T εk〉(x)

(1− ε〈T ε〉(x))(1− ε〈T εk〉(x))
dx

∣∣∣∣
≤ Cε

∫ 1

0

∫
ω

|T ε(x, y, z)− T εk(x, y, z)| dxdydz

≤ Cε‖T ε − T εk‖L2(B1) ≤ Cεk+2. (14)

In the above conclusion we have used estimate (13).

It should be emphasized that the regressions from the variable x to the initial
variable ξ via the exact solution and the approximation are not the same. An error
of size Cεk+2 occurs along the entire length of the pipe. More precisely, let ξε(x) be
the corresponding variable value in the pipe for the exact solution and ξεk(x) for the
approximation of the solution. Then we have

|ξε(x)− ξεk(x)| =
∣∣∣∣ε∫ x

0

(
〈T ε〉(t)

1− ε〈T ε〉(t)
− 〈T εk〉(t)

1− ε〈T εk〉(t)

)
dt

∣∣∣∣ ≤ Cεk+2. (15)

Furthermore,∣∣∣∣ ddxξε(x)− d

dx
ξεk(x)

∣∣∣∣ = ε

∣∣∣∣ 〈T ε〉(x)

1− ε〈T ε〉(x)
− 〈T εk〉(x)

1− ε〈T εk〉(x)

∣∣∣∣
≤ Cε |〈T ε〉(x)− 〈T εk〉(x)| ≤ Cε‖〈T ε〉 − 〈T εk〉‖H1(0,1)

≤ Cε‖T ε − T εk‖H1(B1) ≤ Cεk+2,

leading to the conclusion that the changes in the variable ξε can be approximated
by the change in ξεk with respect to x. Since the pipe does not necessarily expand
linearly, but a part may be subject to a greater expansion, we conclude that the
change in the rate of expansion described by the variable ξε can be approximated
by the expansion determined by the approximation ξεk.

3. Thin (or long) pipe

In this section, we study the flow in a thin (or long) pipe with a small circular cross-
section of radius δ > 0. For this purpose, we introduce another small parameter δ.
Our goal is to find an asymptotic approximation for the temperature θε. However,
we start with the approximation for T ε introduced in the previous section since this
solution is defined on a fixed length domain. Due to the small thickness of the pipe,
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we expect the heat flux to be mainly in the x direction. We will introduce fast
variables and once again use an asymptotic approach, but this time in terms of δ
and for the zero-order approximation T0 and the corrector T1.

We study the problem for T0 in domain Bδ1 = (0, 1)×ωδ = (0, 1)×{(y, z) ∈ R2 :
y2 + z2 < δ2}:

− κ4T0 + u
∂T0

∂x
= 0 in Bδ1

κ
∂T0

∂n
= σ(g − T0) on Γδ1 = (0, 1)× ∂ωδ

T0(0, ·, ·) = θl, T0(1, ·, ·) = θr.

Introducing the fast variables ρ = y
δ and τ = z

δ and the following notation for the
partial differential operator 4ρ,τΦ = ∂2Φ

∂ρ2 + ∂2Φ
∂τ2 , we get a problem in δ independent

domain B1
1 which reads:

− κ
(

1

δ2
4ρ,τT0 +

∂2T0

∂x2

)
+ u

∂T0

∂x
= 0 in B1

1

κ
∂T0

∂n
= δσ(g − T0) on Γ1

1

T0(0, ·, ·) = θl, T0(1, ·, ·) = θr.

Recall that the velocity u is given in Poiseuille form

u =
pl − pr

4µ
(δ2 − y2 − z2) = δ2 pl − pr

4µ
(1− ρ2 − τ2) = O(δ2).

We expand the unknown temperature

T0 = T 0
0 + δT 1

0 + · · ·+ δnTn0 + · · · . (16)

The equations for the first-order approximation were derived in [9]. A standard
application of asymptotic analysis for non-isothermal flows in a thin pipe was used
(e.g. see [1]). We will briefly repeat the derivation here to give the readers a better
overview.

Let us first consider the meaning of the heat transfer coefficient. Assuming
σ � O(δ), the leading approximation in the temperature expansion is equal to
the external temperature g. In this case, the temperature exchange through the
lateral boundary dominates the process, and the effect of the temperature of the
fluid entering the pipe is negligible. If it is σ � O(δ), then the effect of temperature
exchange at the lateral boundary is negligible. The most interesting critical case σ =
O(δ) is between the above cases, where all physically relevant effects are preserved
in the proposed problem. Therefore, we limit further consideration to the case

σ = αδ, α = O(1).

Substituting expansion (16) into heat equation (11) and taking into account lateral
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boundary condition (12), by collecting leading order terms we get

−4ρ,τT 0
0 = 0 in B1

1

κ
∂T 0

0

∂n
= 0 on Γ1

1,

from which we conclude T 0
0 = T 0

0 (x). Similarly, by collecting the terms in the heat
equation with δ−1 and in the lateral boundary condition with δ, we obtain that T 1

0

satisfies the same system, which also leads to a conclusion T 1
0 = T 1

0 (x). To determine
T 0

0 , we proceed by defining the problem for T 2
0 :

−4ρ,τT 2
0 −

∂2T 0
0

∂x2
= 0 in B1

1 (17)

κ
∂T 2

0

∂n
= α(g − T 0

0 ) on Γ1
1. (18)

The necessary condition for the existence of T 2
0 results in a linear second order ODE

for T 0
0 :

d2T 0
0

dx2
− 2α

κ
T 0

0 = − α

κπ

∫
∂B(0,1)

g(x, y, z) dydz = −2α

κ
g(x) in (0, 1) (19)

leading to

T 0
0 (x) = A1 cosh

√
2αx√
κ

+A2 sinh

√
2αx√
κ

+

√
2α

κ

∫ x

0

sinh

√
2α(t− x)√

κ
· g(t) dt.

For simplicity, we have assumed g = g(x). Otherwise, in the rest of the paper, in
all calculations, g should be replaced by 1

2π

∫
∂B(0,1)

g(x, y, z) dydz. Considering the
boundary conditions T 0

0 (0) = θl and T 0
0 (1) = θr, we obtain a solution

T 0
0 (x) =

√
2α

κ

∫ x

0

sinh

√
2α(t− x)√

κ
· g(t) dt+ θl cosh

√
2αx√
κ

+
sinh

√
2αx√
κ

sinh
√

2α
κ

(
θr−θl cosh

√
2α

κ
−
√

2α

κ

∫ 1

0

sinh

√
2α(t− 1)√

κ
· g(t) dt

)
. (20)

Note that, if truly g = g(x), in view of (19), problem (17)–(18) can be solved by
taking T 2

0 (x, ρ, τ) = − 1
4 (ρ2 + τ2)

d2T 0
0

dx2 (x).
By continuing the asymptotic procedure, we find the system for T 3

0 :

−4ρ,τT 3
0 −

∂2T 1
0

∂x2
= 0 in B1

1

κ
∂T 3

0

∂n
= −αT 1

0 on Γ1
1.

The compatibility conditions lead to homogenous linear ODE

d2T 1
0

dx2
=

2α

κ
T 1

0 in (0, 1).
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Due to the boundary conditions T 1
0 (0) = 0 and T 1

0 (1) = 0, we deduce T 1
0 (x) = 0.

Therefore, we approximate T0 with T0 = T 0
0 + δT 1

0 = T 0
0 .

Thus, the approximation T0 for T ε was derived in explicit form. To obtain an
approximation θ0 for the solution θε of the starting problem, the variables must be
changed. Namely,

θ0(ξ0) = T0(x), (21)

where in accordance with (6) and (7), we define

x = ξ0 − ε
∫ ξ0

0

〈θ0〉(s) ds = ξ0 − ε
∫ x

0

T0(s)

1− εT0(s)
ds. (22)

Recall that the last equation has a unique solution x ∈ (0, 1) for every ξ ∈ (0, l0),
where l0 = 1 + ε

∫ 1

0
T0(s)

1−εT0(s) ds, because the variable ξ0 increases continuously in x.
Since this is a nonlinear equation that also has an integral that is difficult to solve
exactly, we will discuss the approximation for a selected numerical example.

Assuming that the considered fluid is water, we take the following constant values:
the thermal conductivity κ = 0.6W/(mK), the rate α=1.29, the temperature at the
pipe’s ends θl = 25◦C and θr = 20◦C. The small parameter ε is of order 10−5 for
different pipe materials, so we set ε = 10−5. In the engineering literature, linearity
of g is usually assumed so we take g(x) = x + 1. Because of the choice of the
function g, it is possible to calculate exactly the integrals in expression (20). We
skip this technical part and prefer to present the results graphically. All numerical
calculations were performed in MATLAB.

For the approximation of the length of the pipe we have l0 = 1 + 1.72331 · 10−4.
The dependence of the variable ξ on x is shown in Fig. 2.
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Figure 2: Variable change for zero order approximation

One can notice that visually the dependence is almost linear. By including dif-
ferent constants of the problem, it can be seen that the linearity is almost preserved
for all linear functions g. However, in the case of a larger difference between the
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temperature of the fluid at the ends of the pipe, a slightly larger dilation is observed
at the end with a higher temperature.

Now the approximation θ0 can be determined according to (21) and (22). Fig. 3
shows the obtained approximation θ0 and the approximation T0 defined on the fixed
domain (0, 1). Since the graphs of these functions almost coincide, their difference
is also shown. As expected, the error is larger at the right end of the pipe due to
the chosen notation of the domain. The error itself is of order 10−3, which may
not be significant compared to the values of the fluid temperature, but it is open to
discussion whether it is negligible compared to the small parameter ε.
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Figure 3: Comparison of approximations on dilated and fixed domain

To obtain an approximation for T1, we consider the following problem formulated
in terms of fast variables:

−κ
(

1

δ2
4ρ,τT1 +

∂2T1

∂x2

)
+ u(ρ, τ)

∂T1

∂x

= −2κ〈T0〉
∂2T0

∂x2
− κ

〈
∂T0

∂x

〉
∂T0

∂x
+ u(ρ, τ)〈T0〉

∂T0

∂x
in B1

1

κ
∂T1

∂n
= αδ2T1 on Γ1

1.

To simplify the notation of the solution, let us now assume that g = 0. If we had
used this fact earlier, we would have obtained that the zero-order approximation
length of the dilated pipe is l0 = 1 + 1.68565 · 10−4.
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By using (20) we get

−κ
(

1

δ2
4ρ,τT1 +

∂2T1

∂x2

)
+ u(ρ, τ)

∂T1

∂x
=

−2α

sinh2
√

2α
κ

·

((
θr cosh

√
2αx√
κ
− θl cosh

√
2α(1− x)√

κ

)2

+2

(
θr sinh

√
2αx√
κ

+θl sinh

√
2α(1− x)√

κ

)2
)

+O(δ2) in B1
1 . (23)

We expand T1 = T 0
1 + δT 1

1 + δ2T 2
1 + · · · . Using exactly the same reasoning as before,

we obtain that T 0
1 = T 0

1 (x) and T 1
1 = T 1

1 (x). The function T 2
1 is the solution of

problem

− κ
(
4ρ,τT 2

1 +
∂2T 2

1

∂x2

)
= β(x) in B1

1

κ
∂T 2

1

∂n
= −αT 0

1 on Γ1
1,

where β(x) is an x-dependent expression on the right-hand side of (23). A necessary
compatibility condition gives ODE for T 0

1 :

d2T 0
1

dx2
− 2α

κ
= −β(x)

κ
.

By imposing the boundary conditions T 0
1 (0) = T 0

1 (1) = 0 we get

T 0
1 (x) = −

sinh
√

2αx√
κ

√
2ακ sinh

√
2α
κ

∫ 1

0

sinh

√
2α(t− 1)√

κ
· β(t) dt

+
1√
2ακ

∫ x

0

sinh

√
2α(t− x)√

κ
· β(t) dt.

The compatibility condition for the problem for T 3
1 together with the boundary

conditions T 1
1 (0) = T 1

1 (1) = 0 yields T 1
1 (x) = 0 as before. Thus the approximation

T1 = T 0
1 + δT 1

1 = T 0
1 is determined.

The graphical results are presented in Fig. 4. On the left side, the graph of T1

is shown. It can be seen that the function is of order 102, so its contribution to the
approximation T = T0 + εT1 is of order 10−2. The difference θ1−T is shown on the
right, where θ1 is defined analogously to (21) and (22):

θ1(ξ1) = T (x), x = ξ1 − ε
∫ ξ1

0

〈θ1〉(s) ds = ξ1 − ε
∫ x

0

T (s)

1− εT (s)
ds.

We see that this difference has the same order as the difference θ0−T0. This suggests
the importance of returning to the original domain of the extended pipe. Namely,
taking into account T0 ∈ H2(0, 1) (by the standard theory of elliptic PDEs), for all
η ∈ (0, l0) ∩ (0, 1), we have

|θ0(η)−T0(η)| = |T0(ξ−1
0 (η))−T0(η)| = |T ′0 (η̃)|·|ξ−1

0 (η)−η| = ε|T ′0 (η̃)|·
∣∣∣∣∫ η

0

〈θ0〉(s) ds
∣∣∣∣ .
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Figure 4: Comparison of approximations on dilated and fixed domain

Analogously, it turns out that θ1 − T is also of the same order, i.e., an error of
order ε is to be expected, especially at the right boundary of the pipe. From this
we conclude that the search for a corrective term is meaningless unless the original
temperature θε is approximated by a function on the dilated domain.

Let us also state that with the approximation T we arrive at the length of the
pipe l1 = 1 + 1.68551 · 10−4 compared to the previously obtained approximation
l0 = 1 + 1.68565 · 10−4.

4. Error estimate

Having emphasized the importance of approximation on a dilated domain, let us
now evaluate the approximation obtained with such approach. The usual procedure
of defining a weak formulation of the problem and using a test function equal to the
difference between the solution and the approximation (see [9] for details) yields

‖〈T0〉 − T0‖H1(0,1) ≤ Cδ2 (24)

‖〈T1〉 − T ‖H1(0,1) ≤ Cδ2,

for small enough δ. Note that the functions T0 and T depend only on x, so the
above estimates are actually estimates in the entire flow domain.

Theorem 1. Let θε be the solution of problem (2)–(4). Its approximations θ0 and
θ1 are defined as in the previous section. Then the following estimates hold:

‖〈θε〉 − θ0‖H1(0,lθε ) ≤ C(ε+ δ2) ‖〈θε〉 − θ1‖H1(0,lθε ) ≤ C(ε2 + δ2),

where ε and δ are small enough and C is a constant independent of ε and δ.
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Remark 1. The approximation θ0 is not necessarily defined on the whole domain
Bθε , but only for the pipe’s length l0. As both θε and θ0 are L∞ functions and the
length difference lθε − l0 is bounded by Cε(ε+ δ2) analogously to (14), the extension
by a constant is sufficient to have no influence on the error estimate.

Remark 2. Some constants in Section 2 depend on δ. Derivations with respect to
the variables y and z and bounds depending on the dimensions of the domain are
affected. All this has no effect on the theorem stated.

Proof of Theorem 1. Let ξ, ξ0, and ξ1, as before, be the functions of the change of
the variable x in the extended domain corresponding respectively to the solutions
θε, θ0, θ1 (or T ε, T0, T ). Keeping in mind that ξ mappings connect the points of
the original pipe and the dilated ones, we conclude: x 7→ ξ connects the position x
with the point of the extended pipe by the temperature θε. Then ξ 7→ξ−1

0 x̃ finds
the point which would be the starting point if the pipe has been extended by the
temperature θ0. We start with the variable change and use the fact that ξ functions
as well as their derivatives are bounded:

‖〈θε〉 − θ0‖L2(0,lθε ) =‖dξ/dx‖1/2L∞(0,1)‖〈T
ε〉 − T0 ◦ ξ−1

0 ◦ ξ‖L2(0,1)

≤C(‖〈T ε − T0〉‖L2(0,1) + ‖〈T0〉 − T0‖L2(0,1)

+ ‖T0 − T0 ◦ ξ−1
0 ◦ ξ‖L2(0,1)).

The first two terms are bounded by (13) and (24). Recall again that T0 ∈ H2(0, 1).
Also, ξ0 = ξ0(x) is smooth with derivative 1/(1− εθ0). Due to (5), the inverse ξ−1

0 is
derivable and its derivative is bounded independently of ε. By the same reasoning as
in (15), we have |ξ0(x)− ξ(x)| ≤ Cε‖T0− 〈T ε〉‖L2(0,1). Therefore for all x ∈ B(0, 1):

|T0(x)− T0(ξ−1
0 (ξ(x)))| ≤C|x− ξ−1

0 (ξ(x))| = C|ξ−1
0 (ξ0(x))− ξ−1

0 (ξ(x))|
≤C‖(ξ−1

0 )′‖L∞(0,1)|ξ0(x)− ξ(x)|
≤Cε‖T0 − 〈T ε〉‖L2(0,1). (25)

We deduce

‖〈θε〉 − θ0‖L2(0,lθε ) ≤ C(ε+ δ2 + ε(ε+ δ2)) ≤ C(ε+ δ2).

For the second inequality, we start from

‖ d
dξ
〈θε〉 − θ′0‖L2(0,lθε ) =‖ d

dx
〈T ε〉 − d

dx
T0 ◦ ξ−1

0 ◦ ξ‖L2(0,1)

≤‖〈T ε − T0〉‖H1(0,1) + ‖〈T0〉 − T0‖H1(0,1)

+ ‖T ′0 −
d

dx
T0 ◦ ξ−1

0 ◦ ξ‖L2(0,1).
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The third term can be treated as follows:

‖T ′0 −
d

dx
T0 ◦ ξ−1

0 ◦ ξ‖L2(0,1)

=‖T ′0 − T ′0 ◦ ξ−1
0 ◦ ξ · (ξ−1

0 )′ ◦ ξ · ξ′‖L2(0,1)

≤‖T ′0 − T ′0 · (ξ−1
0 )′ ◦ ξ · ξ′‖L2(0,1)

+ ‖T ′0 · (ξ−1
0 )′ ◦ ξ · ξ′ − T ′0 ◦ ξ−1

0 ◦ ξ · (ξ−1
0 )′ ◦ ξ · ξ′‖L2(0,1)

≤‖T ′0‖L2(0,1)‖1− (ξ−1
0 )′ ◦ ξ · ξ′‖L∞(0,1)

+ ‖(ξ−1
0 )′ ◦ ξ · ξ′‖L∞(0,1)‖T ′0 − T ′0 ◦ ξ−1

0 ◦ ξ‖L2(0,1)

≤C‖1− (1− εT0 ◦ ξ−1
0 ◦ ξ) · 1

1− ε〈T ε〉
‖L∞(0,1)

+ C‖T0‖H2(0,1)‖ id(0,1)−ξ−1
0 ◦ ξ‖L∞(0,1)

≤Cε‖T0 ◦ ξ−1
0 ◦ ξ − 〈T ε〉‖L2(0,1) + C‖(ξ−1

0 )′‖L∞(0,1)‖ξ0 − ξ‖L∞(0,1).

The first term is bounded by (25), so that we finally have

‖ d
dξ
〈θε〉 − θ′0‖L2(0,lθε ) ≤ C(ε+ δ2 + ε2(ε+ δ2) + ε(ε+ δ2)) ≤ C(ε+ δ2).

The proof of the second inequality is analogous.

5. Conclusion

In this paper, a study of the flow of fluid through a thin pipe whose surroundings have
a different temperature than the fluid inside the pipe is presented. A nonlinear model
is used to describe the coupling of the temperature of the fluid and the longitudinal
expansion of the tube. Using asymptotic analysis with respect to small parameters
ε (heat expansion coefficient) and δ (ratio between pipe thickness and length), an
asymptotic solution was observed. Although the approximation is initially defined
on a fixed domain (defined by the change in variables), the importance of considering
the approximate solution on the original extended domain is presented. By proving
the error estimate for the approximation on the extended domain, the justification
of the effective model is given, which is our main contribution.

The asymptotic behavior of the heat conduction problem has already been stud-
ied (e.g. [1, 5, 7, 8]), but to our knowledge, research on temperature-variable domains
has been neglected. This paper shows that for a good approximation it is necessary
to take into account the change of the domain, because it is not enough just to
formulate the problem on the temperature dependent domain, but it is also advis-
able to determine the approximation on the extended domain. We believe that the
presented paper can improve engineering practice, especially in numerical simula-
tions, considering that variable substitution functions are simple and numerically
convenient.
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