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1. Introduction

Define the two Fibonacci–like sequences {Un} and {Vn} by second order linear re-
cursions

Un = pUn−1 + Un−2 and Vn = pVn−1 + Vn−2

with the initial conditions U0 = 0, U1 = 1, and V0 = 2, V1 = p, respectively. They
are related by the equality Vn = Un+1+Un−1 and represented by the following Binet
forms:

Un =
αn − βn

α− β
= αn−1 1− qn

1− q
and Vn = αn + βn = αn(1 + qn), (1)

where q = β/α = −α−2, which implies αβ = −1 and α = i/
√
q with i =

√
−1 being

the imaginary unit. Two special cases of these sequences are recorded here:

p α {Un} {Vn}

1
1 +

√
5

2
Fibonacci sequence {Fn} Lucas sequence {Ln}

2 1 +
√
2 Pell sequence {Pn} Pell–Lucas sequence {Qn}
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Denote by Z and N the sets of integers and natural numbers with N0 = N∪ {0},
respectively. For n,m, k ∈ N with n ≥ k ≥ 1, define the generalized Fibonomial and
Lucanomial coefficients by{

n

k

}
Um

=

k∏
j=1

U(n−j+1)m

Ujm
=

UnmU(n−1)m · · ·U(n−k+1)m

UmU2m · · ·Ukm
,

{
n

k

}
Vm

=

k∏
j=1

V(n−j+1)m

Ujm
=

VnmV(n−1)m · · ·V(n−k+1)m

VmV2m · · ·Vkm
;

with the boundary conditions{
n

0

}
Um

=

{
n

0

}
Vm

=

{
n

n

}
Um

=

{
n

n

}
Vm

= 1.

In particular, for m = 1, the reduced coefficients

{
n

k

}
U1

and

{
n

k

}
V1

will be denoted

briefly by

{
n

k

}
U

and

{
n

k

}
V

, respectively. When Un = Fn and Vn = Ln, these coef-

ficients reduce to the usual Fibonomial coefficients
{
n
k

}
F
and Lucanomial coefficients{

n
k

}
L
, respectively. For details about the Fibonomial and Lucanomial coefficients

and their properties, the interested reader may refer to [7, 8, 9, 10, 17, 18].
Let p and q be two indeterminates. The q-Pochhammer symbol is defined by

(p; q)0 = 1 and (p; q)n = (1− p)(1− pq) · · · (1− pqn−1) for n ∈ N.

Then for n, k ∈ N0, the generalized (p, q)-binomial coefficients are given by

[
n

k

]
p,q

=


(p; q)n

(p; q)k(p; q)n−k
, if k ≤ n,

(p; q)n(pq
n−k; q)k−n

(p; q)k
, if k > n.

When p = q, this becomes the usual Gaussian q-binomial coefficients
[
n
k

]
q
.

The objective of this paper is to establish a few formulae for partial sums involv-
ing generalized Fibonomial and Lucanomial coefficients. Our approach will mainly
be based on the following expressions of the generalized Fibonomial and Lucanomial
coefficients in terms of Gaussian q-binomial coefficients:{

n

k

}
Um

= αmk(n−k)

[
n

k

]
qm

, (2){
n

k

}
Vm

= αmk(n−k)

[
n

k

]
−qm,qm

; (3)

where n ≥ k ≥ 0. Instead, for k > n, a particular care should be taken because[
n

k

]
−q,q

= 2(−1)(
k−n

2 )α
k(k−n)

Vk−n

{
k

n

}−1

V

.
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There are numerous summation identities of Gaussian q-binomial coefficients with
certain weight functions in the literature. According to (2) and (3), they can be
transformed into sums about generalized Fibonomial and Lucanomial coefficients
(cf. [4, 8, 13, 14, 17, 18]) and then evaluated in closed form by employing known
q-series results.

However, there exist very few formulae for partial sums in the q-series theory. For
example, three sets of weighted partial sums of the Gaussian binomial q-binomial
coefficients were derived in [11]. One of them is recorded below:

2n+1∑
k=0

[
2n+ 2m+ 4

k +m

]
q

(
1− q2n+m+4−k

)
(−1)(

k
2)+kn

q
1
2k(k−3)−kn

= q−n−1

[
2n+ 2m+ 4

m+ 1

]
q


(
1 + qn+1

) (
1− qm+n+2

)
, if n is even;

−
(
1− qn+1

) (
1 + qm+n+2

)
, if n is odd.

Another example can be found in [12], which states that for even n, it holds

n∑
j=0

[
2n

j

]
q

ij
2

(−1)
j(n−1)

q
j(j−2n+2)

2 (1− q2n−2j)η[2-j]

= (−1)
n+1

i−n2

q−
1
2n

2+n−1 (1− qn)(1− qn+1)

1− q2n−1

[
2n

n

]
q

,

where η = −iq−1/2 (1 + q) and “[· · · ]” stands for the Iverson notation defined by
[true] = 1 and [false] = 1. As a consequence, this was converted, when n is even,
into the following partial sum of the Fibonomial coefficients:

n∑
j=0

{
2n

j

}
U

p[2-j]U2n−2j =
UnUn+1

U2n−1

{
2n

n

}
U

.

In this paper, we shall examine a new kind of partial sums including the product of
the Gaussian q-binomial coefficients or the generalized (p, q)-binomial coefficients,
which are substantially different from the previous ones in two aspects. The main
difference lies in the fact that these sums contain two q-binomial coefficients instead
of one. Furthermore, the q-coefficients involved are either both q-based, or one is
q-based, while another is “−q”-based. The rest of the paper will be organized as
follows. As a preliminary, two summation theorems for partial sums of generalized
Gaussian q-binomial coefficients will be proved in the next section. Then in Sec-
tion 3, they will be utilized to deduce 7 new summation formulae about generalized
Fibonomial and Lucanomial coefficients.

2. Preliminary q-series formulae

For an indeterminate x and an integer n ∈ Z, the shifted factorial in the base q with
0 < |q| < 1 is defined by

(x; q)∞ =

∞∏
k=0

(1− qkx) and (x; q)n =
(x; q)∞

(qnx; q)∞
.
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The quotient form with multi–parameters is abbreviated to

[
α, β, · · · , γ
A, B, · · · , C

∣∣∣q]
n

=
(α; q)n (β; q)n · · · (γ; q)n
(A; q)n (B; q)n · · · (C; q)n

.

Following Bailey [1] and Gasper-Rahman [6], the basic hypergeometric series (or
shortly q-series) reads:

1+λϕλ

[
a0, a1, · · · , aλ

b1, · · · , bλ

∣∣∣q; z] =

∞∑
n=0

(a0; q)n(a1; q)n · · · (aλ; q)n
(q; q)n (b1; q)n · · · (bλ; q)n

zn.

This series terminates if one of its numerator parameters is of the form q−m with
m ∈ N0. Otherwise, the series is said to be nonterminating. In the latter case, the
base q will be restricted, for convergence, to |q| < 1.

There exist numerous q-series identities in the literature. One of them is called
the q-Kummer formula established independently by Bailey [2] and Daum [5] (see
also Gasper–Rahman [6, II-9]):

2ϕ1

[
a, c
qa/c

∣∣∣q;−q/c

]
=

(qa; q2)∞
(qa/c2; q2)∞

[
qa/c2,−q
qa/c,−q/c

∣∣∣q]
∞

. (4)

By making use of the linearization method [3], Li and Chu [16] extended the
above formulae by introducing two integer parameters. Two of their results are
recorded as follows:

2ϕ1

[
a, c
qa/c

∣∣∣q;−q2/c

]
=

[
qa/c2,−q
qa/c,−1/c

∣∣∣q]
∞

{
(1 + a/c)(qa; q2)∞

a(qa/c2; q2)∞
− (a; q2)∞

a(q2a/c2; q2)∞

}
, (5)

2ϕ1

[
a, c
qa/c

∣∣∣q;−1/c

]
=

[
qa/c2,−q
qa/c,−1/c

∣∣∣q]
∞

{
(1 + a/c)(qa; q2)∞

(qa/c2; q2)∞
+

(a; q2)∞
(q2a/c2; q2)∞

}
. (6)

Now letting a → −q−m and c → q−n with m,n ∈ N0 in (4), (5), (6), and then
expressing the factorial quotient as a q-binomial product (where ε = ±1),

[
q−mε, q−n

q, q1+λ−m+nε

∣∣∣q]
k

qk(n+1) = qk(k−m)εk
[
n

k

]
q

[
λ+ n

m− k

]
qε,q

[
λ+ n

m

]−1

qε,q

, (7)

we deduce, after some simplifications, the following q-binomial summation formulae.
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Theorem 1 (m,n ∈ N0).

(a)

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

qk(k−m) = 2
q−(

m+1
2 )(−q; q)2n

(−q−m; q2)n+1
;

(b)

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

qk(k−m+1) = 2
q−(

m
2 )(−q; q)2n

(1 + qn)(−q1−m; q2)n

×
{
1− (qm − qn)(−q1−m; q2)n

(1 + qm)(−q2−m; q2)n

}
;

(c)

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

qk(k−m−1) = 2
q−(

m+1
2 )(−q; q)2n

(1 + qn)(−q1−m; q2)n

×
{
1 +

(qm − qn)(−q1−m; q2)n
(1 + qm)(−q2−m; q2)n

}
.

Alternatively, by specifying a → q−m and c → q−n with m,n ∈ N0 in (4), (5),
(6), and then applying (7) again, we deduce, after some simplifications, the three
alternating q-binomial identities.

Theorem 2 (m,n ∈ N0).

(a)

n∑
k=0

(−1)k
[
n

k

]
q

[
n

m− k

]
q

qk(k−m) =

(−q)−
m2

4

[
n
m
2

]
q2
, m–even;

0, m–odd;

(b)

n∑
k=0

(−1)k
[
n

k

]
q

[
n

m− k

]
q

qk(k−m+1)

=


(−q)m−m2

4

[
n

m/2

]
q2

1 + qn−m

1 + qn
, m–even;

(−q)−
(m−1)2

4

[
n

m−1
2

]
q2

1− q1+2n−m

1 + qn
, m–odd;

(c)

n∑
k=0

(−1)k
[
n

k

]
q

[
n

m− k

]
q

qk(k−m−1)

=


(−q)−

m2

4

[
n

m/2

]
q2

1 + qn−m

1 + qn
, m–even;

(−q)−m− (m−1)2

4

[
n

m−1
2

]
q2

1− q1+2n−m

1 + qn
, m–odd.
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3. Applications to the Fibonomial-Lucanomial sums

As consequences of the theorems proved in the last section, we present three corol-
laries in this section that evaluate Fibonomial and Lucanomial sums in closed form.
As showcases, we will limit to provide a detailed proof only for one of the identities
displayed in each corollary since the remaining ones can be done in a similar man-
ner. For a given equation “(x)”, we shall denote its left-hand and right-hand sides
by L(x) and R(x), respectively. Throughout this section, we shall make use of the
notation ∆ = 4 + p2 or in q-form ∆ = −q−1(1− q)2 for brevity.

Corollary 1 (X ∈ {U, V }).

(a) Let m,n ∈ N0, with m being odd. Then
n∑

k=0

{
n

k

}
U

{
n

m− k

}
U

UkXk = Xm
U2n−m+1

Vn

{
n

m−1
2

}
U2

.

(b) Let m,n ∈ N0, with m being odd. Then

n∑
k=0

{
n

k

}
U

{
n

m− k

}
U

VkXk =
U2n−m+1

Vn

{
n

m−1
2

}
U2

{
∆Um, X = V ;

Vm, X = U.

(c) Let m,n ∈ N0, with m being even. Then

n∑
k=0

{
n

k

}
U

{
n

m− k

}
U

(−1)kUkXk = Xn−m
Um

Vn

{
n

m/2

}
U2

{
1, X = V ;

−1, X = U.

Proof of (c). As an example, we are going to show only the case X = U . The case
X = V can be treated similarly. By means of (1) and (2), we first convert the sum
in (c) to the q-binomial sum

L(c) =
n∑

k=0

{
n

k

}
U

{
n

m− k

}
U

(−1)kU2
k

= αmn−m2−2
n∑

k=0

[
n

k

]
q

[
n

m− k

]
q

α2k+2km−2k2 (1− qk)2

(1− q)2
(−1)k

=
αnm−2−m2

(1− q)2

n∑
k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)kqk
2−km−k(1− 2qk + q2k).

Then write the right-hand side of (c) in terms of q-binomial coefficients

R(c) = −Un−m
Um

Vn

{
n

m/2

}
U2

= −αnm−2−m2

2
(1− qn−m)

(1− q)(1 + qn)

(1− qm)

(1− q)

[
n

m/2

]
q2
.

By equating these two expressions L(c) = R(c) and then making some simplifica-
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tions, we find that the resulting identity is equivalent to the following one:

n∑
k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)kqk
2−km−k(1− 2qk + q2k)

= −α
1
2m

2 (1− qn−m)(1− qm)

(1 + qn)

[
n

m/2

]
q2

= −(−q)−
m2

4
(1− qn−m)(1− qm)

(1 + qn)

[
n

m/2

]
q2
.

The above identity can be confirmed by applying Theorem 2 as follows:

n∑
k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)kqk
2−km−k(1− 2qk + q2k)

=

n∑
k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)k(qk
2−km−k − 2qk

2−km + qk
2−km+k)

= (−q)−
m2

4

[
n

m/2

]
q2

1 + qn−m

1 + qn
− 2(−q)−

m2

4

[
n

m/2

]
q2

+ (−q)m−m2

4

[
n

m/2

]
q2

1 + qn−m

1 + qn

= (−q)−
m2

4

[
n

m/2

]
q2

(
1 + qn−m

1 + qn
− 2 + qm

1 + qn−m

1 + qn

)
= −(−q)−

m2

4

[
n

m/2

]
q2
(1− qn−m)

(1− qm)

1 + qn
.

This completes the proof of identity (c) when X = U .

Corollary 2. Let X ∈ {U, V } and m,n ∈ N0, with m being odd. Then the following
two summation formulae hold:

(a)

n∑
k=0

{
n

k

}
U

{
n

m− k

}
U

(−1)kUn−kXk

=
U2n−m+1

Vn

{
n

m−1
2

}
U2

{
Vn−m, X = V ;

−Un−m, X = U.

(b)

n∑
k=0

{
n

k

}
U

{
n

m− k

}
U

(−1)kVn−kXk

=
U2n−m+1

Vn

{
n

m−1
2

}
U2

{
∆Un−m, X = V ;

−Vn−m, X = U.

Proof of (b). We give a proof for identity (b) when X = V . In this case, the corre-
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sponding sum can be reformulated by invoking (1) and (2) as follows:

L(b) = αmn−m2+n
n∑

k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)k(1 + qk)(1 + qn−k)qk
2−mk

= αmn−m2+n
n∑

k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)kqk
2−mk

[
(1 + qn) + qk + qn−k

]
.

Analogously, we write the right-hand side of (b) in terms of q-binomial coefficients

R(b) = αn−m+mn− 1
2m

2+ 1
2
(1− qn−m)

(
1− q2n−m+1

)
(1 + qn)

[
n

m−1
2

]
q2

.

By equating these two expressions L(b) = R(b) and then making some simplifica-
tions, we find that the resulting identity is equivalent to the following one:

n∑
k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)
k
qk

2−km[(1 + qn) + qk + qn−k]

= α
1
2 (m−1)2 (1− qn−m)

(
1− q2n−m+1

)
(1 + qn)

[
n

m−1
2

]
q2

= (−q)−
1
4 (m−1)2 (1− qn−m)

(
1− q2n−m+1

)
(1 + qn)

[
n

m−1
2

]
q2

.

The above identity is confirmed by applying Theorem 2 as follows:

n∑
k=0

[
n

k

]
q

[
n

m− k

]
q

(−1)
k
qk

2−km[(1 + qn) + qk + qn−k]

=

{
0(1 + qn) + (−q)−

(m−1)2

4

[
n

m−1
2

]
q2

1− q1+2n−m

1 + qn

+ qn(−q)−m− (m−1)2

4

[
n

m−1
2

]
q2

1− q1+2n−m

1 + qn

}
= (−q)−

(m−1)2

4 (1− qn−m)

[
n

m−1
2

]
q2

1− q1+2n−m

1 + qn
.

This completes the proof of identity (b) for the case X = V .
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Corollary 3 (X ∈ {U, V }).

(a) Let m,n ∈ N0, with m ≤ n. Then
n∑

k=0

{
n

k

}
U

{
n

m− k

}
V

X2k(−1)km = 2(−1)(
m+1

2 )
n∏

j=1

V 2
j

V2j−1−m

× Um

Vn


1 + (−1)m

Un−m

Um

n∏
j=1

V2j−1−m

V2j−m
, X = U ;

1 + (−1)m
√
∆
UnUn−m

UmVn

n∏
j=1

V2j−1−m

V2j−m
, X = V.

(b) Let m,n ∈ N0, with m ≥ 2n+ 1. Then
n∑

k=0

{
n

k

}
U

{
m− k

n+ 1

}−1

V

X2k(−1)(
k+1
2 )−kn = (−1)(n−2m)(n+1)/2

n∏
j=1

V 2
j

V2j−1−m

× UmVn+1

Vn


1 + (−1)m

Un−m

Um

n∏
j=1

V2j−1−m

V2j−m
, X = U ;

√
∆+∆(−1)m

Un−m

Um

n∏
j=1

V2j−1−m

V2j−m
, X = V.

Proof of (a). We offer a sample proof for the case X = U. By making use of (1), (2)
and (3), we can express the left-hand side of the claimed identity as:

L(a) =
n∑

k=0

{
n

k

}
U

{
n

m− k

}
V

U2k(−1)km

=
αnm−1−m2

(1− q)

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

(−1)km(1− q2k)α2k+2km−2k2

=
αnm−1−m2

(1− q)

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

(1− q2k)qk
2−km−k.

Now, evaluating the above q-binomial sum by applying formulae (b) and (c) given
in Theorem 1

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

(1− q2k)qk
2−km−k

=

n∑
k=0

[
n

k

]
q

[
n

m− k

]
−q,q

(qk
2−km−k − qk

2−km+k)

= 2
q−(

m+1
2 )(−q; q)2n

(1 + qn)(−q1−m; q2)n

{
1 +

(qm − qn)(−q1−m; q2)n
(1 + qm)(−q2−m; q2)n

}
− 2

q−(
m
2 )(−q; q)2n

(1 + qn)(−q1−m; q2)n

{
1− (qm − qn)(−q1−m; q2)n

(1 + qm)(−q2−m; q2)n

}
,
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we find, after some simplifications, the following closed expression:

L(a) = 2(−1)(
m+1

2 ) αm+nm−1(1− qm)(−q; q)2n
(1− q)(1 + qn)(−q1−m; q2)n

{
1 + qm

1− qn−m

1− qm
(−q1−m; q2)n
(−q2−m; q2)n

}
.

This can further be written in terms of general Fibonacci–Lucas sequences. In
fact, by utilizing the three equalities

(−q; q)n = α−n
2 (n+1)

n∏
j=1

Vj ,

(−q1−m; q2)n = αn(m−n)
n∏

j=1

V2j−1−m,

(−q2−m; q2)n = αn(m−n−1)
n∏

j=1

V2j−m;

we can proceed further with the following reformulation:

L(a) = (−1)(
m+1

2 ) 2Um

Vn

n∏
j=1

V 2
j

V2j−1−m

{
1 + (−1)m

Un−m

Um

n∏
j=1

V2j−1−m

V2j−m

}
,

which is exactly the expression R(a) for the case X = U .
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