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Partial Fibonomial and Lucanomial sums through the
extended ¢-Kummer formula
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Abstract. By employing identities for extended g-Kummer theorems, we examine partial
sums involving products of two Fibonomial/Lucanomial coefficients. Seven remarkable
closed formulae are established.
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1. Introduction

Define the two Fibonacci-like sequences {U,} and {V,,} by second order linear re-

cursions
Un = pUnfl +U,—2 and Vo = an,1 + Va2

with the initial conditions Uy = 0, U; = 1, and Vy = 2, Vi = p, respectively. They
are related by the equality V,, = U1 +U,,—1 and represented by the following Binet
forms:

Uniianiﬂn |
a—pf 1—gq

where ¢ = 3/a = —a~2, which implies a3 = —1 and a = i/,/q with i = /-1 being
the imaginary unit. Two special cases of these sequences are recorded here:

and V,=a"+8"=a"(1+4"), (1)

p o {Un} {Va}
1
1 +2\/5 Fibonacci sequence {F,} Lucas sequence {L,}

2 142 Pell sequence {P,} Pell-Lucas sequence {Q,}
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Denote by Z and N the sets of integers and natural numbers with Ng = NU {0},
respectively. For n,m,k € N with n > k > 1, define the generalized Fibonomial and
Lucanomial coefficients by

{n} _ f[ U(7L—j+1)’rrL _ UnmU(n—l)m e U(n—k—i—l)m
U Uj UnUam - Upm ’

j=1

ny g Viessom _ VanVuonm e Vieosim.
kv, Uj VinVom =+ Vim ’

j=1

with the boundary conditions

A N A

In particular, for m = 1, the reduced coefficients {Z} and { Z} will be denoted
Uy 141

briefly by { Z

ficients reduce to the usual Fibonomial coefficients {Z} P and Lucanomial coefficients

} and {Z} , respectively. When U,, = F), and V;, = L,,, these coef-
U %

{Z} 1» respectively. For details about the Fibonomial and Lucanomial coefficients
and their properties, the interested reader may refer to [7, 8, 9, 10, 17, 18].
Let p and g be two indeterminates. The g-Pochhammer symbol is defined by

(p;q)o=1 and (p;q)n=(1—p)(1—pg)---(1—pg" ") for neN.

Then for n, k € Ny, the generalized (p, ¢)-binomial coefficients are given by

M’ if k <n,
m ) kP Dk
- . n—~k.
kg (P; @)n(Pq ;Q)k—n’ k>

(0; D

When p = ¢, this becomes the usual Gaussian g-binomial coefficients [Z]q.

The objective of this paper is to establish a few formulae for partial sums involv-
ing generalized Fibonomial and Lucanomial coefficients. Our approach will mainly
be based on the following expressions of the generalized Fibonomial and Lucanomial
coefficients in terms of Gaussian g-binomial coefficients:

n — ,mk(n—k) n 9
i, =, @
n _ . mk(n—k) |:TL:| . (
=a ; 3)
{k}v7n k —q™m,q™m

where n > k > 0. Instead, for k > n, a particular care should be taken because

oy k(=) -1
m —o(-1)("2 {k} :
kl _4q Vien 0]y
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There are numerous summation identities of Gaussian ¢-binomial coefficients with
certain weight functions in the literature. According to (2) and (3), they can be
transformed into sums about generalized Fibonomial and Lucanomial coefficients
(cf. [4, 8, 13, 14, 17, 18]) and then evaluated in closed form by employing known
g-series results.

However, there exist very few formulae for partial sums in the g-series theory. For
example, three sets of weighted partial sums of the Gaussian binomial g-binomial
coefficients were derived in [11]. One of them is recorded below:

2n+1

2n+2m+4 1 — 2ntmta—ky (1) (5)+kn  Lk(k—3)—kn
3 (1-q ) (1@
Pt k4+m

_ 1[2n+2m—|—4] (1+qn 1) (1—(] " 2), if n is even;
_q n—
m+1 q —(l—q” 1)(1—0—(]’””2), if n is odd.

Another example can be found in [12], which states that for even n, it holds

> m P (1) g (1 g2t
X J
3=0 4

= (—n)Hiigmantent (1-¢")(1—¢") {2”] :
q

1— q2n—1 n

where n = —ig=/? (1 +¢) and “[---]” stands for the Iverson notation defined by
[true] = 1 and [false] = 1. As a consequence, this was converted, when n is even,
into the following partial sum of the Fibonomial coefficients:

n
3 {27?} P2l e — UnUnH{?”} .
j=0 J)u U2n71 n)y
In this paper, we shall examine a new kind of partial sums including the product of
the Gaussian g-binomial coefficients or the generalized (p,q)-binomial coefficients,
which are substantially different from the previous ones in two aspects. The main
difference lies in the fact that these sums contain two ¢-binomial coefficients instead
of one. Furthermore, the g-coefficients involved are either both g-based, or one is
g-based, while another is “—¢”-based. The rest of the paper will be organized as
follows. As a preliminary, two summation theorems for partial sums of generalized
Gaussian g-binomial coefficients will be proved in the next section. Then in Sec-
tion 3, they will be utilized to deduce 7 new summation formulae about generalized
Fibonomial and Lucanomial coefficients.

2. Preliminary g-series formulae

For an indeterminate = and an integer n € Z, the shifted factorial in the base ¢ with
0 < |g| <1 is defined by

oo

(@0 = [0~ d0) and (zi) = e
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The quotient form with multi—parameters is abbreviated to

{a, B, ---,v‘q] (), (Bi), (Vi)
A, B, -, CIY| (49q), (Bq), - (Ciq),

Following Bailey [1] and Gasper-Rahman [6], the basic hypergeometric series (or
shortly g-series) reads:

ag,ay,- - ,ax‘ Z} _ 5 (@0 001500 (03 On
L0 [ br -, bal® nZ:O (@ @)n (b1:@)n - (bx; @)n

This series terminates if one of its numerator parameters is of the form ¢~™ with
m € Np. Otherwise, the series is said to be nonterminating. In the latter case, the
base ¢ will be restricted, for convergence, to |g| < 1.

There exist numerous g-series identities in the literature. One of them is called
the g-Kummer formula established independently by Bailey [2] and Daum [5] (see
also Gasper—Rahman [6, 11-9]):

a, c

201 [qa/c

N (90;0*) [ qa/c?, —q
¢ -a/f ] = 00/ P [qa/c, /e qL; )

By making use of the linearization method [3], Li and Chu [16] extended the
above formulae by introducing two integer parameters. Two of their results are
recorded as follows:

st ool =] = [ o] { e - ) ©)
sin [ soji1ve] = [ ) { S e ©

Now letting @ — —¢~™ and ¢ — ¢~ " with m,n € Ny in (4), (5), (6), and then
expressing the factorial quotient as a ¢-binomial product (where ¢ = +1),

-1

_ n A+n A+n
N W M
k gL geql M lgeq

qg e, ¢
q q1+)\7m+n€

we deduce, after some simplifications, the following g-binomial summation formulae.
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Theorem 1 (m,n € Np).

_(m+1

@ BB

IR
. {1 - ((1 +q?”))(( T g2 ))n};
(c) zn: [ZL [mn k} ﬂmqk(k—m—l) _ 2(115”;)21%’){] 0
—q

(@™ —q")(=¢"";¢*)n
. {1+ (14 ¢™)(=¢>™;¢%)n }

Alternatively, by specifying a — ¢~™ and ¢ — ¢~™ with m,n € Ny in (4), (5),
(6), and then applying (7) again, we deduce, after some simplifications, the three
alternating g-binomial identities.

Theorem 2 (m,n € Np).

(b) zn:(—l)k [Z} q [mi k} qqk(k—m+1)

L[ ] Lran
m/2] . 1+4q"

(m—1)2 n 1— q1+2n7m
—q)” T —————  m-—odd,
( q) |:m—1 :| . 1 + qn

m-—even,

)

2

(c) i(—l)k [Z} q [mn k} qqk(k—m_l)

( )_mTz n 1+ qn—m
— —_— m—even;
1 m/2|, 1+4q»

(—g)~m= 5 [mrf
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3. Applications to the Fibonomial-Lucanomial sums

As consequences of the theorems proved in the last section, we present three corol-
laries in this section that evaluate Fibonomial and Lucanomial sums in closed form.
As showcases, we will limit to provide a detailed proof only for one of the identities
displayed in each corollary since the remaining ones can be done in a similar man-
ner. For a given equation “(x)”, we shall denote its left-hand and right-hand sides
by L(z) and R(z), respectively. Throughout this section, we shall make use of the
notation A =4 + p? or in g-form A = —¢g~1(1 — ¢)? for brevity.

Corollary 1 (X € {U,V}).

(a) Let m,n € Ny, with m being odd. Then

" (n n Usp—m+1 n
U X, = X,,——— B .
Z{k}U{m—k}U Rk ' Vi {21}U2

k=0
(b) Let m,n € Ny, with m being odd. Then

n

n n Usp— n AUp, X=V;
I I R T
k=0 v\m=~Fy n v, Vi, X=U.

(¢) Let m,n € Ny, with m being even. Then

n 1, X=V;
L A AT
= EJgylm—EkJ, Vo \lm/2)y, | -1, X=U.

Proof of (¢). As an example, we are going to show only the case X = U. The case
X =V can be treated similarly. By means of (1) and (2), we first convert the sum
in (c) to the ¢g-binomial sum

c0-3 (1}, ful ot

mn—m?—2 n n 2k+2km—2k2 (1 _ qk)Q k
= _1
- ,;[k“m—k]a =gz Y

nm—2—m?

e R

Then write the right-hand side of (¢) in terms of ¢-binomial coefficients

nm727% (1iqn7m) (1qm>|: n :|
1=q)X+q7) (L—q) [m/2],

=—a

By equating these two expressions £(¢) = R(c¢) and then making some simplifica-
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tions, we find that the resulting identity is equivalent to the following one:

> [

n 2 _km—k
|: N k:| (_1)qu k k(l _ 2qk + q2k)
q m q

_imr =g (A —g™) [ n L2

Tt m/2
= (=M (A =) [ n
=9 D [m/2L2'

The above identity can be confirmed by applying Theorem 2 as follows:

k=0 k q q

m—k
2 n 1 + qn—nL w2 n
= (— ) - - 2 _ 1
e e A
+(—Q)m—”f[ n ] 1+¢"™™
m/2 42 14+ qm
_m?| M 1+4¢"™ mltqg" ™
= (— 4 - 2 + R
=) {m/QLz( 1+g» Ty )
_m? n n—m (1 — qm)
= (—q) % 1— Al 0
o |, -
This completes the proof of identity (¢) when X = U. O

Corollary 2. Let X € {U,V} and m,n € Ny, with m being odd. Then the following
two summation formulae hold:

n
n n
-V, . X
0 o {0} 0
k=0
_ U2nm+1{ n } A[J’n—ma X:V7
T Ve % Ve X =U
2

Proof of (b). We give a proof for identity (b) when X = V. In this case, the corre-
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sponding sum can be reformulated by invoking (1) and (2) as follows:

L(b) = amnm i [Z} , [mn k] q(—l)k(l +")(1+ g g

= gmnmitn zn: [Z} . [mi k:] (—1)qu2_mk [(1+¢") + 4" +q"7"].

Analogously, we write the right-hand side of (b) in terms of g-binomial coefficients

_gn—m _ 2n—m+1
R(b) = an-mermn—tmr+3 (1 =07 (1~ >[m”1} .
q2

(1+4q") 3

By equating these two expressions £(b) = R(b) and then making some simplifica-
tions, we find that the resulting identity is equivalent to the following one:

— m—k
TN C ek AL Gk S [ n }
(1+4qm) e
(g tmor g (=) [ nl] .
(1+4q") T2 1

The above identity is confirmed by applying Theorem 2 as follows:

kzn:_o m . [mTi k] . (=D)" ¢ M1+ ¢") + ¢ + ¢

B (m—1)2 n 1— q1+2n—m

2
o (me1)? n 1_q1+2n—m
+q¢"(—q)" " T |:m—1:| T
q2

2 L+q"
7(m_1)2 _ n 1— q1+2nfm
— (— I 1—g" ™ -+t
( q) ( q )|: 21:|q2 1 +qm

This completes the proof of identity (b) for the case X = V. O
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Corollary 3 (X € {U,V}).

(a) Let m,n € Ny, with m <n. Then

i{Z}U{m%}VX%<—1>’“’““ DRV

k=0 2] 1-m
rL m ‘/2 1-m
1+ ( i , X =U;
. = =
>< —_—
Va U, Un o Vaiiom
+(-1)"VA 2o X =V

UnVar 35 Vejom

(b) Let m,n € Ny, with m > 2n+ 1. Then

z":{n} {mk}_lX ( 1)(k;1)_kn (— )(n 2m)( n+1)/2H V2
k U n+1 v 2k ‘/2j 1-m

k=0
n m ‘/2 1-m
1+ ( H il X =U;
~ UmVn+1 j=1 VVQJ m
Vn n m V; m
VA +A(- H Loim oy,
2j—m

Proof of (a). We offer a sample proof for the case X = U. By making use of (1), (2)
and (3), we can express the left-hand side of the claimed identity as:

= i (oot

k=0
nm—1—m? "
(0% n n 2
— (_1)km(1 _ q2k)a2k+2kmf2k
=0 S,
nm—1—m?2 7
(6] n n 2
— (1 . q2k)qk 7kmfk'
o S,

Now, evaluating the above g-binomial sum by applying formulae (b) and (c) given
in Theorem 1

- n n 2 2
— Z (qk —km—k __ qk 7km+k)
L
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we

L(a) = 2(_1>(m2+1) am-l—nm—l(l — ™) (—q; q)% {1 L 1—gnm (_Zl_m; q2)n }
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find, after some simplifications, the following closed expression:

(1 =) +¢")(=¢""":6%)n

This can further be written in terms of general Fibonacci—Lucas sequences. In

L—q™ (=¢>"™¢)

n

fact, by utilizing the three equalities

(—q;q)n = @~ 3D

=

Vi
1

(—¢""¢%)n = am(m ) H Vaj—1-m,
j=1

3 .
Il

n

(=" ¢%)n = "] Vajoms

we can proceed further with the following reformulation:

whi

miy 2Um 14 V7 Uy
E = (=1 ( ;) m J 1 -1 mYn—m 2j—1—m
(@) = (- va{ = | Rl

ch is exactly the expression R(a) for the case X =U. O

j=1
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