
Croatian Operational Research Review 105
CRORR 15:2(2024), 105–117

A fresh look at a randomized
massively parallel graph coloring algorithm

Boštjan Gabrovšek1,2 and Janez Žerovnik1,3,∗

1 University of Ljubljana, Faculty of Mechanical Engineering, Aškerčeva 6, 1000 Ljubljana, Slovenia

2 Institute of Mathematics, Physics and Mechanics, Jadranska ulica 19, 1000 Ljubljana, Slovenia
E-mail: ⟨bostjan.gabrovsek@fs.uni-lj.si⟩

3 Rudolfovo – Science and Technology Centre Novo mesto, Podbreznik 15, 8000 Novo mesto, Slovenia
E-mail: ⟨janez.zerovnik@fs.uni-lj.si⟩

Abstract. Petford and Welsh introduced a sequential heuristic algorithm to provide an approximate
solution to the NP-hard graph coloring problem. The algorithm is based on the antivoter model and
mimics the behavior of a physical process based on a multi-particle system of statistical mechanics. It
was later shown that the algorithm can be implemented in a massively parallel model of computation.
The increase in computational processing power in recent years allows us to perform an extensive analy-
sis of the algorithms on a larger scale, leading to the possibility of a more comprehensive understanding
of the behavior of the algorithm, including the phase transition phenomena.

Keywords: combinatorial optimization, graph coloring, randomized local search procedure, tempera-
ture

Received: January 25, 2024; accepted: June 4, 2024; available online: October 7, 2024

DOI: 10.17535/crorr.2024.0009

1. Introduction

Graph coloring is one of the most studied NP-hard problems in combinatorial optimization
[17]. In addition to its purely combinatorial appeal, the graph coloring problem is widely
used in many engineering projects, including various practical problems such as planning and
scheduling, timetabling, and frequency assignment [1, 18]. It is generally believed that NP-hard
problems cannot be solved optimally in times that are polynomially bounded functions of the
input size. However, the conjecture P̸=NP? is still an open problem. This conjecture is one of
the most important problems in contemporary mathematics because it is on the list of seven
millennium problems for which a prize of 1 million dollars is offered by the Clay Institute [9].
NP-complete problems are decision problems with the following property: if any of them enjoys
a polynomial time algorithm giving the exact solution, then P=NP, thus solving the P versus
NP problem [15, 12]. On the other hand, it is widely believed that P̸=NP, in other words,
that there is no polynomial time algorithm for any NP-complete problem. It also holds true
for NP-hard problems, i.e., problems that are at least as difficult as an NP-complete problem.
Therefore, there is great interest in heuristic algorithms that can find near-optimal solutions to
the graph coloring problem (or any other NP-hard problem) within reasonable running times
for a large number of instances [11].

Threshold phenomena have attracted a lot of attention in the context of random combina-
torial problems [8] and in theoretical physics [21]. In statistical physics, phase transitions have

∗Corresponding author.

This is an open access article under the CC BY-NC 4.0 license 105
http://www.hdoi.hr/crorr-journal ©2024 Croatian Operational Research Society, 105–117



106 Boštjan Gabrovšek and Janez Žerovnik

been studied for more than a century. Let us only mention here that spin glasses, a purely
theoretical concept, have triggered a new branch of theoretical physics that resulted in a Nobel
Prize for Giorgio Parisi in 2022 [19]. The Ising model is a statistical model that can be used to
describe the energy of a system of atoms arranged in a lattice, where the interaction between
these atoms is governed by the interaction between their spins and a possible external magnetic
field. This model and some more complicated versions of it can then be used to describe the
behavior of spin glasses. It is well-known that the Ising model is in general NP hard [3]. On
the other hand, the Ising model is closely related to graph theory, in particular to the graph
coloring problem [3]. Graph coloring with k = 3 colors has been considered in several papers,
see [5, 2] and references therein. In a study of random graphs it was found that the phase
transition is closely related to the mean degree of the graphs. In the same paper, the analysis
implies that the hardest instances are among random graphs with an average degree between
4.42 and αcrit ≈ 4.7.

Based on the antivoter model of Donnely and Welsh [6], a randomized algorithm for graph
coloring that performs very well on some random graphs [20, 27] was proposed by Petford
and Welsh. The algorithm was later successfully tested on some other types of graphs [23].
With some straightforward modifications, the algorithm was also very competitive in frequency-
assignment problems [7, 24, 28]. Petford and Welsh experimented with their algorithm on a
model of random 3-colorable graphs. They observed that there are some combinations of
parameters of random graphs that are extremely hard for their algorithm, while their algorithm
otherwise runs in linear time, on average. Having no theoretical explanation, Petford and Welsh
write that the curious behavior “is not unlike the phenomenon of phase transition that occurs
in the Ising model, Potts model and other models of statistical mechanics”.

We have recently designed an algorithm for clustering that is motivated by this coloring
algorithm. The results were very promising [14]. This motivated us to better understand
the basic algorithm, which we did in an experimental study that is reported here. As high
inherent parallelism is an interesting feature of the approach, we implemented a parallel version
of the algorithm, keeping in mind its potential use in alternative models of computation. The
algorithm was tested on a large quantity of data so as to have a better understanding of its
performance. As the parallel execution is simulated on a sequential machine, the computation
time is naturally measured in the number of parallel steps. In particular, we run and analyse
the following experiments:

• In the experiments reported in [25, 26], the algorithms perform poorly in some instances.
We perform several experiments and test the hypothesis that the performance of the
algorithm depends only on the average degree for random graphs and for regular graphs.

• To test whether the performance of the algorithm depends on the average degree, we
test the performance by varying the average degree of the graph and the temperature
(parameter T ) of the system. We test the performance on random graphs and on r-
regular graphs (both are known to be colorable).

• We test whether the algorithm behaves in a similar way for higher-degree colorings (k =
4, 5, . . . , 10) and confirm the existence of critical regions that are related to the phase
transition phenomena.

The rest of the paper is organized as follows. In Section 2 we recall the k-coloring decision
problem and the algorithms described in [25] and [26]. In Section 3 we present the new experi-
ments and analyse the results. For our experiments we use two classes of randomly generated
k-colorable graphs.



A fresh look at a randomized massively parallel graph coloring algorithm 107

2. Graph coloring problem and the algorithm of Petford and Welsh

Graph coloring problem. The k-coloring decision problem (for k ≥ 3) is a well-known
NP-complete problem. It is formally stated as follows:

Input: graph G, integer k
Question: is there a proper k-coloring of G?

A coloring is any mapping c : V (G)→ N and is a feasible solution of the k-coloring problem.
A mapping c : V (G) → N is a proper coloring of G if it assigns different colors to adjacent
vertices. The cost function E(c) is the number of bad edges. By definition, the bad edges for
coloring c are edges with both ends colored by the same color in coloring c. Such vertices are
called bad. Proper colorings are exactly the colorings with E(c) = 0 and finding a coloring c
with E(c) = 0 is equivalent to answering the above decision problem. The coloring constructed
is a witness c proving the correctness of the answer. A graph for which a proper coloring with
k colors exists is said to be k-colorable.

The algorithm of Petford and Welsh. The basic algorithm [20] starts with an initial
3-coloring of the input graph that is chosen at random. Then an iterative process is started.
During each iteration, a bad vertex is chosen at random. The chosen bad vertex is recolored
randomly, according to some probability distribution. The color distribution favors colors that
are less represented in the neighborhood of the chosen vertex, see the expression (1) below. The
algorithm has a straightforward generalization to k-coloring (taking k = 3 gives the original
algorithm) [27].

In pseudo code, the algorithm of Petford and Welsh is written as follows

Algorithm 1 Petford-Welsh algorithm

1: color vertices randomly with colors 1, 2, . . . , k
2: while not stopping condition do
3: select a bad vertex v (randomly)
4: assign a new color c to v
5: end while

A bad vertex is selected uniformly at random among vertices that are endpoints of some bad
(e.g., monochromatic) edge. A new color is assigned at random. The new color is taken from
the set {1, 2, . . . , k}. Sampling is conducted according to the probability distribution defined
as follows:

The probability pi of color i to be chosen as a new color of vertex v is proportional to

pi ≈ exp(−Si/T ), (1)

where Si is the number of edges with one endpoint at v and with color i assigned to the other
endpoint. Petford and Welsh used 4−Si which is equivalent to using T ≈ 0.72 in (1). (Because
exp(−x/T ) = 4−x implies T ≈ 0.72.)

The stopping criterion includes two conditions. The algorithm stops either when the time
limit (in terms of the number of calls to the function that computes a new color) is reached,
or when a proper coloring is found. If a proper coloring is found, the answer to the decision
problem is positive, and the proper coloring is reported as a witness. In the case when no proper
coloring is found, the feasible solution with minimal cost E(c) is reported as an approximate
solution to the problem. The answer to the decision problem is in this case negative; however,
it might not be correct. Note that there is no guarantee of the quality of the solution.



108 Boštjan Gabrovšek and Janez Žerovnik

Connection to simulated annealing and the generalized Boltzmann machine.
Here we briefly discuss the parameter T of the algorithm. Due to an analogy between the tem-
perature of the simulated annealing algorithm and the temperature of the generalized Boltz-
mann machine neural network [22], parameter T can naturally be called the temperature. With
the term simulated annealing (SA) we refer to the optimization heuristics as proposed, for exam-
ple, in [16]. The Generalized Botzmann machine is a generalization of the Boltzmann machine,
a neural network that is based on a stochastic spin-glass model and has been widely used in
artificial intelligence [13]. The main difference between the two is that the generalized Boltz-
mann machine as defined in [22] uses multistate neurons, in contrast to the bipolar neurons of
the usual Boltzmann machine.

These analogies are based on the following simple observation. Pick a vertex and denote
the old color of the chosen vertex by j and the new color by i. The number of bad edges E′

after the move is

E′ = E − Sj + Si (2)

where E is the number of bad edges before the change. We define ∆E = E −E′ = Sj − Si.
During each step, j is fixed and hence Sj and E are fixed. Consequently, it is equivalent if
we define the probability of choosing the new color i to be proportional to either exp(−Si/T ),
exp(∆E/T ) or exp(E′/T ).

To see the relation to the Boltzmann machine, recall that the number of bad edges is a
usual definition of the energy function, in both the simulated annealing and in the generalized
Boltzmann machine with multistate neurons. This indicates that the algorithm of Petford
and Welsh is closely related to the generalized Boltzmann machine operating at a constant
temperature (for details, see [22] and the references therein). The major difference between the
two is in the firing rule. While in the Boltzmann machine all the neurons are fired with equal
probability, in the algorithm of Petford and Welsh, only the bad vertices are activated.

As already explained, the original algorithm of Petford and Welsh uses probabilities propor-
tional to 4−Si , which corresponds to T ≈ 0.72. Other choices of T are possible. On one hand,
low values of T make the algorithm behave very much like an iterative improvement, and it
will be quickly converging to a local minimum. On the other hand, a large T means a higher
probability of accepting a move that increases the number of bad edges. Consequently, a very
high T results in chaotic behavior that is similar to a pure random walk among the colorings,
regardless of their energy.

Both Petford and Welsh and simulated annealing are local-search-type heuristics. Besides
the different uses of T (fixed temperature versus cooling schedule), there is another slight
difference. Namely, in the usual implementation of SA, a change that improves the cost is
always accepted, while in the other case, the acceptance probability is used, which depends on
both the difference in costs and the temperature. In the algorithm of Petford and Welsh, all
the changes are made according to the probabilities using (1). The cost-improving changes thus
might not be accepted, although this happens very rarely in the majority of cases.

Thus, our algorithm is similar to both the simulated annealing heuristics and to the se-
quential operation of the Boltzmann machine. Its acceptance probability is (for a given T )
practically equivalent to the Boltzmann machine. As the Boltzmann machine is a highly paral-
lel asynchronous device, a comparison with parallel implementations is even more interesting.
Here, we recall the parallel version of the algorithm of Petford and Welsh that differs from the
generalized Boltzmann machine only in the firing rules in both phases of its operation.

Parallel algorithm. In [25], a massively parallel version of Algorithm 1 was proposed.
The naive algorithm (Algorithm 2) was later improved in [26] by a version that runs in two
phases, thus avoiding the looping that can appear for some configurations within the instance.
The improved algorithm (Algorithm 3) first aims to find a 2k coloring and does not recolor all
the bad vertices simultaneously because each change is only done with some probability (i.e.,



A fresh look at a randomized massively parallel graph coloring algorithm 109

0.6). In the second phase, the result of the first phase provides independent sets of vertices
that can be recolored in parallel without any conflict. The resulting algorithm still shows the
maximum speedup in comparison to the original version, e.g., the instances solved in linear
time sequentially are expected to be solved in constant time in parallel [26]. The algorithm
formally reads as Algorithm 3.

Note that in the first phase, the firing rule is nearly equivalent to that of the Boltzmann
machine in which each neuron (vertex) wakes up at some random time and performs the recol-
oring. Note that there is no synchronization among the neurons. While synchronization is not
of particular importance in the first phase of our algorithm, in the second phase, it is essential
that synchronization based on the result of the first phase is used.

Algorithm 2 Massively parallel variant of the Petford–Welsh algorithm (naive version)

1: color vertices randomly with colors 1, 2, . . . , k
2: while not stopping condition do
3: bad vertices← {v | visbad}
4: for all v ∈ bad vertices do
5: assign a new color c to v
6: end for
7: end while

 in parallel

Algorithm 3 Massively parallel variant of the Petford–Welsh algorithm

1: procedure MPPW phase1(G)
2: color vertices randomly with colors 1, 2, . . . , k, k + 1, . . . , 2k
3: while not stopping condition do
4: bad vertices← {v | visbad}
5: for all v ∈ bad vertices do
6: assign a new color c to v with a probability of 60%
7: end for
8: end while
9: return coloring c

10: end procedure

}
in parallel

11: procedure MPPW phase2(G)
12: bc← MPPW phase1(G)
13: color vertices randomly with colors 1, 2, . . . , k
14: while not stopping condition do
15: bad vertices← {v | visbad}
16: for all v ∈ bad vertices do
17: if step mod (2k) = bc(v) then
18: assign a new color c to v
19: end if
20: end for
21: end while
22: return coloring c
23: end procedure

}
in parallel



110 Boštjan Gabrovšek and Janez Žerovnik

3. Experiments

In our experiments we use two classes of graphs. The first class is graphs of the form

G(n, k, p), (3)

where n is the number of vertices, k is the number of partitions and p is the probability that
two vertices from distinct partitions are adjacent (see [20, 25, 10]).

The second class is d-regular graphs of the form

R(n, k, d), (4)

where n is the number of vertices, k is the number of partitions and d is the degree of vertices.
The Python code for generating such graphs can be found in [10]. In short, the algorithm splits
the vertices into k partitions and connects, in a random order, each vertex to d randomly chosen
vertices in distinct partitions. If there are vertices left that are not of degree d and cannot be
connected, we delete an edge and add two other edges. More precisely, if u and v are vertices
with deg(u) < d and deg(v) < d, then we find an edge u′v′, such that u and u′ do not belong to
the same partition and v and v′ do not belong to the same partition. We delete the edge u′v′

and add edges uu′ and vv′ to the graph.

In both cases the partitions are of equal size if k divides n, otherwise their sizes differ by at
most one vertex.

Preliminary experiment. With the code in [10] we reproduced the results from [25, 26],
with a much larger sample size, n = 10000 (instead of n = 100). The results are presented in
Figure 1, confirming that our implementation runs exactly the same algorithm as the original.

Figure 1: Performance of IMPPW (parallel steps as a function of n), see Table 1 that
resembles Table 1 in [25].



A fresh look at a randomized massively parallel graph coloring algorithm 111

p = 0.1
n T2(n) succ. runs
30 19. 100
60 261. 89
90 345. 93

120 142. 100
180 99. 100
240 71. 100
300 52. 100
360 45. 100
420 40. 100
480 39. 100
540 36. 100
600 35. 100
660 34. 100
720 34. 100
780 32. 100
840 33. 100
900 32. 100

p = 0.5
n T2(n) succ. runs
30 33. 100
60 25. 100
90 24. 100

120 23. 100
180 22. 100
240 22. 100
300 21. 100
360 21. 100
420 21. 100
480 21. 100
540 21. 100
600 22. 100
660 21. 100
720 22. 100
780 21. 100
840 21. 100
900 21. 100

Table 1: Performance of IMPPW (number of parallel steps as a function of n). Number of
successful runs (out of 100) is given in the third column.

Observe that the algorithm does not perform well on a narrow interval only, which we call
the critical region. Observing some experimental results, limited by the computing resources
available at the time, the following conjecture was proposed [27].

Conjecture 1. The critical regions are characterized by the equation

2pn

k
≈ 16

3
. (5)

This conjecture generalizes the conjecture of Petford and Welsh, who observed that the
equation 2pn

3 ≈
16
3 is valid within the critical region [20]. More precisely, they observed that

given p, the graphs G(n, 3, p) with n ≈ 8
p are likely hard instances for the algorithm.

After we confirm the basic observations in the main references, we continue with experi-
mental results that can shed some more light on the behaviour of the algorithm and possibly
on some more general phenomena. In particular, we wanted to understand better, if and how
the hard instances can be related to the average degree of the graphs. In relation to this, we
wish to check whether the conjecture above captures the main information that determines
the critical regions. Furthermore, we are interested in the question “what is the effect of the
temperature” (or, equivalently, the basis of the exponent expression (1)) on the performance
of the algorithm? Below we provide the results of the experiments with some comments that
answer some questions and, at the same time, highlight some new questions.

First experiment. In the first experiment we show that, with a fixed number of compo-
nents, the critical region depends on the average degree d(G) of the graph, where

d(G) =
np(k − 1)

k
. (6)

We choose four datasets: graphs of classes G(90, 3, p), G(120, 3, p), G(300, 3, p), and G(3000,
3, p). The sample size is 10000 for n ∈ {90, 120, 300} and a bit smaller, 2000, for n = 3000. We
choose the parameter p in such a way that the average degree of each class varies from 2 to 9.
The results are presented in diagrams in Figure 2.



112 Boštjan Gabrovšek and Janez Žerovnik

Figure 2: Performance of IMPPW (steps as a function of average degree).

Note that in all four experiments, the extreme value does not depend on the number of
vertices. It is obvious that the hard instances are in the interval where the average degree is
between 4 and 5; even more, the peaks are within the range 4.5–4.7 in all four diagrams.

The phenomena can be explained as follows. Observe that before the critical region (d(G) <
4.5), the partitions (e.g., sets of vertices of the same color in a proper coloring) are loosely defined
and there are multiple optimal solutions (see Supplementary Video 1). On the other hand, after
the critical region (d(G) > 4.7), the algorithm converges fast, since the partitions are densely
connected and thus very well defined (see Supplementary Video 3). For a graph in the critical
region see Supplementary Video 2. All three videos can also be accessed at [10].

Figure 3: Performance of IMPPW (basis vs. number of steps).



A fresh look at a randomized massively parallel graph coloring algorithm 113

Figure 4: Performance of IMPPW (basis vs. number of steps for d-regular graphs).

Second experiment. In this experiment, we vary the parameter b over the values from
2 to 10 and measure the performance of the algorithm in the classes G(120, 3, p), where p is
chosen in such a way that the average degrees are 3.2, 4.4, and 8.0. The results are presented
in the diagram in Figure 3.

We conclude that the basis b does not dramatically influence the performance. Seemingly,
the values between 3.0 and 4.0 are well behaved and indeed, taking any value b ∈ [3, 4], perform
similarly. We repeat the experiment on the graphs R(120, 3, d), where d = 2, 3, . . . , 8. The
results are presented in the diagram in Figure 4 and clearly confirm the earlier observations.

The question “what is the optimal value b?” should have an answer between 3 and 4. Note
that this is a question equivalent to the question as to which is the optimal temperature of
the simulated annealing (i.e. “annealing” with constant temperature)? However, this seems to
be a rather complex problem [4, 29]. (Recall that exp(−x/T ) = b−x so b = exp(1/T ).) As
our insight is limited by the special class of instances used, we do not wish to dig deeper into
the question of optimal b. On the other hand, we can confirm that, probably, the algorithm is
robust regarding the choice of b and, equivalently, to the choice of parameter T ).

Third experiment. In this experiment we compute the run times for the graphs in
G(n, k, p) where we fix k = 3, 4, . . . , 8 partitions and n = 60, 120, 240 vertices, and in each
case observe how the number of steps needed depends on the probability p. In all the experi-
ments the sample size is 5000. The results are presented in Figure 5.

According to Conjecture 1, the hard instances are characterized by some constant value of
2pn
k . However, in Figure 6 we observe how the performance depends on 2pn

k . We conclude that

the critical region is not characterized exactly by 2pn
k , thus the Conjecture 1 should be replaced

by a better one.

In Figure 7 we plot how the number of steps depends on the expression p(k−1)
k , which is

proportional, if n is fixed, to the average degree. We observe from the figure that the critical
region cannot be explained only by the average degree.



114 Boštjan Gabrovšek and Janez Žerovnik

Figure 5: Performance of IMPPW for k-colorings. The graphs show how the number of steps
depends on the parameter p.

Figure 7: Performance of IMPPW for k-colorings. The graphs show how the number of steps

depends on the average degree, which is proportional to p(k−1)
k .

At present we do not have a good idea of how to improve the conjecture to better characterize
the critical region with an expression that would have some natural meaning. We have tested
some slight modifications and found that the expression p

k−1.5 remains fairly constant for varied
k. See Figure 8, where we plot how the number of steps depends on the expression p

k−1.5 .



A fresh look at a randomized massively parallel graph coloring algorithm 115

Figure 6: Performance of IMPPW for k-colorings. The graphs show how the number of steps
depends on the parameter p.

Figure 8: Performance of IMPPW for k-colorings. The graphs show how the number of steps
depends on the expression pn

k−1.5 . The cut-off is due to the time constraint of the algorithm.

Therefore, it seems that the critical region is approximately characterized by the equation

np

k − 1.5
≈ 4.3. (7)



116 Boštjan Gabrovšek and Janez Žerovnik

4. Conclusions

A parallel version of Petford and Welsh’s k-coloring algorithm was extensively tested on two
classes of random graphs. The conjecture about the existence of a critical region where the
algorithm has nearly prohibitively long run times was confirmed for the case k = 3, while a
generalized conjecture [27] was shown to need an adjustment. More precisely, we have observed
that the critical region appears where p

k−1.5 holds. This result opens at least two interesting
questions.

• can the property np
k−1.5 ≈ 4.3 be naturally explained as some feature of the instances?

• is there another expression that fits the data, and has some meaning that can explain the
structure of hard instances?

In contrast to the graph classes of k colorable graphs used in this paper, the usual random

graph model considered are graphs G(n, p) where each of the possible n(n−1)
2 edges appears

independently with a probability p. Not surprisingly, for 3-coloring, it is found that the critical
mean degree where the phase transition occurs is around αcrit ≈ 4.7, for example, the estimate
4.703 was put forward in [2]. In the same paper, the analysis implies that the hardest instances
are among the graphs with an average degree between 4.42 and αcrit. It seems that the k-
coloring was not considered, hence we cannot compare our findings about the hardest instances
with previous work. We conclude that further study of the critical regions is a promising avenue
of research that might have some implications that go beyond understanding of the behavior of
the algorithm of Petford and Welsh.

Acknowledgements

The authors were supported in part by the Slovenian Research Agency, grants J2-2512, J1-4031,
N1-0278 (B. Gabrovšek), and J2-2512 and P2-0248 (J. Žerovnik).

References

[1] Babaei, H., Karimpour, J. and Hadidi, A. (2015). A survey of approaches for uni-
versity course timetabling problem. Computers & Industrial Engineering, 86, 43-59. doi:
10.1016/j.cie.2014.11.010

[2] Boettcher, S. and Percus, A. G. (2004) . Extremal optimization at the phase transition of the
three-coloring problem. Phys. Rev. E, 69, 066703. doi: 10.1103/PhysRevE.69.066703

[3] Cipra, B. A. (2000). The Ising model is NP-complete. SIAM News, 33(6), 1-3. Retrieved from:
semanticscholar.org

[4] Cohn, H. and Fielding, M. (1999) . Simulated annealing: searching for an optimal temperature
schedule. SIAM Journal on Optimization, 9, 779-802. doi: 10.1137/S1052623497329683

[5] Culberson, J. and Gent, I. (2001). Frozen development in graph coloring. Theoretical Computer
Science, 265, 227-264. doi: 10.1016/S0304-3975(01)00164-5

[6] Donnelly, P. and Welsh, D. (1984). The antivoter problem: random 2-colourings of graphs. In
Graph Theory and Combinatorics (Cambridge, 1983), (pp. 133-144), Academic Press, London.

[7] Chamaret, B., Ubeda, S. and Žerovnik, J. (1996). A Randomized Algorithm for Graph Colouring
Applied to Channel Allocation in Mobile Telephone Networks. Proceedings of the 6th International
Conference on Operational Research KOI’96. 25-30, Croatian Operational Research Society, Za-
greb.

[8] Dubois, O., Monasson, R., Selman, B. and Zecchina, R. (2001). Editorial. Theoretical Computer
Science, 265(1–2), 1. doi: 10.1016/S0304-3975(01)00133-5

[9] Fortnow, L. (2009). The status of the P versus NP problem. Commun. ACM 52, 9 (September
2009), 78–86. doi: 10.1145/1562164.1562186

[10] Gabrovšek, B. (2023). Massively parallel algorithm for graph coloring based on the Petford-Welsh
algorithm, source code, Retrieved from: github.com/bgabrovsek/petford-welsh-coloring

https://doi.org/10.1016/j.cie.2014.11.010
https://doi.org/10.1016/j.cie.2014.11.010
https://doi.org/10.1103/PhysRevE.69.066703
https://api.semanticscholar.org/CorpusID:15615508 
https://api.semanticscholar.org/CorpusID:15615508 
https://doi.org/10.1137/S1052623497329683
https://doi.org/10.1016/S0304-3975(01)00164-5
https://doi.org/10.1016/S0304-3975(01)00133-5
https://doi.org/10.1145/1562164.1562186
https://github.com/bgabrovsek/petford-welsh-coloring


A fresh look at a randomized massively parallel graph coloring algorithm 117

[11] Galinier, P. and Hertz, A. (2006). A survey of local search methods for graph coloring. Computers
Operations Research, 33(9), 2547–2562. doi: 10.1016/J.COR.2005.07.028

[12] Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman.

[13] Hinton, G. (2011). Boltzmann Machines. In Sammut, C. and Webb, G.I. (Eds.) Encyclopedia of
Machine Learning. Springer, Boston, MA. doi: 10.1007/978-0-387-30164-883

[14] Ikica, B., Gabrovšek, B., Povh, J. and Žerovnik, J. (2022). Clustering as a dual problem to colour-
ing. Computational and Applied Mathematics, 41, 147. doi: 10.1007/s40314-022-01835-0

[15] Karp, R. (1972), Reducibility among combinatorial problems. In R. Miller and J. Thatcher (Eds.)
Complexity of Computer Computations. Plenum Press, 85-103.

[16] Kirckpatrick, S., Gellat, C. D. and Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671-680. doi: 10.1126/science.220.4598.671

[17] Lewis, R. M. R. (2021). Guide to Graph Colouring, Texts in Computer Science (second edition),
Spirnger Nature Switzerland. doi: 10.1007/978-3-030-81054-2

[18] Mart́ın, H. J. A. (2013). Solving Hard Computational Problems Efficiently: Asymptotic Parametric
Complexity 3-Coloring Algorithm. PLoS ONE, 8(1), e53437. doi: 10.1371/journal.pone.0053437

[19] Mézard, M. (2022). Spin glasses and optimization in complex systems. Europhysics News, 53(1),
15-17. doi: 10.1051/epn/2022105

[20] Petford, A. and Welsh, D. (1989). A Randomised 3-coloring Algorithm. Discrete Mathematics, 74,
253-261. doi: 10.1016/0012-365X(89)90214-8

[21] Philathong, H., Akshay V., Samburskaya, K. and Biamonte, J. (2021). Computational phase tran-
sitions: benchmarking Ising machines and quantum optimisers. Journal of Physics: Complexity,
2(1), 011002. doi: 10.1088/2632-072X/abdadc

[22] Shawe-Taylor, J., and Žerovnik, J. (1992). Boltzmann Machines with Finite Alphabet. In Proceed-
ings International Conference on Artificial Neural Networks, ICANN’92. Elsevier Science. 391-394
. Retrieved from: eprints.soton.ac.uk

[23] Shawe-Taylor, J., and Žerovnik, J. (1995). Analysis of the Mean Field Annealing Algorithm for
Graph Colouring. Journal of Artificial Neural Networks, 2, 329-340.

[24] Ubeda, S. and Žerovnik, J. (1997). A randomized algorithm for a channel assignment problem.
Speedup, 11, 14-19.

[25] Žerovnik, J. (1990). A parallel variant of a heuristical algorithm for graph coloring. Parallel Com-
puting, 13, 95-100.

[26] Žerovnik, J. and Kaufman, M. (1992). A parallel variant of a heuristical algorithm for graph
coloring - corrigendum. Parallel Computing, 18, 897-900.

[27] Žerovnik, J. (1994). A Randomized Algorithm for k-colorability. Discrete Mathematics, 131, 379-
393. doi: 10.1016/0012-365X(94)90402-2

[28] Žerovnik, J. (1998) . On the convergence of a randomized algorithm frequency assignment problem.
Central European Journal for Operations Research and Economics, 6, 135-151.

[29] Žerovnik, J. (2000). On temperature schedules for generalized Boltzmann machine. Neural Network
World, 3, 495-503.

https://doi.org/10.1016/J.COR.2005.07.028
https://doi.org/10.1007/978-0-387-30164-8_83
https://doi.org/10.1007/s40314-022-01835-0
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/978-3-030-81054-2
https://doi.org/10.1371/journal.pone.0053437
https://doi.org/10.1051/epn/2022105
https://doi.org/10.1016/0012-365X(89)90214-8
https://dx.doi.org/10.1088/2632-072X/abdadc
http://eprints.soton.ac.uk/id/eprint/259704
https://doi.org/10.1016/0012-365X(94)90402-2

	Introduction
	 Graph coloring problem and the algorithm of Petford and Welsh 
	Experiments
	Conclusions

