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Abstract. The need for high performance models in the queuing systems; availability in the fields of
computing and communication systems and logistics management poses extensive challenges in design
and development of the appropriate modeling. In this work, we propose a robust probabilistic model to
mitigate these problems by appropriately choosing a multi-server queuing system with dynamic service
facility. The arrival substances, such as packets or jobs or customers or consumers, follow a Poisson
arrival process and these arrivals enter a queuing system according to FIFO discipline. The system
designed in the system is armed with a fixed number of service stations, in which some servers are
capable of allocating additional service capacity by adjusting dynamically. When a customer arrives
at the system, if a free server is available, it is immediately served by one of the free processors; if no
server is free, that is all are busy, the arrived job is accommodated in the queue and waits for service
in the system. In this paper, we proposed a stochastic model to handle peak loads efficiently, boosting
service capacity during burst arrivals. Numerical results presented in this paper are generated by the
spectral expansion method to demonstrate the model’s performance, offering insights into its efficiency
and accuracy. Furthermore, we derived some important special cases of speedup factor, which provide
the mathematical estimation of system performance in terms of computation and communication times.
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1. Introduction

In real-life queuing systems, especially during peak periods, it’s essential to dynamically adjust
server power to accommodate increased customer arrival rates [1, 12, 16]. This flexibility is
crucial across various industries, including manufacturing and management. During service
time, workload variations are often substantial. At odd times arrivals may be minimal so that
servers sit idle during lean periods. Hence, for cost-effectiveness optimizing server utilization is
imperative which leads to prolonged lifespan of the servers. Identifying a suitable strategy to
allocate power dynamically to the server at the peak period enhances the resources efficiently.
It tends to minimize resource wastage, optimize service delivery and responsiveness in queuing
systems.
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The pursuit of high-performance levels has led to numerous challenges in modeling, design-
ing, and developing fault-tolerant wireless systems [15]. Despite the rapid growth of communi-
cation services, customers’ expectations for availability and performance remain unchanged [21].
Serving signal/data packets and evaluating their performance involves complex computations,
leading to scientific challenges in computing, network communication, and logistics systems
[6, 17]. This complexity paves the way for designing models where a single unbounded queue
evolves as the environment’s state changes over time . Instantaneous service to the customer
and its arrival largely depends on the environment’s state and, to some extent, on the number
of customers arriving at the system. Intrinsically, developing a competent model to accommo-
date this dynamic service facility is essential to meet consumer requirements and safeguarding
system safety and reliability.

Addressing additional power allocation requirements and optimizing the service systems
necessitates tackling the recent technology-scaling issues. These service issues are closely con-
nected to the great challenges to handle during peak times [19]. To mitigate these issues Power
Shifting mode is one viable solution that works efficiently. In this model, during peak arrival,
service capacity is bolstered to selected servers by enhancing its service capacity. This approach,
proposed in this paper ensures seamless, uninterrupted time bounded service and optimizes the
system performance [5, 18]. To alleviate peak power consumption, one of the strategies avail-
able in the field is dynamically increasing service capacity [11]. This can be achieved through
integrating activity-related power estimation techniques and real-time performance feedback
[20].

This process can be easily extended to a multi-server computer system to solve complex
problems. We can observe that dynamically power shifting mode successfully improves power
management, alleviating monetary burdens for various industrial organizations.

The contributions of this paper encompass the following:

▶ Exemplifying the greater efficiency of providing dynamic power allocation over static
budgeting.

▶ Analyzing critical system and workload factors is essential for the success of power shifting
proposals.

▶ Proposing performance-sensitive power budget enforcement mechanisms to ensure system
reliability.

Present available optimization models in the multiprocessor queuing system addresses var-
ious resource allocation strategies in computing, and communication [13]. Its significance is
exemplified through a case study where optimal resource allocation for computing is attained
by minimizing energy usage while accounting for constraints such as average response time,
response time reliability, queuing system stability, and the maximum allowable quantity of re-
sources [14]. This study underscores the importance of incorporating response time reliability
to ensure service quality in cloud computing resource allocation [8].

The model describes a network comprising power-constrained nodes transmitting over chan-
nels, such as wireless links with adaptive transmission rates, as outlined in [15, 22]. Customers
randomly enter the system and await service in the queue at each node, with their data trans-
mitted through the network to respective destinations. To examine various traffic organization
levels, a mathematical model is formulated using rate matrices for support. The design involves
power allocation and joint routing distribution to stabilize the system and ensure bounded av-
erage service guarantees when input rates fall within the capacity region [23]. This performance
holds for both centralized and decentralized implementations, considering general arrival and
channel state processes. The network system is monitored, and the system stability of decen-
tralized algorithms is studied concerning a mobile relay strategy.
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In the work [2], a dynamic power control problem is addressed, focusing on two similar-level
service states subject to random variations in connectivity and switchover server delays between
queues. In each time slot, the server determines whether to maintain a constant level of service
capacity or switch to an additional power level, thus increasing the service capacity [9]. This
decision is based on the current connectivity and queue length information. The introduction of
switchover time as a modeling parameter adds a new layer of complexity, enhancing the overall
interest in the problem.

To describe system stability, a novel approach is proposed. In this method employs state-
action frequencies to identify stationary solutions of the Markov Process and formulate a cor-
responding structured plan [3, 7]. The stability region is characterized with respect to con-
nectivity parameters. This characterization aids in the development of a new framework for
throughput-optimal network policies, supported by state-action frequencies.

2. Mathematical Model and QBD Process System

A queuing network system is modeled in terms of a discrete two-dimensional Markov process
on a semi-infinite lattice strip. The process follows a Markovian property, and the transition
state of the system at observation time t can be expressed by two random variables I(t) and
J(t) used to study the system state at any time t is represented by a two-dimensional random
vector. I(t) represent the system’s operative state, and its values belong to [0, N ] interval
of integers, whereas J(t) represents the number of customers present in the queue (including
served customers) that may be finite or infinite depending on the queuing system. The Markov
process for the QBD queuing system is denoted by: X(t) = [I(t), J(t); t ≥ 0] with its state
space [0, 1, 2, ....N ]× [0, 1...] for infinite queue size. Let X(t) represents the customer’s position
at discrete time t with mean arrival and service rates. The number of births at an ith time
interval (t, t+∆t) with time ∆t would be σ∆t+ o(∆t).

Figure 1: Parallel processor servicing system with dynamic power.

Let there be N + 1 processor configurations, represented by the values I(t) = 0, 1, . . . , N ,
denoting operative states of the multiprocessor system. These configurations constitute the
operative states of the model, and the model assumptions ensure that I(t), for t ≥ 0, forms an
irreducible Markov process. Subsequently, X(t) = {I(t), J(t)]; t ≥ 0} represents an irreducible
Markov process on a lattice strip (a QBD process) that model the system. This system has been
scrutinized for exact performability [4, 10], even under infinite waiting time, i.e., for L → ∞.
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Matrix A is the instantaneous transition rates from operative state i to operative state k, with
zeros on the main diagonal, indicating purely lateral transitions within the model X. Matrices
B and C serve as transition matrices for one-step upward and one-step downward transitions,
respectively. Moreover, when the transition rate matrices do not depend on j, the system
reaches a steady state for j ≥ M , where M , an integer constant, represents a threshold value,
and the process X evolves through the following instantaneous transitions:

• Aj : Purely lateral transition rate, from state (i, j) to state (k, j), (i = 0, 1, . . . , N, k =
0, 1, . . . , N ; i ̸= k; j = 0, 1, . . . , L), caused by a change in the operative state (i.e. servers
sleeping or break-down followed by service up during arrival, and a repair time).

• Bj : One-step upward transition rate matrix, from state (i, j) to state (k, j + 1), (i =
0, 1, . . . , N, k = 0, 1, . . . , N, and j = 0, 1, . . . , L), caused by a job arrivals into the system.

• Cj : One-step downward transition rate matrix, from state (i, j) to state (k, j − 1), (i =
0, 1, . . . , N, k = 0, 1, . . . , N, and j = 0, 1, . . . , L), caused by the departure of a serviced
job.

Let the power be allocated dynamically to the system at the stages where the system needs
more power to process customers’ delays during peak time. At peak times, it requires more
customer service; hence it requires extra power to accomplish the work. During this busy period,
additional servers are dynamically assigned to the system. In the regular period, the system
operates with a fixed service capacity. The parameter µ is the normal mean service rate and
µ0 is the dynamically allocated power to service for the system during a busy time. It can be
observed that J(t) is a process that may move up or down depending on the customer’s arrival
or departure from the queue. I(t) is the service state corresponding to the arrivals that takes
values 0, 1, 2, . . . , p, q, q+1, q+2, . . . , N . Here the states 0 to p represent the system is working
in normal mode, whereas from state q to N the system moves work with dynamic mode.
The QBD Markov system can be expressed in mathematical form as:

x1(t+ 1) = Sp+1xp+1(t) + ...+ Sp+qxP+q(t)− (µ1 + σ1)x1(t)

x2(t+ 1) = σ1x1(t)− (µ2 + σ2)x1(t)

...................................................................................................

...................................................................................................

...................................................................................................

xp+q+r−1(t+ 1) = σp+q+r−2(t)xp+q+r−2(t)− (µp+q+r−1 + σp+q+r−1)xp+q+r−1(t)

xp+q+r(t+ 1) = σp+q+r−1xp+q+r−1(t)− µp+q+rxp+q+r(t)

(1)

xi(t) indicates the system state at ithtransient position with arrival and service rates σi, µi

respectively. At the rth state the system moves from the transient state to the steady state,
so that the system will not depend on arrivals. Equation (1) can be modeled by the spectral
expansion method with transient matrices Aj,Bj, and Cj where the mean arrival rates, the
service rates, and the additional dynamic allocations are denoted by σ µ and µ0, respectively.
The system is prone to breakdown either a single server randomly, with a mean rate ξ or bulk
servers at a rate ξ0. The service rates to repair these servers are represented by η and ηN for
single server and all servers, respectively. It is explained in Figure 1. The service for the packets
arrived at the system is followed by FIFO (first in - first out) discipline. Once the service
is completed, packets are dispatched from the system. Matrix Aj is purely phase transitions
representing services, and Bj is the upward transitions matrix representing the customers’ new
arrival. Matrix Cj represents the downward transition matrix. It represents the number of
customers serviced during the system up.



Multi server queuing model with dynamic power shifting and performance efficiency factor 175

As previously stated, matrix Aj represents purely phase transitions representing services,
whereas matrix Bj denotes the upward transitions matrix depicting customers’ new arrivals.
Conversely, matrix Cj represents the downward transition matrix, indicating the number of
customers serviced during the system’s operation.

Aj =



0 Nη0 0 · · · 0 NηN
ξ + ξ0 0 (N − 1)η0 · · · 0 NηN
ξ0 Nη0 0 · · · 0 NηN
...

...
...

...
. . .

...
ξ0 Nη0 0 · · · 0 ηN + η0
ξ0 0 0 · · · Nξ 0


(2)

Bj =



σ 0 0 · · · 0 0
0 σ 0 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · σ 0
0 0 0 · · · 0 σ


(3)

Cj =



min(0, j)µ 0 · · · µ0 · · · µ0 0 · · · 0
0 min(1, j)µ · · · 0 · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · min(p+ 1, j)µ · · · 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 0 · · · 0 0 · · · min(N, j)µ


(4)

At threshold point M, the transition matrices reach steady states and become level indepen-
dent. In this steady state, these matrices no longer depend on the parameter j, transitioning
to steady state irreducible matrices A,B, and C respectively.

In matrix from

Aj = A, for all j ≥M

Bj = B, for all j ≥M

Cj = C, for all j ≥M

(5)

For calculating various parameters, the probability of state (i, j) in the steady state is computed
using the probability coefficient Pi,j which has been introduced and defined as follows:

Pi,j = limt→∞[I(t) = i, J(t) = j], 0 ≤ i ≤ N,&0 ≤ j ≤ L (6)

Where L can be finite or infinite.
The probability row vectors at the jthstage are defined as

Vj = [P0,j , P1,j , ...PN,j ], j = 0, 1, 2... (7)

The probability vectors, along with transient state matrices, have been represented with the
help of balance equations.



176 Sreelatha V, Elliriki Mamatha, CS Reddy, Krishna Anand S

V0[D
A
0 +DB

0 ] = V0A0 + V1C1 (8)

Vj [D
A
j +DB

j +DC
j ] = Vj−1Bj−1 + VjAj + Vj+1Cj+1 (9)

Vj [D
A +DB +DC ] = Vj−1B + VjA+ Vj+1C M ≤ j ≤ L (10)

VL[D
A +DC ] = VL−1B + VLA (11)

For an infinite state space, the balance equation is further simplified.

Vj−1Bj−1 + Vj [Aj −Dj ] + Vj+1Cj+1 = 0, j = 0, 1...M − 1 (12)

In equation (12), Dj = DA
j + DB

j + DC
j where DR

j (R = A orB or C) represents the di-
agonal matrix, whose diagonal elements are the sum of each corresponding row of the matrix Rj .

The threshold condition for the system attains at M = N . After reaching this threshold
condition, the system enters a steady state, i.e., the system’s behavior no longer depends on j.
Consequently, balance equations for j =M,M + 1, . . . are as follows.

Vj−1B + Vj [A−D] + Vj+1C = 0 (13)

Furthermore, the total probability of the system always remains at 1, i.e.,

∞∑
j=0

Vj .e = 1 (14)

Here ′e′ represents the nth- order column matrix with elements equal to 1.

To find the probability vectors Vj , the balance equations can be reformulated in terms of
eigenvalues and eigenvectors. Equation (14) leads to a quadratic equation from which eigen
values and their corresponding left eigen vectors can be derived. These values will be essential
in computing performance measures.

Let’s define diagonal matrices Q0, Q1, and Q2 with sizes (N + 1)× (N + 1) from the study
state matrices A,B,C, as Q0 = B,Q1 = A−DA −DB −DC , Q2 = C.
Then the balance equations can be expressed in terms of quadratic form.

VjQ0 + Vj+1Q1 + Vj+2Q2 = 0; where (M − 1) ≤ j ≤ (L− 2) (15)

From this, the characteristic matrix polynomial further can be expressed as:

Q(λ) = Q0 +Q1(λ) +Q2λ
2 (16)

Where

ψQ(λ) = 0; |Q(λ)| = 0. (17)

Here λ, and ψ are the eigenvalues and left eigenvectors of the quadratic polynomial Q(λ) re-
spectively.

To compute eigenvectors and their corresponding eigenvalues, we further simplify the quadratic
form in matrix form.

Q =

[
0 −T0
I T1

]
(18)
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where T0 = B/C and T1 = [A–DA–DB–DC ]/C

It can be further expressed in quadratic notation form as:

ψ[T0 + T1λ+ λ2] = 0 (19)

It can be expressed in a square matrix form of order 2N to compute eigen values and their
corresponding eigen vectors.

ψ

[
0 −T0
I T1

]
= λψ (20)

Since the matrix

[
0 −T0
I T1

]
is a 2N size matrix, hence it has a 2N set of eigen values and

their corresponding left eigen vectors. Out of these 2N eigenvalues, N eigenvalues are exactly
less than one in magnitude.

Now, by considering these N eigenvalues and their corresponding half of left eigenvectors, the
probability vectors can be computed as:

Vj =

N∑
(k=0)

akψkλ
j−M+1
k (21)

Inverting the next N eigenvalues that are greater than one and considering their corresponding
half of left eigenvectors, the probability vector can be defined for the finite state as:

Vj =

N∑
(k=0)

akψkλ
(j−M+1)
k +

N∑
k=1

bkϕkβ
L−j
k (22)

Where a and b are arbitrary constants. β and ϕ are the reciprocal eigenvalues with magnitude
greater than or equal to one and their left eigenvectors of the matrix Q, respectively.

Which can be further resolved in the form of state probabilities as follows:

pi,j =

N∑
k=0

akψk(i)λ
j−M+1
k + bkϕk(i)β

L−j
k where M − 1 ≤ j ≤ L (23)

The arbitrary constants ak and bk, (k = 0, 1, . . . , N) are either scalar real constants or complex
values that need to be computed. These constants can be found with balance equations to
compute various performance measures such as service probability, mean waiting time and loss
probability of the customers, and other measures.

3. Performance Efficiency Factor

In the contemporary world, the ever-growing need for enhanced computational speed is fueled
by technological advancements. One approach to achieving this goal involves partitioning com-
putational tasks among multiple servers. This can be realized through the implementation of
a coupled system or by leveraging cloud computing techniques.

While pursuing the development of a new system, it is crucial to consider the limitations
of network communications and potential delays in work arising from increased computational
and transmission times. Additionally, the system should be designed to be cost-effective. This
section delves into the discussion of boosting speed through the utilization of multiple servers,
acknowledging certain constraints and employing parallel server configurations.
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The computation of the parallel computing performance factor has been considered. The
speedup factor (Sup(p)) is defined to measure adequate performance by adding additional
servers.

Sup(p) =
ts
tp

= Execution time of single server
Execution time of multiple servers (24)

= 2n2

2n2

p +p(tstartup+tdata)+n2(tstartup+4tdata)
(25)

= n(2n+4)
n
p (2n+4)+p(tstartup+ntdata)

(26)

The effect of computation and communication times play crucial role in performance of a
system. As the size of the system increases, exchanging information among the servers gradually
increases. The rate between these two factors can be expressed as:

tp/c =
2n2

p

p(tstartup + 2tdata) + 4n2(tstartup + tdata)
(27)

Where tp/c represents the ratio processing time over communication time.

tp/c =
tcomp

tcomm
=

n
p (2n+ 4)

ptstartup + ntdata
= O

(
n2/p

p+ n2

)
(28)

Which suggests improvement with larger n (scalable).

Several factors affect the maximum not performing speed of the system. These factors include:

▶ All servers are not performing effectively, and in the meantime, some servers are idle.

▶ Communication between processes is another factor in reducing speed.

▶ Effective utilization of other peripherals in multiple service systems.

Anticipating heightened customer arrivals during peak times, it is rational to allocate addi-
tional power, while reverting to standard services during non-peak periods. Initially, N servers
are designated for service. When faced with peak arrivals, additionalM servers are dynamically
assigned to bolster power for seamless task execution. The fraction of work, denoted as f , is
undertaken by the extra power servers (M servers), while the remaining fraction of work (1−f)
is handled by uniform servers (N −M servers). Let ts be the total time required to complete
the work, p represent the single server performance speed factor, and k be the dynamic power
increasing factor from servers. This graphical representation is illustrated in Figure 2, depicting
the relationship between the performance efficiency factor and dynamic power allocation for a
portion of the work.

Figure 2: Performance efficiency factor and dynamic power allocation for part of the work.
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Then the speedup performance factor represents.

Sup(p) =
ts

fts
M
P +(1−f)ts

N−M
kp

(29)

= kp
N−M+f [(k+1)M−N ] (30)

From this, the following cases can be derived.

Case 1: If a customer arrives uniformly throughout the period, the service is performed typi-
cally. Hence, the fraction of work computed with dynamic mode becomes zero.

In this case, M = 0. Hence, the speedup performance factor becomes:

Sup(p) =
kp

N
(31)

Case 2: If the service is expected with extra power throughout the system life, every server
works dynamically. In this case, M becomes N . Hence:

Sup(p) =
p

N
(32)

4. Result Analysis

This section presents numerical results in graphical format, utilizing various parameters to assess
the performance of queuing systems when dynamic services are employed during busy periods.
The comprehensive performance measures are provided for the proposed approach to compare
with traditional method. The results indicate that the performance is notably improved with
the proposed dynamic mode power shifting method. It demonstrates effective job handling
during peak periods, while normal mode service can be seamlessly executed with uniform service
during the system’s general arrivals. Simulation results, depicted graphically, offer insights into
the model’s performance as described in the preceding section, with modifications to various
parameters.

In presenting the results, certain parameters have been kept constant unless explicitly men-
tioned for a specific experiment. Unless otherwise it is not mentioned, the parameters are fixed
as = 1.8, µ0 = 0.1, ηN = 0.01, ξ0 = 0.02, ξ = 0.8, and the maximum number of servers oper-
ating in the system, N = 10, have been consistently maintained throughout the experiments.
A substantial effort has been invested in ensuring a high degree of accuracy in this work.

Figures 3 and 4 depict a queuing system with varying service rates while maintaining a fixed
number of servers and uniform service distribution. The illustrations demonstrate that as the
arrival rate increases, both the mean queue length and the waiting time for service also increase
in response to the influx of job arrivals. These observations suggest an exponential relationship
between the mean queue length, waiting time, and the rate of job arrivals. Figure 3 specifically
portrays the queue length, while Figure 4 represents the time required for service.

In Figure 5, the attention is directed towards dynamic service stations, showcasing different
power factors assigned to servers spanning from station 2 to station 8. Additional powers are
distributed across three distinct levels: server 2 to 5, server 2 to 6, and server 2 to 8. Through
this depiction, it can be deduced that the inclusion of additional servers with dynamic service
capacities results in a decrease in the average waiting time for arrivals, as visually demonstrated
in the graph. Figure 6 illustrates the escalating number of customers awaiting service as the
arrival throughput steadily increases. This graph showcases dynamic service stations ranging
from 2 to 8, each operating at different levels of service capacity.
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Figure 3: Number of customers waiting for ser-
vice in the queuing system over time.

Figure 4: Expected time of the service to the
customer with mean arrival rate increases.

Figure 5: Expected number of customers waiting for service with dynamic power service facility.

Figure 6: The rate of increase in the number of
customers varies with different levels of service
capacity and arrival rates.

Figure 7: The anticipated number of customers
waiting for service upon joining the queue, as
service capacity increases.
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Figure 8: Expected number of customers waiting for service as service capacity increases with
server power adjustment.

Figure 9: Number of customers waiting for ser-
vices across various arrival rates, concerning
the improvement after uplifting failure server.

Figure 10: Correlation between the number
of customers waiting for service with servers
prone to breakdowns.

Both Figure 7 and Figure 8 depict constant arrival rates across different service capacities.
In Figure 7, arrival rates of 8.2, 7.6, and 7.2 are examined within a general service system, while
Figure 8 explores arrival rates of 3.5, 5.2, and 6.0 with dynamic service power shifting. The
results illustrate the influence of additional power allocation to the server on the mean queue
length. It’s observed that as service capacity dynamically increases, there’s a corresponding
reduction in waiting time until it stabilizes at a constant level. This stabilization point indicates
the optimal utilization level, which can be calculated from these observations. Overall, it’s noted
that as service capacity increases, waiting time decreases.

Referring to Figures 9 and 10, the graphs illustrate outcomes under varying arrival rates,
mirroring the patterns observed in the preceding figures. In both scenarios, the machine service
capacity remains constant, set with appropriate parameter values. Figure 9 reveals an intriguing
observation: during periods of fast services for failure servers, service is promptly completed.
Notably, an escalation in repair rate results in a significant reduction in waiting time initially,
until stability is achieved. Turning to Figure 10, the findings depict the impact of varying levels
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of server breakdowns on service time. It becomes evident that as the breakdown rate increases,
the time taken to serve waiting customers also increases. This relationship underscores a direct
proportionality between service time and failure rate.

5. Conclusion

As global customer demand continues to surge, many systems that were once efficient have
become obsolete. Sustained survival requires ongoing improvements in methodologies across
various real-time applications. This work addresses the need for continuous enhancement in one
such application, focusing on the development of new strategies to minimize customer waiting
time in queues during peak periods. The novelty of this approach lies in its dual objectives:
reducing waiting time during peak hours while ensuring servers remain active during less busy
periods. The validation of these methodologies with numerical values has been performed,
demonstrating the practical applicability of the proposed theories in everyday scenarios.
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