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Abstract 
Although their exceptional re-passivation ability, Al-alloys are susceptible to corrosion due 
to the amphoteric nature of the alumina passivation films. This issue is exacerbated by the 
disruption of these films by intermetallics on the surfaces of highly doped ones, like 
AA2024-T3 aircraft alloy. The combination of anodized aluminium oxide (AAO) and cerium 
conversion coatings (CeCC) shows promise as a coating primer. However, the defective 
structures of CeO2 and Al2O3 require additional sealing. This research proposes sealing the 
CeCC/AAO layer by boiling it for 10 minutes in two relatively neutral Lourier buffers, 
adjusted to pH 7.75, and in a mixture of them. The samples underwent a series of analyses 
to compare the impact of the sealing procedure on surface topology, properties (e.g., 
colour and wettability on two samples from each set), and corrosion protective ability. It 
was assessed after 24 hours of exposure to 3.5 % NaCl model corrosive medium on six 
samples from each set. The assessments included electrochemical impedance 
spectroscopy (EIS) and potentiodynamic scanning (PDS) techniques. The results indicate 
that the borate buffer improves the corrosion protection of the coating primers more 
effectively than the phosphate and mixed ones. 
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Introduction 

The use of aluminium alloys as structural materials has significantly increased due to their 

favourable properties, such as high strength-to-weight ratio, ease of fabrication, high workability, 

considerable ductility, excellent thermal conductivity, high corrosion resistance, and attractive 

natural finish [1]. However, despite their exceptional ability to form protective oxide layers, these 

films have amphoteric properties, making them soluble in both alkaline and acidic media. Their 

susceptibility to decomposition in Cl- ions is another major disadvantage of the native oxide layers 

on aluminium [2-16]. Additionally, intermetallic inclusions on the surface interrupt the integrity of 

the oxide layer [17], leading to galvanic corrosion [17-21], which can propagate into other forms of 

localized corrosion [22-28]. These issues necessitate efficient corrosion protection for aluminium-

based products, equipment and constructions. Cerium compounds have been increasingly used as 

environmentally compliant inhibitors [29-43] and advanced protective coating components [44-55]. 

In particular, cerium conversion coatings (CeCC) have recently been recognized as a promising 

option for primer layers in advanced multilayered coating systems [56-65]. The CeCC deposition 

process must include preliminary surface treatment and subsequent CeCC sealing procedures [66-

69]. In this sense, anodization is the most appropriate preliminary treatment as it provides an oxide 

surface suitable for CeCC deposition [70-77]. However, final CeCC layer sealing is essential due to 

the inherent defectiveness of CeO2 structures [78-83]. On the basis of the fundamental concepts 

and recent trends in the formation of advanced multilayered coating systems [60,61,84-86], it can 

be inferred that CeCC layers deposited after anodization and appropriate CeCC coating primer 

sealing will be a primary focus for investigation in the coming years. Figure 1 summarizes the main 

trends in developing advanced multilayered coating systems for effective and reliable corrosion 

protection of aluminium alloys. 
 

 
Figure 1. Trends for elaboration of advanced multilayered coating systems for corrosion protection of 

aluminium alloys [87,88] 

Phosphate sealing is the most desirable approach for CeCC post-treatment, and optimizing its 

conditions has been the primary focus of research by Heller et al. [89,90] and Andreeva et al. [91-93]. 

This method is also proposed for reliable protection of other metals, demonstrating its versatility [94-98].  

Summarizing all aspects related to the development of CeCC layers on preliminary anodized 

AA2024-T3 aircraft alloy, it was concluded that these layers need additional sealing by suitable 
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phosphate/borate solutions. The aim of the present research is to determine the effects of boiling 

CeCC/AAO layers in phosphate, borate, or mixed Lourier buffer solutions with pH 7.75. 

Experimental  

Sample preparation 

Four sets of eight AA2024-T3 samples underwent CeCC/AAO primer layer formation under 

identical conditions. The layer formation procedures included consecutive preliminary surface 

treatments, anodization, and cathodic CeCC film formation. Preliminary treatments were conducted 

in alkaline baths (2 minutes in 50 g dm-3 NaOH at 50 °C) and acidic baths (2 minutes in diluted HNO3 

1:1 v/v at 20 °C). Anodization was performed for 15 minutes in 15 wt.% H2SO4 at 20 °C. The final 

cathodic CeCC deposition was carried out for 5 minutes at 5 mA cm-2 in a pre-activated CeCC 

deposition solution under conditions similar to those described in [70,99-102]. The solution 

composition was 0.025 M CeCl3.7H2O combined with 0.025 M (NH4)2Ce(NO3)54H2O, with 5 ml of 

30 % H2O2 activator added to 250 ml of the solution. Each stage was followed by vigorous washing 

with tap and distilled water without removing the water film prior to CeCC formation. 

For this research, the CeCC/AAO-coated AA2024-T3 alloy specimens were divided into four 

groups: untreated (Ref), boiled for 10 minutes in borate buffer (BB), phosphate buffer (PB), or in a 

mixed buffer (MB), following the buffer solution preparation procedures proposed by Lourier [103], 

which were translated into English in previous work [87]. The surface treatment procedures used in 

the present study are shown in Figure 2.  

 
Figure 2. Sequence of procedures applied for CeCC/AAO coating primed formation and subsequent 

phosphatation in buffer solutions 

The exact chemical compositions of the buffers used in the present study are shown in Table 1. 
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Table 1. Compositions of the used buffer solutions 

Buffer type Buffer code Buffer solution compositions 
Required volume for 
100 ml buffer, cm3 

Borate buffer BB 
First component: Na2B4O710H2O 19.069 g dm-3 solution 52.90  

Second component: HCl  0.100 mol dm-3 solution up to 100 

Phosphate 
buffer 

PB 
First component: Na2HPO42H2O 11.866 g dm-3 solution 92.40 

Second component: KH2PO4 9.072 g dm-3 solution up to 100 

Mixed buffer MB 
First component: phosphate buffer  (freshly prepared) 50.00 

Second component: borate buffer  (freshly prepared) up to 100 

 

The buffer compositions in Table 1 were prepared to maintain a relatively neutral medium 

(pH ≈ 7.75), considering the amphoteric nature of the AAO layer. 

Sample analyses 

The analyses of all 32 investigated specimens were organized to allow a comparative description 

of surface properties (colour and wettability), surface topology, and corrosion protection ability.  

Two samples from each set underwent surface analyses, while the remaining six samples were sub-

jected only to corrosion tests. Surface properties were characterized by data acquisition from four points 

on each sample surface, and results were statistically analysed as described in previous work [104]. 

The respective measurements were performed using an RT 100 Lovibond tintometer and a 

“Theta Lite” sessile drop tester from Biolin Scientific (UK). The tintometer provided colour 

characteristics in accordance with the CIE, L*, a*, b* colour space system, while the sessile drop 

tester measured the contact angle between the sample surfaces and distilled water drops. The 

results were statistically analysed following procedures described in previous works 

[70,99,104,105]. 

The surface topology of each sample couple was observed using optical metallographic 

microscopy (OMM). Optical micrographs were acquired at 100× magnification using a Boeco optical 

microscope equipped with a PK-710G camera from A4Tech, with a resolution of 640×480. 

Scanning electron microscopy (SEM) images were obtained from the same sample couples used 

for surface analyses. Both surface topology and coating thickness were observed at 5000x magnifi-

cation. All SEM images were obtained using a TESCAN SEM/FIB LYRA I XMU in backscattered electron 

mode. 

To perform a comprehensive comparative analysis, the same sample couples were subjected to 

X-ray photoelectron spectroscopy (XPS) analysis. XPS studies were conducted using a VG Escalab II 

system with AlKα radiation at an energy of 1486.6 eV. The chamber pressure was 13.3 MPa. The C1s 

line of adventitious carbon at 284.6 eV was used as an internal standard to calibrate the binding 

energies. The photoelectron spectra were corrected by subtracting a Shirley-type background and 

quantified using the peak area and Scofield’s photo-ionization cross-section. The accuracy of the 

binding energy measurements was ± 0.2 eV. 

Corrosion tests 

These tests were conducted on the remaining six samples from each set after 24 hours of exposure 

to a 3.5 % NaCl solution. Electrochemical methods used included electrochemical impedance spectro-

scopy (EIS) and potentiodynamic scanning (PDS). These methods were performed using an Autolab 30 

(Metrohm) equipped with an FRA-2 module. Samples were exposed to the corrosive medium in three-

electrode cells, with 0.933 cm2 of the sample surface as the working electrode, an Ag/AgCl/3 M KCl 

reference electrode, and a cylindrical platinum mesh counter electrode. 
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EIS data were recorded at 50 data points from 10 kHz to 0.01 Hz, using excitation signals ranging 

from 10 to 25 mV relative to the open circuit potential (OCP). 

PDS curves were acquired within a potential range from -50 to +500 mV relative to the reference 

electrode, with a potential sweep rate of 10 mV s-1. 

Results and discussion 

Among the examined buffer solutions, only the mixed buffer solution (MB) maintained stability, 

as pH measurements taken 24 hours after boiling showed that the MB solution retained its initial 

pH value. In contrast, the borate solution precipitated, whereas the phosphate solution became 

more alkaline, reaching a pH of 8.12. 

Prior to assess the barrier properties, two specimens from each set were subjected to topological 

observations, as mentioned above.  

The observed surfaces did not show significant differences, indicating that boiling in buffer 

solutions does not cause substantial changes in the CeCC/AAO layer morphologies. According to 

models developed by Nelson et al. [106] and Chen et al. [107], the CeO2 phosphating proceeds via 

monolayer formation due to the highly defective nature of CeO2 crystal surfaces, as described by 

various authors [108-112]. Interaction with borate anions will likely also result in the formation of 

rather thin layers. However, all treated specimens appeared paler, possibly due to the formation of 

phosphate and/or borate monolayers. 

Besides the colour characteristics, the wettability of the samples was also measured, and the 

statistically treated data are shown in Table 2.  

Table 2. Statistically treated data regarding the colours and wettability of CeCC/AAO layers subjected to 
additional sealing by borate and phosphate solutions 

Sample set Value type L* a* b*  / ° 

Ref 

Maximal value 85.55 -1.28 58.28 93.74 

Minimal value 83.08 -3.11 54.56 48.13 

Final result 84.52 ± 1.47 -2.08 ± 1.09 55.84 ± 2.26 63.45 ± 26.47 

BB 

Maximal value 86.97 -2.78 62.46 23.27 

Minimal value 84.13 -5.26 57.56 12.20 

Final result 85.79 ± 2.05 -3.84 ± 1.67 59.99 ± 3.09 19.13 ± 6.05 

PB 

Maximal value 86.72 -3.53 60.46 22.31 

Minimal value 84.55 -5.35 56.63 7.380 

Final result 85.40 ± 1.37 -4.62 ± 1.43 58.66 ± 2.12 12.61 ± 9.45 

MB 

Maximal value 87.30 -4.12 59.07 21.07 

Minimal value 84.71 -4.79 54.45 15.04 

Final result 86.01 ± 2.34 -4.53 ± 0.51 57.24 ± 3.13 18.71 ± 4.69 
 

The treatments with phosphate/borate solutions did not result in notable changes in colour 

characteristics. A slight brightening of the colour, from L* ≈ 85 for the references to L* ≈ 86 for the 

samples treated in the mixed solution, was observed. This brightening was accompanied by a minor 

increase in the greenish hue, from a* ≈ -2 to a* ≈ -4.5, and a slight saturation of the yellow tonality, 

from b* ≈ 55 to b* ≈ 60. 

Regarding contact angle, the samples changed from relatively to definitely hydrophilic after 

boiling in the respective buffer solutions. This effect on contact angle values is likely due to hydration 

during the final sealing in the buffer solutions. These initial surface characterizations were followed 

by topological observations of the reference and treated specimen couples using optical 

metallographic microscopy and scanning electron microscopy. The respective OMM and SEM 

images of the investigated samples are shown in Figures 3 and 4. 
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Figure 3. OMM images of reference (Ref) and samples treated in phosphate (PB), borate (BB) and mixed 

(MB) buffer solutions 

The images reveal that specimens treated in borate and phosphate baths appear slightly paler 

than the reference specimens, although no visible alterations in topology are observable. These 

effects can be attributed to the inherent white colour of cerium phosphates [113-115] and borates 

[116,117], as well as the thin borate/phosphate monolayers expected based on described 

mechanisms [106,107]. 

SEM images, despite their higher resolution, confirm the OMM observations. All coatings, 

including the reference ones, appeared cracked. Therefore, the final sealing of the CeCC/AAO 

coating primers is necessary, as proposed in various studies [72,89-93] and supported by this 

research. 

 
Figure 4. SEM images of reference (Ref) and samples treated in phosphate (PB), borate (BB) and mixed (MB) 

buffer solutions 

In summary, the surfaces observed using both microscopy methods did not show significant 

differences. Boiling in the buffer solutions did not result in remarkable changes to the CeCC/AAO 
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layer morphologies. However, all treated specimens appeared paler, likely due to the formation of 

white phosphate and/or borate monolayers. 

The elemental contents calculated from the XPS spectra, acquired from the phosphate/borate 

sealed CeCC/AAO layers, as well as the reference ones, are summarized in Table 3. This approach 

has enabled the definition of the impact of the final sealing procedure on the superficial primer 

coating compositions.  

Table 3. Data for the chemical compositions of the investigated specimens acquired through  
systematic XPS analyses 

Sample 
Content, at.% 

O Al Ce P B Na K 

REF 1 75.0 7.1 17.9 0.0 0.0 0.0 0.0 

 REF 2 74.7 8.0 17.3 0.0 0.0 0.0 0.0 

BB 1 60.0 11.2 2.6 0.0 21.7 4.2 0.0 

BB 2 58.4 14.4 1.0 0.0 22.9 3.4 0.0 

PB 1 61.6 2.0 0.8 16.5 0.0 18.1 1.0 

PB 2 61.4 0.5 1.4 16.4 0.0 19.0 1.3 

MB 1 61.2 1.1 4.3 16.5 6.5 7.9 2.5 

MB 2 61.4 1.2 3.5 16.7 7.9 7.2 2.1 
 

The data in Table 3 reveal that the reference CeCC/AAO layer covers the alloy substrate 

completely because the Al-concentration is nearly 7-8 at.%. The subsequent treatments in 

phosphate (PB) and mixed (MB) buffer resulted in a further decrement of the Al-content, down to 

approximately 2 at.%. In contrast, the borate buffer treatment results in a rise of the Al content up 

to about 11 to 14 at.%. The Al 2p core photoelectron spectra of all the sample sets are shown in 

Figure 5.  

 
 Binding energy, eV Binding energy, eV Binding energy, eV 
Figure 5. Deconvolutions of XPS core photoelectron spectra of Al 2p, O 1s and P 2p. The separate peaks are 
with the following colours: Al2p: Al-metal - gray; CeAlO3 - blue; Al(OH)3 - red:, AlOOH - magenta and green; 
O1s: Ce-Al-O - green; Me-O - orange; PO4

3- and/or BO3
3--groups - pink; OH¯/H2O - purple; P2p: PO4

3- - blue; 
PO3

3- - green; PO3
3- and BO3

3- - yellow; P2O5 - orange 
 

The XPS spectra of the reference CeCC/AAO layers are split in couples of peaks positioned at 74.6 

and 76.1 eV, respectively. The former peak could be attributed to the occurrence of AlPO4 [118], 

whereas the latter is related to the presence of AlO(OH) [119]. This energy level slightly exceeds (by 
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0.9 eV) the characteristic one for AlO(OH), which equals 75.2 eV. This fact can be explained by the 

higher concentration of hydroxyl groups coordinated around the aluminium cation, which predeter-

mines higher bonding energy, which must be overcome for the expulsion of the 2p-electrons from 

the electron shell of the Al-ion. The Al 2p spectrum of the Ref 1 sample has an additional low-

intensity peak positioned at 72.5 eV due to metallic Al traces [116]. 

The Al2p spectra of the phosphate-treated samples are composed of a unique, low-intensity peak 

situated at 75.4 eV, which again is attributed to the presence of the AlO(OH) phase. The respective 

photoelectron peaks of the borate-treated specimens are more intensive and can be split into lower 

and higher energy ones. The former one is positioned at 74.6 eV for BB (Sample 1) and slightly 

shifted to 73.2 eV for BB (Sample 2), respectively. In both cases, the lower energy peak approximates 

the characteristic one for Al2O3, which, according to Latsunskyi et al. [120], should occur at 74.1 eV, 

possibly as a result of the occurrence of Al(OH)3 since its typical value is 75.4 eV [121]. Thus, the 

shifting towards 74.6 eV could be due to AlBO3 traces, whereas the opposite displacement to 

73.2 eV corresponds to the characteristic one for CeAlO3 [122]. 

The higher energy peaks are also slightly shifted to 76.1 eV for BB (Sample 1) and to 74.6 eV for 

BB (Sample 2), corresponding to Al(OH)3 and AlO(OH), respectively. 

Both mixed buffer-treated samples (MB) have only one low-intensity Al 2p peak, positioned at 

75.1 eV, related to the occurrence of the AlO(OH) phase. The Al 2p spectra are particularly 

interesting for the CeCC/AAO layers since they show interruptions of the conversion coating. In 

other words, these spectra are a response of the AAO layer surface under the cracks of the CeCC 

layer. Thus, it could be noticed that the phosphate-containing solutions (i.e., PB and MB) result in 

the occurrence of only the AlO(OH) phase. The samples in these groups possess rather similar 

corrosion protective performance. On the other hand, the borate solution treatment leads to the 

simultaneous occurrence of CeAlO3, Al(OH)3, and AlO(OH). Especially in the case of BB (Sample 2), 

the CeAlO3 phase composes about 1/3 of the registered Al content. 

The O1s photoelectron spectra are rather intensive due to the oxide composition of the entire 

CeCC/AAO conjunction and the presence of hydroxides and crystal hydrate water. All the 

investigated samples, regardless of which group they belong to, have four peaks at 528.5, 529.6, 

530.9 and 532.1 eV. These peaks reveal oxygen included in both Ce-Al-O and Me-O bonds [123], as 

well as (PO4)3-, (BO3)3- [124], and OH¯ moieties [125]. The O1s spectra analysis reveals higher OH¯ 

moieties content in the case of BB treatment. 

The XPS analysis continued with the occurrence of phosphor as a result of the final CeCC/AAO 

layer sealing. The respective P2p core photoelectron spectra of the phosphate and mixed buffer-

treated samples are shown in Figure 5. The photoelectron patterns of the phosphate buffer (PB) 

treated specimens have peaks positioned at 134.0 and 134.9 eV, corresponding to the occurrence 

of (PO4)3- ions [126] and P2O5 [127], respectively. The presence of these phosphorus species is 

evidence for the participation of the phosphate ions in oxidation/reduction processes.  

Couples of peaks are also observable for the mixed buffer-treated (MB) samples. The former 

peak, staying at 133.4 eV, can be attributed to the occurrence of orthophosphate (PO4)3- ions. The 

latter one, situated at 134.4 eV, reveals (PO3)3- moieties as was already commented. Shifting of the 

bonding energies by 0.4 eV towards higher values is probably a result of coordinated borate ligands 

surrounding the metallic ions. 

The Ce3d photoelectron patterns were also analysed. These patterns are composed of two 

distinguishable peaks combined with four satellites, labelled “S” in Figure 6. The first peak is 

positioned at 882.3 eV, corresponding to Ce3d5/2, while the second one is at 900.7 eV, corresponding 
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to Ce3d3/2. The spin-orbital splitting between the peaks, characteristic of CeO2, is 18.4 eV. The 

satellite at 916.7 eV is characteristic of Ce4+ ions, allowing for the calculation of its percentage of the 

total Ce content. The calculations reveal that the entire cerium content consists of Ce(IV) species. 
 

 
 Binding energy, eV Binding energy, eV Binding energy, eV 

Figure 6. Ce3d, Na1s and B1s photoelectron patterns acquired from the respective specimens  

The B1s spectra overlap with the P 2s ones. Therefore, only the B1s spectra of the borate buffer-

treated samples, which lack phosphorus, were analysed. For both samples, the peaks are at a 

bonding energy of 192.6 eV, typical for borate ions.  

The XPS spectra of the investigated coating primers exhibit well-defined repeatability, indicating 

the consistent application of surface treatment procedures. Additionally, the treated coating 

primers exhibit distinct occurrences of (РО3)3-, (РО4)3-, and P2О5 moieties, which are known for their 

low solubility [93,128]. The borate-treated coating primers have elevated aluminium contents, 

suggesting a partially detrimental effect of the borate solution due to the presence of HCl, which is 

necessary for its preparation. However, the (B2O7)2- ions form a barrier layer composed of Al5BO9 

and/or Al18B4O33 phases, as proposed by Luhrs et al. [129]. 

In summary, the presence of CeAlO3, as indicated by the XPS spectra analysis, is the reason for 

the reliable and efficient corrosion protection provided by the proposed coating primers, as 

observed during the corrosion test results, commented below. 

After 24 hours of exposure to a 3.5 % NaCl solution, 6 specimens from each set underwent 

electrochemical measurements. The averaged EIS data are summarized in Figure 7. The Nyquist plots 

reveal that despite its lower stability, BB results in notable sealing. The log|Z| - f curve is positioned 

above all others. At f = 0.01 Hz, the total impedance of the borate buffer-treated samples reaches 

|Z|BB
av = 1.8762 MΩ cm2. This value is almost an entire order of magnitude superior to that of the 

reference samples |Z|Ref
av = 0.4983 MΩ cm2. The log|Z| - f curves of the remaining specimens, treated 

in phosphate buffer and the mixed system, occupy intermediate positions, still above those of the 

reference samples. Consequently, notable sealing occurs as a result of the applied final CeCC layer 

treatment procedures. In brief, the ordering of the log|Z|-f curves at 0.01 Hz in the respective Bode 

plots confirms the inferences drawn from the analysis of the Nyquist plots. The curves of the BB-

treated coatings occupy the highest position. Finally, the curves of the MB-treated coatings are 

below those of the BB and PB-treated ones, owing to their lower barrier ability. 
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The Z”-Z’ arcs of the BB-treated samples are the largest among the investigated sample sets. 

These are followed by the PB-treated ones. The mixed system shows a weaker effect on the barrier 

ability of the CeCC/AAO combined coating primer, as the Z”- Z’-arcs of the MB-treated specimens 

are closer to those of the references compared to the rest of the curves. 

      

 
Figure 7. Nyquist (a) and Bode (b, c) plots acquired after 24 hours of exposure to MCM from CeCC/AAO 

layers subjected to sealing in boiling buffer solutions 

The EIS spectra shown in Figure 7 were further analysed via data fitting to suitable model 

equivalent circuits (MECs), as depicted in Figure 8. Following the concepts outlined in [105], these 

MECs represent the charge transfer across homogeneous media through ohmic resistance 

elements, while the charge transfer across interfaces is represented by either pure capacitance or 

by constant phase elements due to the related charge accumulation phenomena. 

The MECs shown in Figure 8 are composed considering the main concepts of González-Castaño 

et al. [130] and González-Rovira et al. [131]. In both schemes, Clayer is attributed to the intact, noncon-

ductive layer areas. This element is connected in parallel with time constants, resulting from the pene-

tration of the electrolyte (Rlayer) across the layer defects and the electrochemical corrosion reactions 

(Rct) after overcoming the double layer (CPEdl). Hence, Clayer appeared suitable during the EIS data 

fitting, although the phase shift-frequency diagrams did not reach 90°. The reason is that the capa-

citance of the intact areas of the CeCC/AAO layers is connected in parallel to the elements (i.e., Rlayer, 

CPEdl, Rct and CPEdiff) attributed to the defects of the layers, resulting in phase shift values below 90 °. 
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Figure 8. MECs used for data fitting of the spectra of the reference (a) and sealed CeCC/AAO layer (b).  
RMCM - resistance of the model corrosive medium; Rlayer - resistance of the electrolyte penetrated across the 
CeCC/AAO layer defects; Rct - charge transfer resistance; Rdiff - resistance arising from the diffusion of the 

corrosive species across the coating primer defects; Clayer - capacitance originated from the insulating 
properties of the CeCC/AAO layer; CPEdl and CPEdiff - incomplete capacitances of the electric double layer and 

the diffusion processes inside the layer defects 

Indeed, a multitude of cracks is notable in the SEM images of Figure 4. When these defects are 

narrow enough, re-passivation occurs, as outlined in [132,133]. Otherwise, these defects continue as 

crevices. Their occurrence results in the appearance of CPEdl and Rdiff time constants. They 

demonstrate stagnant corrosion, hindered by capillary diffusion across the corrosion products with 

“Keggin”-type (Al13O4(OH)24(H2O)12)7+ and (AlO4Al12(OH)24(H2O)12)7+ aluminum polyhydroxychloride 

structures, like established in [134,135]. The fitting of the EIS spectra in Figure 7 was performed using 

the MEC illustrated in Figure 8. All the acquired data are summarized in Table 4. 

Table 4. Results of the data fitting of the MEC in Figure 8 to EIS spectra shown in Figure 7 

 

The data in the table indicate that the reference samples did not require the addition of diffusion 

elements (CPEdiff and Rdiff) to fit their spectra, unlike the additionally treated ones. This fact suggests 

that the CeCC/AAO layer maintained its integrity after 24 hours of exposure. However, all the buffer-

treated specimens required the addition of diffusion elements, indicating corrosion occurrence 

combined with diffusion limitations.  

Consequently, boiling resulted in coating cracking due to thermal tensions caused by the 

relatively high temperature. Nevertheless, the Rdiff element exhibited rather high values, falling 

within the range of Rct of the reference samples. Moreover, in the case of borate buffer (BB) treated 

samples, the sum of Rct and Rdiff was two orders of magnitude higher than the Rct value for the 

reference specimens. This fact accounts for the superior barrier ability of these samples, as 

mentioned earlier. The Rct and Rdiff values in the cases of PB and MB are inferior to those of the 

borate-treated samples, further emphasizing the superior barrier ability of the BB-treated ones. 

This inference is supported by the highest Rct and Rlayer values obtained from the borate buffer-

treated samples compared to those of the other specimen sets. Additionally, the highest corrosion 

MEC component (24 h) 
Sample sets 

Ref samples BB samples PB samples MB samples 

RMCM / Ω cm2 225.4 ± 24.5 206.6 ± 20.8 194.0 ± 18.8 163.5 ± 28.1 

Clayer / nF cm-2 51.3 ± 4.5 8.5 ± 0.2 10.5 ± 0.3 13.0 ± 0.5 

Rlayer / kΩ cm2 2.2 ± 0.2 7.1 ± 0.6 2.2 ± 0.3 2.2 ± 0.1 

CPEedl / 10-7 sn Ω-1 cm-2 36.5 ± 1.8 5.7 ± 0.4 10.1 ± 2.3 17.9 ± 0.6 

n  0.66 ± 0.01 0.59 ± 0.01 0.53 ± 0.01 0.57 ± 0.01 

Rct / kΩ cm2
 988.0 ± 18.6 133.2 ± 4.5 81.6 ± 1.3 85.5 ± 3.0 

CPEdiff / 10-7 sn Ω-1 cm-2
 - 14.9 ± 0.5 16.7 ± 1.27 16.5 ± 0.7 

n - 0.89 ± 0.01 0.91 ± 0.01 0.99 ± 0.01 

Rdiff / MΩ cm2
 - 65.1 ± 3.1 8.4 ± 0.4 3.4 ± 0.2 
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protection of the borate buffer-treated samples is evident from the EIS spectra shapes in Figure 7, 

as indicated by the highest position of the log|Z|-f curve at 0.01 Hz in the Nyquist plot (Figure 7a), 

corresponding to 4.198 MΩ cm2, and the largest arc of these specimens in the respective Bode plots 

(Figure 7b and c). 

Following every EIS spectrum recording, potentiodynamic curve acquisition was performed. The 

averaged PDS curves are summarized in Figure 9. The PDS curves of the sealed specimens are positi-

oned below the reference ones, indicating lower current densities. Consequently, the respective seal-

ings should have a beneficial effect on the barrier properties of the treated CeCC/AAO layers. Further-

more, the PDS curve with the lowest current densities is registered for the BB-treated specimens. 

All the curves shown in Figure 9 exhibit passivation regions combined with local corrosion 

features. In the cases of buffer solution treatments, these regions possess weak slopes, suggesting 

incomplete passivation. The occurrence of local corrosion is noticeable by the sharp bending of the 

anodic branches, indicating pitting corrosion. However, the difference among the sample types is 

evident from the curve positions. The curves of reference samples are positioned at the highest 

current densities and the most negative potential values, whereas the BB ones are situated at the 

lowest current densities and the noblest potentials. The final treatments in phosphate and mixed 

solutions result in intermediate positions of the PDS curves, relatively closer to the curves of the 

reference samples. 

 
Figure 9. PDS curves obtained from the reference and sealed CeCC/AAO layers 

In summary, an ambiguous effect is to be expected from the final sealing procedure. On one hand, 

the buffer solutions should result in the formation of thin sealing layers, leading to an increment of 

the resistance values. On the other hand, boiling should cause CeCC/AAO layer cracking. In the present 

case, the borate buffer (BB) reveals the most notable beneficial effect compared to the rest (PB and 

MB). The borate and phosphate buffers (MB) mixture reveals the weakest impact on the coating 

primer performance. The inferior behaviour of the phosphate-treated samples compared to the 

borate-treated ones can be explained by considering the observed alkalization (mentioned at the 

beginning of the “Results and Discussion” section) of its solution, which affects the amphoteric AAO 

layer under the cracks of the CeCC film, as noticeable in the SEM images (Figure 4). 

The curves shown in Figure 9 were further subjected to Tafel slope analysis and the results are 

shown in Table 5. 
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Table 5. Results of the Tafel slope analysis of the PDS curves acquired after 24 hours of exposure to 3.5 % NaCl 
model corrosive medium 

Sample type  OCP, mV Ecorr / mV icorr / nA cm-2 Rp / MΩ cm2
 Epit / mV ipit / nA cm-2 

Ref -767 ± 13 -761 ± 15 (2.1 ± 0.1) 103
 0.17 ± 0.02 -488 ± 19 (8.4 ± 0.7) 103 

BB -479 ± 17 -475 ± 16 2.75 ± 0.16 1.63 ± 0.28 -114 ± 10 71.12 ± 6.72 

PB -687 ± 12 -676 ± 18 7.41 ± 0.18 1.41 ± 0.27 -466 ± 18 74.01 ± 2.04 

MB -611 ± 18 -615 ± 16 3.74 ± 0.15 1.40 ± 0.22 -473 ± 27 52.83 ± 6.94 
 

The results in Table 5 confirm the inferences drawn from the analysis of Figure 9, substantiating 

them with numerical values of the electrochemical measures. Notably, a significant difference is 

observed among the values of the open circuit potential (OCP) and the corrosion potential (Ecorr), as 

a result of the final treatments of the CeCC/AAO layers. The data in the table show a rather large 

range of nearly 300 mV between the reference samples (Ref) and the borate solution-treated (BB) 

ones. The former tends to about -770 mV, whereas the latter approaches -480 mV. The intermediate 

OCP and Ecorr values are possessed by the PB and MB buffer solution-treated specimens, with about 

-670 and -620 mV, respectively. 

Further analysis of the data in Table 5 reveals that the most negative Ecorr values of the reference 

samples are associated with three orders of magnitude higher corrosion current density (icorr). 

Consequently, the final CeCC/AAO layers treatment results in an obvious enhancement of the 

barrier ability of the CeCC/AAO layers, suppressing the icorr down to about 5 nA cm-2. Once again, 

the lowest corrosion current density belongs to the BB-treated specimens. A similar difference is 

also noticeable in the polarization resistance (Rp) values. Hence, the Rp of the additionally treated 

specimens is more than an order of magnitude higher than those of the references. Besides, the BB-

treated CeCC/AAO layers possess the highest Rp values. 

Additional analysis was performed on the anodic branches of the PDS curves, providing 

supplemental data regarding the pitting corrosion parameters, namely pitting potential (Epit) and 

current density (ipit). The former measure provides the determination of the strength against pitting 

nucleation (SAPN = Ecorr - Epit [105]), whereas the latter enables the calculation of the pitting 

nucleation resistance (Rpit). The SAPN values for the references and the borate buffer-treated ones 

are approximately SAPNRef ≈ 273 mV and SAPNBB ≈ 361 mV, respectively. Since a higher SAPN value 

indicates a larger passivation region, the BB-treated samples also excel in the reference ones in this 

parameter. The SAPN of the PB and MB samples exhibit even lower values. 

The ratio between ipit and Epit allows the estimation of the Rpit values for the respective sample sets. 

Thus, the BB specimens have Rpit
BB ≈ 1.603 MΩ cm2, whereas Rpit

Ref ≈ 0.581 MΩ cm2. The rest of the 

treated sample sets have shown Rpit
PB ≈ 6.296 MΩ cm2 and Rpit

MB ≈ 8.953 MΩ cm2, respectively. These 

values are slightly higher than those of the borate buffer-treated specimens. Nevertheless, the final 

treatment in all cases results in rather higher Rpit values compared to those of the references. 

In summary, comparing the results of both electroanalytical methods (Tables 4 and 5) enables the 

ordering of the effects of each buffer on the barrier properties of the CeCC/AAO layers. Thus, in 

accordance with both electroanalytical methods, the highest protective ability belongs to the BB set, 

followed by PB and finally MB. The same ordering from the best to the worst barrier properties can 

be seen in Figures 7 and 9, summarized as BB > PB > MB > Ref. The analyses above reveal that this 

order is confirmed by both electrochemical methods employed. Consequently, in simple words, the 

treatment by borate buffer possesses a better sealing effect on the CeCC/AAO layer than that by phos-

phate solution and no synergistic effect between these solutions appeared, although the expectations.  
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Conclusions  

This study is focused on the sealing of CeCC/AAO layers using Lourier buffers with relatively 

neutral pH. It presents the results of systematic research conducted on four sample sets, each 

comprising eight CeCC/AAO combined coating primers deposited on AA2024-T3 alloy. Three sets 

underwent additional sealing in borate (BB), phosphate (PB), and mixed (MB) buffers. Two samples 

from each set underwent comparative analyses of their properties, including colour and wettability, 

as well as topological analyses using optical and electron microscopy methods and detailed chemical 

composition determination via X-ray photoelectron spectroscopy (XPS). 

The remaining six samples from each set were subjected to electrochemical tests using 

electrochemical impedance spectroscopy (EIS) and potentiodynamic scanning (PDS) after 24 hours 

of exposure to 3.5 % NaCl model corrosive medium. 

The results indicate that the applied sealing procedures do not affect the topology of the 

CeCC/AAO layer but alter the surface chemical composition and resulting surface properties. While 

the micrographs show identical topologies, the sealed specimens exhibit increased hydrophilicity 

and paler coloration. These alterations in surface properties are attributed to changes in chemical 

composition detected by XPS analysis, which reveals the presence of (РО4)3-, (ВО3)3-, (B2O7)2- and 

ОН¯ moieties, likely forming thin monolayers based on literature analysis. 

Corrosion tests demonstrate that among the tested buffer solutions, the borate solutions have a 

superior effect despite their Cl- ion content. The beneficial effect of the phosphate solutions was 

comparatively weaker. Additionally, mixing borate and phosphate buffers did not result in 

synergistic effects as initially expected. 

Sealing with phosphate and/or borate buffers enables the formation of sealing layers, but it is 

important to perform these procedures at lower temperatures. Otherwise, the solutions may 

change their composition due to precipitation, resulting in pH alterations that affect the amphoteric 

AAO layer beneath the cracks of the CeCC film. 
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