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Abstract. Let Pn be an n-th Padovan number, En an n-th Perrin number, and Nn an
n-th Narayana number. In this paper, we solve the Diophantine equations

Pn = (2a − 1)(2b − 1),

En = (2a − 1)(2b − 1),

and
Nn = (2a ± 1)(2b ± 1),

in positive integers n, a and b. Therefore, we determine the Padovan or Perrin numbers
that are products of two Mersenne numbers and the Narayana numbers that are products
of two Mersenne or Fermat numbers.
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1. Introduction

Let (Un) and (Vn) be two linear recurrent sequences. The problem of finding the
common terms of (Un) and (Vn) was treated in [10], [12], [15], [16], [19]. Their
authors proved, under some assumption, that the Diophantine equation

Un = Vm

has only finitely many integer solutions (m,n).
The Padovan sequence (Pn)n≥0 is defined by

Pn+3 = Pn+1 + Pn,

for n ≥ 0, where P0 = P1 = P2 = 1. This is the sequence A000931 in the OEIS [20].
A few terms of this sequence are

1, 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, 37, 49, 65, 86, 114, 151, 200, 265, 351, 465, 616, . . .
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Let (En)n≥0 be the Perrin sequence given by

En+3 = En+1 + En,

for n ≥ 0, where E0 = 3, E1 = 0 and E2 = 2. It is the OEIS [20] A001608 sequence.
Its first few terms are

3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, . . .

Narayana’s cows sequence (Nn)n≥0 originated from a herd of cows and calves prob-
lem, proposed by the Indian mathematician Narayana in his book Ganita Kaumudi
[1]. It is the sequence A000930 in the OEIS [20] satisfying the recurrence relation

Nn+3 = Nn+2 +Nn, (1)

for n ≥ 0, with initial terms N0 = 0 and N1 = N2 = 1. The first few terms of
(Nn)n≥0 are

0, 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, . . . .

For n ≥ 0, the nth Fermat number, denoted by Fn, is a number of the form

Fn = 22
n

+ 1.

The first elements of its list are

3, 5, 17, 257, 65537, 4294967297, 18446744073709551617,

340282366920938463463374607431768211457, . . . .

This sequence is indexed as A000125 in the OEIS [20]. It is known that every odd
prime number of the form 2k + 1 is a Fermat number and such primes are called
Fermat primes. It is conjectured that just the first five numbers in this sequence are
primes. More details and properties of the Fermat numbers may be found in [11].
For n ≥ 0, the nth Mersenne number, denoted by Mn, is a number of the form

Mn = 2n − 1.

The first elements of its list are

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, . . .

These numbers are named after Mersenne, who studied them, though the term
usually refers to numbers of the form 2p − 1, where p is a prime.

It is known that if Mn is a prime, then n is also a prime. It is conjectured that
there are infinitely many Mersenne primes, (see [11]).

In this paper, we are interested in solving equations involving Padovan, Perrin,
Narayana, Fermat, and Mersenne numbers. The case of Padovan and Perrin num-
bers, which are products of two Fermat numbers, has been treated in [2]. Mainly,
we will prove the following theorems.
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Theorem 1. All the solutions of the Diophantine equation

Pn = (2a − 1)(2b − 1), (2)

in nonnegative integers n, a and b, with 1 ≤ a ≤ b, are given by

P0 = P1 = P2 = (21 − 1)(21 − 1) = 1, P5 = (21 − 1)(22 − 1) = 3,

P8 = (21−1)(23−1) = 7, P9 = (22−1)(22−1) = 9, P12 = (22−1)(23−1) = 21,

P15 = (23 − 1)(23 − 1) = 49 and P23 = (24 − 1)(25 − 1) = 465.

Theorem 2. All the solutions of the Diophantine equation

En = (2a − 1)(2b − 1), (3)

in nonnegative integers n, a and b, with 0 ≤ a ≤ b, are given by

E0 = E3 = (21 − 1)(22 − 1) = 3, E1 = 0 and E7 = (21 − 1)(23 − 1) = 7.

Theorem 3. All the solutions of the Diophantine equations

Nn = (2a ± 1)(2b ± 1), (4)

in nonnegative integers n, a and b, with 1 ≤ a ≤ b, are given by

N1 = N2 = N3 = (21−1)(21−1) = 1, N5 = (21−1)(22−1) = (21−1)(21+1) = 3,

N8 = (21 + 1)(21 + 1) = (21 + 1)(22 − 1) = (21 − 1)(23 + 1) = (22 − 1)(22 − 1) = 9,

N15 = (21 − 1)(27 + 1) = 129

and
N16 = (21 + 1)(26 − 1) = (22 − 1)(26 − 1) = 189.

By theorems 1 and 2 one can easily deduce the following consequence.

Corollary 1. The only Padovan and Perrin numbers which are Mersenne numbers
are P0 = P1 = P2 = 1, P5 = 3, P8 = 7 and E0 = E3 = 3, E1 = 0, E7 = 7.

By Theorem 3 we deduce the following consequences.

Corollary 2. The only product of two Fermat numbers in Narayana’s cows sequence
is N8 = 9, and the only product of two Mersenne numbers in Narayana’s cows
sequence are N0 = 0, N1 = N2 = N3 = 1, N5 = 3, N8 = 9, N16 = 189.

Corollary 3. The only Mersenne numbers in Narayana’s cows sequence are

N0 = 0, N1 = N2 = N3 = 1, N5 = 3.

Notice that the case N0 = 0 gives infinitely many solutions.
Our proofs of theorems 1, 2 and 3 are mainly based on linear forms in logarithms

of algebraic numbers and a reduction algorithm originally introduced by Baker and
Davenport in [3]. Here, we use a modified version of the result due to Dujella-
Pethő [7].
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2. Useful properties of these sequences

2.1. Properties of Padovan and Perrin sequences

In this subsection, we recall some facts and properties of the Padovan and the Perrin
sequences which will be used later. Their characteristic equation

x3 − x− 1 = 0

has roots α, β, γ = β, where

α =
r1 + r2

6
, β =

−r1 − r2 + i
√
3(r1 − r2)

12

and

r1 =
3

√
108 + 12

√
69 and r2 =

3

√
108− 12

√
69.

Let

cα =
(1− β)(1− γ)

(α− β)(α− γ)
=

1 + α

−α2 + 3α+ 1
,

cβ =
(1− α)(1− γ)

(β − α)(β − γ)
=

1 + β

−β2 + 3β + 1
,

cγ =
(1− α)(1− β)

(γ − α)(γ − β)
=

1 + γ

−γ2 + 3γ + 1
= cβ .

Binet’s formula of Pn is

Pn = cαα
n + cββ

n + cγγ
n, for all n ≥ 0, (5)

and that of En is

En = αn + βn + γn, for all n ≥ 0. (6)

Numerically, we have

1.32 < α < 1.33,
0.86 < |β| = |γ| < 0.87,
0.72 < cα < 0.73,
0.24 < |cβ | = |cγ | < 0.25.

It is easy to check that

|β| = |γ| = α−1/2.

Furthermore, using induction, one can prove the following inequalities:

αn−2 ≤ Pn ≤ αn−1, for all n ≥ 4, (7)

and

αn−2 ≤ En ≤ αn+1, for all n ≥ 2. (8)
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2.2. Properties of the Narayana sequence

The characteristic equation of sequence (1) is x3 − x2 − 1 = 0, which has roots ρ, δ,
λ = δ, where

ρ =
3
√
116 + 12

√
93

6
+

2

3
3
√

116 + 12
√
93

+
1

3

and

δ =−
3
√
116 + 12

√
93

12
− 1

3
3
√
116 + 12

√
93

+
1

3

+ i

√
3

2

(
3
√
116 + 12

√
93

6
− 2

3
3
√

116 + 12
√
93

)
.

Narayana’s cows sequence has Binet’s formula

Nn = Cρρ
n + Cδδ

n + Cλλ
n, for all n ≥ 0, (9)

where

Cρ =
ρ

(ρ− δ)(ρ− λ)
, Cδ =

δ

(δ − ρ)(δ − λ)
, Cλ =

λ

(λ− ρ)(λ− δ)
.

Formula (9) can also be written in the form

Nn = cρρ
n+2 + cδδ

n+2 + cλλ
n+2, for all n ≥ 0, (10)

where

cρ =
1

ρ3 + 2
, cδ =

1

δ3 + 2
, cλ =

1

λ3 + 2
.

The coefficient cρ has the minimal polynomial 31x3 − 31x2 +10x− 1 over Z and all
the zeros of this polynomial lie strictly inside the unit circle.

Numerically, we have

1.46 < ρ < 1.47,
0.82 < |δ| = |λ| < 0.83,
0.19 < cρ < 0.2,
0.40 < |cδ| = |cλ| < 0.41.

Using the facts from the introduction, one can prove that the nth Narayana number
satisfies the following inequalities:

ρn−2 ≤ Nn ≤ ρn−1, (11)

for all n ≥ 1, (see [4]).
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3. The proof of Theorem 1

We take equation (2) with non-negative integers (n, a, b), where 1 ≤ a ≤ b, and
assume that n ≥ 4.

Using inequality (7) and equation (2), we obtain

αn−2 ≤ Pn = (2a − 1)(2b − 1) < 2a+b

and

2a+b−2 = (2a−1)(2b−1) ≤ (2a − 1)(2b − 1) = Pn ≤ αn−1.

Hence, we get

(a+ b− 2)
log 2

logα
+ 1 ≤ n < (a+ b)

log 2

logα
+ 2.

Thus, using 2.43 <
log 2

logα
< 2.5, we deduce that

2.43(a+ b)− 3.86 < n < 2.5(a+ b) + 2. (12)

From Binet’s formula (5), we rewrite equation (2) and obtain∣∣cααn − 2a+b
∣∣ ≤ 2a + 2b + 1 + 2|cβ | · |β|n < 2a + 2b + 2,

for n ≥ 4. Dividing through by 2a+b, we get

|Γ1| <
1

2b
+

1

2a
+

2

2a+b
<

4

2a
, (13)

where

Γ1 := cαα
n2−(a+b) − 1.

Before determining a lower bound of Γ1, let us recall a useful result related to Baker’s
method.

Let α be an algebraic number of degree d, let a > 0 be the leading coefficient of
its minimal polynomial over Z and let α = α(1), . . . , α(d) denote its conjugates. We
denote by

h(α) =
1

d

(
log a+

d∑
i=1

log
(
max{|α(i)|, 1}

))
the logarithmic height of α. This height has the following properties. For α, β
algebraic numbers, we have

h(αβ) ≤ h(α) + h(β),

h(α± β) ≤ log 2 + h(α) + h(β).

Moreover, for any algebraic number α ̸= 0 and for any n ∈ Z,

h(αn) ≤ |n|h(α).
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Now, let K be an algebraic number field of degree dK. Let η1, . . . , ηl ∈ K and
d1, . . . , dl be nonzero integers. Let D ≥ max{|d1|, . . . , |dl|} and

Γ =

l∏
i=1

ηdi
i − 1.

Let A1, . . . , Al be real numbers such that

Aj ≥ h′(ηj) := max{dKh(ηj), | log ηj |, 0.16}, for j = 1, . . . , l.

The first tool that we need is the following result due to Matveev [14]. But, we will
use the version of Bugeaud, Mignotte and Siksek [[6], Theorem 9.4].

Theorem 4. If Γ ̸= 0, then

log |Γ| > −1.4 · 30l+3 · l4.5 · d2K(1 + log dK)(1 + logD)A1 . . . Al.

Now, one can observe that Γ1 ̸= 0. To see this, we consider the Q-automorphism
σ of the Galois extension Q(α, β) over Q given by σ(α) := β and σ(β) := α. Thus,
we have

1 < 2a+b = |σ(cααn)| = |cβ ||β|n < |cβ | < 0.25,

which is a contradiction. Hence Γ1 ̸= 0 and we can apply Theorem 4 to it. To do
this, we consider

η1 := cα, η2 := α, η3 := 2, d1 := 1, d2 := n, d3 := −(a+ b).

The algebraic numbers η1, η2, η3 are elements of the field K = Q(α) and dK = 3. We
have that h(η2) = logα/3 and h(η3) = log 2. Thus, we can take

max{3h(η2), | log η2|, 0.16} < 0.3 := A2

and

max{3h(η3), | log η3|, 0.16} < 2.08 := A3.

On the other hand, the minimal polynomial of cα is

23x3 − 23x2 + 6x− 1

and has roots cα, cβ and cγ . Since cα < 1 and |cβ | = |cγ | < 1, then we get

h(η1) =
log 23

3
.

So, we can take

max{3h(η1), | log η1|, 0.16} < 3.14 := A1.

Finally, inequality (12) implies that we can choose D := n+3.86 ≥ max{1, n, a+ b}.
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From Theorem 4, we obtain

log |Γ1| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log(n+ 3.86)) · 3.14 · 0.3 · 2.08
> −5.30 · 1012 · (1 + log(n+ 3.86)).

By the fact 1 + log(n+ 3.86) < 2.3 log n, which holds for all n ≥ 4, we obtain

log |Γ1| > −1.22 · 1013 log n,

which, combined with (13), gives

a log 2 < 1.23 · 1013 log n. (14)

We rewrite equation (2) as
Pn

2a − 1
+ 1 = 2b,

and consequently∣∣∣∣ cααn

2a − 1
− 2b

∣∣∣∣ = ∣∣∣∣−1− cββ
n + cγγ

n

2a − 1

∣∣∣∣ ≤ 1 +
2|cβ | · |β|
2a − 1

< 1.5,

for a ≥ 1. Dividing through by 2b, we obtain

|Γ2| <
1.5

2b
, (15)

where
Γ2 :=

cα
2a − 1

αn2−b − 1.

Note that with a similar argument as above, it can be proved that Γ2 ̸= 0. So, we
can apply Theorem 4 to it. We consider

η1 :=
cα

2a − 1
, η2 := α, η3 := 2, d1 := 1, d2 := n, d3 := −b.

Thus, D := n+ 3.86. The heights of η2 and η3 have already been calculated. From
the properties of the heights we get that

h(η1) ≤ h(cα) + h(2a − 1) ≤ 1.74 + a log 2 + log 2 < 1.24 · 1013 log n,

where we have used inequality (14). We choose

max{3h(η1), | log η1|, 0.16} < 3.72 · 1013 log n := A1,

A2 and A3 as above. Therefore, from Theorem 4 we obtain

log |Γ2| > −1.4·306 ·34.5 ·32(1 + log 3)(1 + log(n+ 3.86))·3.72·1013 log n·0.3·2.08,

i.e.,

log |Γ2| > −1.45 · 1026 · (log n)2, (16)
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where we used as above the inequality 1 + log(n + 3.86) < 2.3 log n, for all n ≥ 4.
Using inequalities (16) and (15), we obtain

b <
1.46 · 1026 · (log n)2

log 2
< 2.11 · 1026 · (log n)2,

which, combined with inequalities (12) and (14), gives

n

(log n)2
< 5.3 · 1026.

To solve the above inequality, we will recall the following result of Guzmán and Luca
[9], which will be very useful.

Lemma 1. If m ≥ 1, T > (4m2)m and T > x/(log x)m, then

x < 2mT (log T )m.

Therefore, taking m := 2 and T := 5.3 · 1026 in Lemma 1, we get

n < 8.03 · 1030. (17)

The above bound for n is very high. So, we will reduce it. To do this, we need to
recall a variant of the reduction method of Baker and Davenport [3] due to Dujella
and Pethö [7]. We use the one given by Bravo, Gómez, and Luca [5].

Lemma 2. Let M be a positive integer, let p/q be a convergent of the continued
fraction of the irrational τ such that q > 6M , and let A, B, µ be some real numbers
with A > 0 and B > 1. Let further ε = ||µq|| − M · ||τq||, where || · || denotes the
distance from the nearest integer. If ε > 0, then there is no solution of the inequality

0 < |mτ − n+ µ| < AB−k,

in positive integers m, n and k with

m ≤ M and k ≥ log(Aq/ε)

logB
.

We first consider

Λ1 := (a+ b) log 2− n logα+ log

(
1

cα

)
,

and go to inequality (13). Note that e−Λ1 − 1 = Γ1 ̸= 0. Thus, Λ1 ̸= 0. If Λ1 < 0,
then

0 < |Λ1| < e|Λ1| − 1 = |Γ1| <
4

2a
.

If Λ1 > 0, we have 1− e−Λ1 =
∣∣e−Λ1 − 1

∣∣ < 1/2. Hence, eΛ1 < 2. Thus, we get

0 < Λ1 < eΛ1 − 1 = eΛ1 |Γ1| <
8

2a
.
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So, in both cases we have

0 < |Λ1| <
8

2a
.

Dividing through by logα we get

|mτ − n+ µ| < 29

2a
,

where

m := a+ b, τ :=
log 2

logα
and µ :=

log
(

1
cα

)
logα

.

We apply Lemma 2. PutM := 8.03·1030, A := 29 and B := 2. Sincem = a+b < n,
from (17) we have thatM is the upper bound onm. A quick computation with Maple
reveals that the convergent

p73
q73

=
282395017118878325061463089070767

114563487859252086811297203459350

of τ is such that q73 > 6M and ε ≥ 0.25250824 > 0. Therefore, we get

a <
1

log 2
log

(
29 · 114563487859252086811297203459350

ε

)
≤ 114.

Next, we consider 1 ≤ a ≤ 113 and

Λ2 := b log 2− n logα+ log

(
2a − 1

cα

)
,

and go to inequality (15). Note that e−Λ2 − 1 = Γ2 ̸= 0. Thus, Λ2 ̸= 0. With an
argument similar to the above one, we get

0 < |Λ2| <
3

2b
.

Dividing through by logα we get

|mτ − n+ µa| <
11

2b
,

where

m := b, τ :=
log 2

logα
and µa :=

log
(

2a−1
cα

)
logα

(1 ≤ a ≤ 113).

We apply Lemma 2. Put M := 8.03 · 1030, A := 11 and B := 2. Since m = b < n,
from (17) we have that M is the upper bound on m. A quick computation with
Maple proves that the convergent

p76
q76

=
2592237732498067229906504496359523

1051632564289621179667018535723768
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of τ is such that q78 > 6M and εa ≥ 0.0004236 > 0, for all 1 ≤ a ≤ 113. Therefore,

we get that the maximum value of log(Aq/ε)
logB over all 1 ≤ a ≤ 113 is 124.360687 . . .

which, according to Lemma 2, is an upper bound of b.
Hence, we deduce that the possible solutions (n, a, b) of equation (2) satisfy

1 ≤ a ≤ b ≤ 124. Therefore, we use inequality (12) to obtain n ≤ 621.

Finally, we used Maple to compare Pn and (2a − 1)(̇2b − 1), for 0 ≤ n ≤ 621 and
1 ≤ a ≤ b ≤ 124. We checked that all the solutions of equation (2) in nonnegative
integers n, a and b, with 1 ≤ a ≤ b, are given by

P0 = P1 = P2 = (21 − 1)(21 − 1) = 1, P5 = (21 − 1)(22 − 1) = 3,

P8 = (21−1)(23−1) = 7, P9 = (22−1)(22−1) = 9, P12 = (22−1)(23−1) = 21,

P15 = (23 − 1)(23 − 1) = 49 and P23 = (24 − 1)(25 − 1) = 465.

This completes the proof of Theorem 1.

4. Proof of Theorem 2

We start the study of equation (3) in non-negative integers (n, a, b), where 1 ≤ a ≤ b,
and we may assume that n ≥ 4. The proof of Theorem 2 is similar to that of
Theorem 1. But for the sake of completeness, we will give most of the details.

Using inequality (8) and equation (3), we obtain

αn−2 ≤ En = (2a − 1)(2b − 1) < 2a+b,

and

2a+b−2 ≤ (2a − 1)(2b − 1) = En ≤ αn+1.

Hence, we get

(a+ b− 2)
log 2

logα
− 1 < n < (a+ b)

log 2

logα
+ 2.

Thus, using 2.43 <
log 2

logα
< 2.5, we deduce that

2.43(a+ b)− 5.86 < n < 2.5(a+ b) + 2. (18)

From Binet’s formula (6), we rewrite equation (3) and obtain∣∣αn − 2a+b
∣∣ ≤ 2a + 2b + 1 + 2|β|n < 2a + 2b + 3.

Dividing through by 2a+b, we get

|Γ3| <
1

2b
+

1

2a
+

3

2a+b
<

5

2a
, (19)

where

Γ3 := αn2−(a+b) − 1.
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Observe that Γ3 ̸= 0. To see this, we consider the Q-automorphism σ of the Galois
extension Q(α, β) over Q given by σ(α) := β and σ(β) := α. Thus, we obtain

1 < 2a+b = |σ(αn)| = |β|n < 0.87,

which is a contradiction. Hence Γ3 ̸= 0 and we can apply Theorem 4 to it. To do
this, we consider

η1 := α, η2 := 2, d1 := n, d2 := −(a+ b).

As previously, we have

A1 := 0.3, A2 := 2.08.

Furthermore, inequality (18) implies that we can choose D := n+5.86 ≥ max{n, a+
b}. Using Theorem 4, we obtain

log |Γ3| > −1.4 · 302+3 · 24.5 · 32(1 + log 3)(1 + log(n+ 5.86)) · 0.3 · 2.08
> −9.08 · 109 · (1 + log(n+ 5.86)).

As 1 + log(n+ 5.86) < 2.4 log n, for all n ≥ 4, one can see that

log |Γ3| > −2.18 · 1010 log n.

Combining this with (19), gives

a log 2 < 2.19 · 1010 log n. (20)

We go back to equation (3) and rewrite it as

En

2a − 1
+ 1 = 2b.

Consequently, we obtain∣∣∣∣ αn

2a − 1
− 2b

∣∣∣∣ = ∣∣∣∣−1− βn + γn

2a − 1

∣∣∣∣ ≤ 1 +
2 |β|
2a − 1

< 2.74,

for a ≥ 1. Dividing through by 2b, we obtain

|Γ4| <
2.74

2b
, (21)

where

Γ4 :=
1

2a − 1
αn2−b − 1.

Note that with a similar argument as above, it can be proved that Γ4 ̸= 0. So, we
can apply Theorem 4 to it. To do this, we consider

η1 :=
1

2a − 1
, η2 := α, η3 := 2, d1 := 1, d2 := n, d3 := −b.
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Again here, one can easily see that

A2 := 0.3, A3 := 2.08, D := n+ 5.86.

Using the properties of the heights, we get

h(η1) = h(2a − 1) ≤ 0.7 + a log 2 < 2.2 · 1010 log n,

where we have used inequality (20). We choose

max{3h(η1), | log η1|, 0.16} < 6.6 · 1010 log n := A1.

Therefore, from Theorem 4, we obtain

log |Γ4| > −1.4·303+3 ·34.5 ·32(1 + log 3)(1 + log(n+ 5.86))·6.6·1010 log n·0.3·2.08,

i.e.,

log |Γ4| > −2.69 · 1023 · (log n)2, (22)

knowing that 1+ log(n+5.86) < 2.4 log n, for all n ≥ 4. Using inequalities (22) and
(21), one can see that

b <
2.7 · 1023 · (log n)2

log 2
< 3.9 · 1023 · (log n)2.

Combining this with inequalities (18) and (20), gives

n

(log n)2
< 9.76 · 1023.

Taking m := 2 and T := 9.76 · 1023 in Lemma 1, we get

n < 1.2 · 1028. (23)

Now, we will reduce the above bound on n. To do this, we first consider

Λ3 := (a+ b) log 2− n logα,

and go back to inequality (19). Note that e−Λ3 − 1 = Γ3 ̸= 0. Thus, Λ3 ̸= 0. If
Λ3 < 0, then

0 < |Λ3| < e|Λ3| − 1 = |Γ3| <
5

2a
.

If Λ3 > 0, then we have 1− e−Λ3 =
∣∣e−Λ3 − 1

∣∣ < 1/2. Hence, eΛ3 < 2. Thus, we get

0 < Λ3 < eΛ3 − 1 = eΛ3 |Γ3| <
10

2a
.

So, in both cases we have

0 < |Λ3| <
10

2a
.
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Dividing through by log 2, we get∣∣∣∣n logαlog 2
− (a+ b)

∣∣∣∣ < 15

2a
. (24)

To obtain a lower bound for n, unfortunately, we cannot apply Lemma 2 when µ
is a linear combination of 1 and τ since then ε < 0. In this case, we use the following
property of continued fractions (see Theorem 8.2.4 and the top of page 263 in [17]).

Lemma 3. Let pi/qi be the convergents of the continued fraction [a0, a1, . . .] of the
irrational number τ . Let M be a positive integer and put aM := max{ai; 0 ≤ i ≤
N + 1}, where N ∈ N is such that qN ≤ M ≤ qN+1. If x, y ∈ Z with x > 0, then

|xτ − y| > 1

(aM + 2)x
, for all x < M.

Therefore, here we will apply Lemma 3 to the left-hand side of inequality (24),
with

x := n, τ :=
logα

log 2
and y := a+ b.

Since n < 1.2 · 1028, then we can take M := 1.2 · 1028. Let

[a0, a1, a2, a3, a4, . . .] = [0, 2, 2, 6, 1, 1, 1, 2, 1, 13, 3, 1, 1, 1, 1, 1, 8, 1, 3, 2, . . .]

be the continued fraction of τ . Using Maple, one can see that q64 < M < q65, and
since max{ai : 1 ≤ i ≤ 65} = a42 = 80, then by Lemma 3, we get∣∣∣∣n logαlog 2

− (a+ b)

∣∣∣∣ > 1

82n
. (25)

Using inequalities (24), (25) and (23), we obtain

a <
log(15 · 82 · 1.2 · 1028)

log 2
< 104.

Next, we consider 1 ≤ a ≤ 103,

Λ4 := b log 2− n logα+ log (2a − 1) ,

and go to inequality (21). Note that e−Λ4 − 1 = Γ4 ̸= 0. Thus, Λ4 ̸= 0. With an
argument similar to the above one we get

0 < |Λ4| <
5.48

2b
. (26)

For a = 1,
Λ4 := b log 2− n logα.

Hence, we get ∣∣∣∣n logαlog 2
− b

∣∣∣∣ < 8

2b
. (27)
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To obtain a lower bound for the left-hand side of inequality (27), we will apply
Lemma 3 with

x := n, τ :=
logα

log 2
and y := b.

Since n < 1.2 · 1028, then we can take M := 1.2 · 1028. Let

[a0, a1, a2, a3, a4, . . .] = [0, 2, 2, 6, 1, 1, 1, 2, 1, 13, 3, 1, 1, 1, 1, 1, 8, 1, 3, 2, . . .]

be the continued fraction of τ . Using Maple, we see that q64 < M < q65 and, since
max{ai : 1 ≤ i ≤ 65} = a42 = 80, then, by Lemma 3, we get∣∣∣∣n logαlog 2

− b

∣∣∣∣ > 1

82n
. (28)

Using inequalities (27), (28) and (23), we obtain

b <
log(8 · 82 · 1.2 · 1028)

log 2
< 103.

For 2 ≤ a ≤ 103, dividing inequality (26) by logα, we get

|mτ − n+ µa| <
20

2b
,

where

m := b, τ :=
log 2

logα
and µa :=

log (2a − 1)

logα
(2 ≤ a ≤ 103).

Now we apply Lemma 2. Put M := 1.2 · 1028, A := 20 and B := 2. Since
m = b < n, from (23) we have that M is the upper bound on m. We use a quick
computation with Maple to see that the convergent

p69
q69

=
1213611921328550372703756032119

492344433104631933968942738817

of τ is such that q69 > 6M and εa ≥ 0.00065221 > 0, for all 2 ≤ a ≤ 103. Therefore,

we get that the maximum value of log(Aq/ε)
logB over all 2 ≤ a ≤ 103 is 113.539868,

which, according to Lemma 2, is an upper bound of b.

Hence, we deduce that the possible solutions (n, a, b) of equation (3) satisfy
1 ≤ a ≤ b ≤ 113. Therefore, we use inequality (18) to obtain n ≤ 566.

Finally, we used Maple to compare En and (2a − 1)(2b − 1), for 0 ≤ n ≤ 566 and
0 ≤ a ≤ b ≤ 113, and checked that all the solutions of equation (3) in nonnegative
integers n, a and b with 0 ≤ a ≤ b, are given by

E0 = E3 = (21 − 1)(22 − 1) = 3, E1 = 0, and E7 = (21 − 1)(23 − 1) = 7.

Notice that the case E1 = 0 gives infinitely many solutions. This completes the
proof of Theorem 2.
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5. The proof of Theorem 3

In this section, we will prove Theorem 3 in three steps.

Before, we prove the following useful lemma.

Lemma 4. Let (n, a, b) be a solution in integers of equation (4), with 1 ≤ a ≤ b,
and assume that n ≥ 0. Then, we have the following inequalities:

1.79(a+ b)− 0.58 < n+ 2 < 1.84(a+ b) + 7.68.

Proof. Using inequality (11) and equation (4), we obtain

ρn−2 ≤ Nn = (2a ± 1)(2b ± 1) ≤ 2a+b+2

and
2a+b−2 = 2a−1 · 2b−1 ≤ (2a ± 1)(2b ± 1) = Nn ≤ ρn−1.

Hence, we get

(a+ b− 2)
log 2

log ρ
+ 1 ≤ n ≤ (a+ b+ 2)

log 2

log ρ
+ 2.

Thus, using 1.79 <
log 2

log ρ
< 1.84, we deduce that

1.79(a+ b)− 0.58 < n+ 2 < 1.84(a+ b) + 7.68.

Step A: In this step, we take equation (4) with non-negative integers (n, a, b), where
1 ≤ a ≤ b, and we search for solutions to this equation using Maple for n ≤ 500 and
find

N1 = N2 = N3 = (21−1)(21−1) = 1, N5 = (21−1)(22−1) = (21−1)(21+1) = 3,

N8 = (21 + 1)(21 + 1) = (21 + 1)(22 − 1) = (21 − 1)(23 + 1) = (22 − 1)(22 − 1) = 9,

N15 = (21 − 1)(27 + 1) = 129

and
N16 = (21 + 1)(26 − 1) = (22 − 1)(26 − 1) = 189.

Step B: Now, we assume that n > 500. Substituting Binet’s formula (10) in
equation (4), we obtain∣∣cρρn+2 − 2a+b

∣∣ ≤ 2a + 2b + 1 + 2|cδ| · |δ|n+2 < 2a + 2b + 2.

Dividing through by 2a+b, we get

|Γ5| <
1

2b
+

1

2a
+

2

2a+b
<

4

2a
, (29)
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where

Γ5 := cρρ
n+22−(a+b) − 1.

Now, we need to check that Γ5 ̸= 0. If Γ5 = 0, then

cρρ
n+2 = 2a+b. (30)

Applying σ on both sides of (30), where σ is a Q-automorphism of the Galois group
of the extension Q(ρ, δ) over Q given by σ(ρ) := δ and σ(δ) := ρ, we have

1 < 2a+b =
∣∣σ(cρρn+2)

∣∣ = |cδ||δ|n+2 < |cδ| < 0.41,

which is a contradiction. Hence, Γ5 ̸= 0, and we can apply Theorem 4 to it. To do
this, we consider

η1 := cρ, η2 := ρ, η3 := 2, d1 := 1, d2 := n+ 2, d3 := −(a+ b).

The algebraic numbers η1, η2, η3 are elements of the field K = Q(ρ) and dK = 3. We
have that h(η1) =

log 31
3 , h(η2) = log ρ/3 and h(η3) = log 2. Thus, we can take

max{3h(η1), | log η1|, 0.16} < 3.44 := A1,

max{3h(η2), | log η2|, 0.16} < 0.39 := A2,

and

max{3h(η3), | log η3|, 0.16} < 2.08 := A3.

Finally, Lemma 4 implies that we can choose D := n + 2 = max{1, n + 2, a + b}.
From Theorem 4, we get

log |Γ5| > −1.4 · 306 · 34.5 · 32(1 + log 3)(1 + log(n+ 2)) · 3.44 · 0.39 · 2.08
> −7.55 · 1012 · (1 + log(n+ 2)).

By the fact 1 + log(n+ 2) < 1.7 log(n+ 2), which holds for all n ≥ 3, we obtain

log |Γ5| > −1.29 · 1013 log(n+ 2),

which combined with (29), gives

a log 2 < 1.3 · 1013 log(n+ 2). (31)

We go back to equation (4) and rewrite it as

Nn

2a ± 1
∓ 1 = 2b,

and consequently∣∣∣∣cρρn+2

2a ± 1
− 2b

∣∣∣∣ = ∣∣∣∣±1− cδδ
n+2 + cλλ

n+2

2a ± 1

∣∣∣∣ ≤ 1 +
2|cδ| · |δ|
2a ± 1

< 1.7.
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Dividing through by 2b, we obtain

|Γ6| <
1.7

2b
, (32)

where
Γ6 :=

cρ
2a ± 1

ρn+22−b − 1.

Note that with a similar argument to the above one, it can be proved that Γ6 ̸= 0.
So, we can apply Theorem 4 to it. We consider

η1 :=
cρ

2a ± 1
, η2 := ρ, η3 := 2, d1 := 1, d2 := n+ 2, d3 := −b.

Thus, D := n+2. The heights of η2 and η3 have already been calculated. From the
properties of the heights we get that

h(η1) ≤ h(cρ) + h(2a ± 1) ≤ log 31

3
+ a log 2 + log 2 < 1.31 · 1013 log(n+ 2),

where we have used inequality (31). We choose

max{3h(η1), | log η1|, 0.16} < 3.93 · 1013 log(n+ 2) := A1,

A2, and A3 as above. Therefore, from Theorem 4 we obtain

log |Γ6| > −1.4 ·306 ·34.5 ·32(1+log 3)(1+log(n+2)) ·3.93 ·1013 log(n+2) ·0.3 ·2.08,

i.e.,
log |Γ6| > −1.47 · 1026 · (log(n+ 2))2, (33)

where we used as above the inequality 1 + log(n+ 2) < 1.7 log(n+ 2), for all n ≥ 3.
By inequalities (33) and (32), we get

b <
1.48 · 1026 · (log(n+ 2))2

log 2
< 2.14 · 1026 · (log(n+ 2))2,

which, combined with Lemma 4, gives

n+ 2

(log(n+ 2))2
< 3.94 · 1026.

Taking m := 2 and T := 3.94 · 1026 in Lemma 1, we get

n+ 2 < 5.92 · 1030. (34)

Step C: The aim of the last step is to reduce the above bound on n. To do this, we
first consider

Λ5 := (a+ b) log 2− (n+ 2) log ρ+ log

(
1

cρ

)
.

Note that e−Λ5 − 1 = Γ5 ̸= 0. Thus, Λ5 ̸= 0. If Λ5 < 0, then

0 < |Λ5| < e|Λ5| − 1 = |Γ5| <
4

2a
,
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according to inequality (29). If Λ5 > 0, then we have

1− e−Λ5 =
∣∣e−Λ5 − 1

∣∣ < 1/2.

Hence, eΛ5 < 2. Thus, we get

0 < Λ5 < eΛ5 − 1 = eΛ5 |Γ5| <
8

2a
.

So, in both cases we have

0 < |Λ5| <
8

2a
.

Dividing through by log ρ, we see that

|mτ − (n+ 2) + µ| < 22

2a
,

where

m := a+ b, τ :=
log 2

log ρ
and µ :=

log
(

1
cρ

)
log ρ

.

Now, we apply Lemma 2. Put M := 5.92 · 1030, A := 22 and B := 2. Since
m = a + b < n + 2, from (34) we have that M is the upper bound on m. A quick
computation with Maple reveals that the convergent

p73
q73

=
239695123942250724210906921120296

132183013646147059064518308388483

of τ is such that q73 > 6M and ε ≥ 0.39937103 > 0. Therefore, we get

a <
1

log 2
log

(
22 · 132183013646147059064518308388483

ε

)
≤ 113.

Second, we consider 1 ≤ a ≤ 112 and set

Λ6 := b log 2− (n+ 2) log ρ+ log

(
2a ± 1

cρ

)
,

and go to inequality (32). Note that e−Λ6 − 1 = Γ6 ̸= 0. Thus, Λ6 ̸= 0. With an
argument similar to the above one, we get

0 < |Λ6| <
3.4

2b
.

Dividing through by log ρ, we obtain

|mτ − (n+ 2) + µa| <
9

2b
,

where

m := b, τ :=
log 2

log ρ
and µa :=

log
(

2a±1
cρ

)
log ρ

, (1 ≤ a ≤ 112).
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Now we apply Lemma 2. Put M := 5.92 · 1030, A := 9 and B := 2. Since
m = b < n + 2, from (34) we have that M is the upper bound on m. A quick
computation with Maple proves that the convergent

p76
q76

=
1122287296734013061899882732089959

618900020239170865520402048620075

of τ is such that q76 > 6M and εa ≥ 0.00543643 > 0, for all 1 ≤ a ≤ 112. Therefore,

we get that the maximum value of log(Aq/ε)
logB over all 1 ≤ a ≤ 112 is 119.624454 . . .

which, according to Lemma 2, is an upper bound of b.
Hence, we deduce that the possible solutions (n, a, b) of equation (4) satisfy

1 ≤ a ≤ b ≤ 119. Therefore, we use Lemma 4 to obtain n ≤ 443, which is a
contradiction, and Theorem 3 is proved.
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[11] M.Kř́ıžek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number The-
ory to Geometry, CMS Books in Mathematics, Springer-Verlag, New York, 2001.
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