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Abstract. We assume that the one-dimensional diffusion X satisfies a stochastic dif-
ferential equation of the form: dXt = µ(Xt)dt + ν(Xt)dWt, X0 = x0, t ≥ 0. Let
(Xi∆n , 0 ≤ i ≤ n) be discrete observations along a fixed time interval [0, T ]. We prove that
random vectors whose j-th component is 1√

∆n

∑n
i=1

∫ ti
ti−1

gj(Xs)(fj(Xs)− fj(Xti−1))dWs,

for j = 1, . . . , d, converge stably in law to a mixed normal random vector with a covariance
matrix which depends on the path (Xt, 0 ≤ t ≤ T ), when n → ∞. We use this result to

prove stable convergence in law for 1√
∆n

(
∫ T

0
f(Xs)dXs −

∑n
i=1 f(Xti−1)(Xti −Xti−1)).

AMS subject classifications: 60H05, 60F99

Keywords: asymptotic mixed normality, diffusion processes, approximations of stochastic
integrals

1. Introduction

Let W = (Wt, t ≥ 0) be a one-dimensional standard Brownian motion defined on
filtered probability space (Ω,F , (Ft)t≥0,P). We take the filtration (Ft)t≥0 to be the
smallest one such that it satisfies the usual conditions and to which W is adapted.
Let X = (Xt, t ≥ 0) be a one-dimensional diffusion which satisfies Itô’s stochastic
differential equation (SDE) of the form

dXt = µ(Xt)dt+ ν(Xt)dWt, X0 = x0, t ≥ 0, (1)

where µ and ν are real functions and x0 ∈ R is the initial value of X (a deterministic
one).

Let T ∈ R be a fixed number such that T > 0 and 0 =: t0 < t1 < · · · < tn := T ,
and let n ∈ N be an equidistant deterministic subdivision of the segment [0, T ], i.e.
ti = i∆n, i = 0, . . . , n, ∆n = T

n . Let (Xti , 0 ≤ i ≤ n) be a discrete observation of
the trajectory (Xt, t ∈ [0, T ]).

If we approximate the stochastic integral
∫ T

0
f(Xs)dXs with

∑n
i=1 f(Xti−1)(Xti−

Xti−1
), we would like to identify the limiting distribution of the error of that ap-

proximation when n → ∞. For a two-times continuously differentiable function

f we will prove that the difference between
∫ T

0
f(Xs)dXs and its approximation
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i=1 f(Xti−1

)(Xti − Xti−1
) divided by

√
∆n has an approximately mixed normal

distribution. In the case when f(x) = x, this result can be found in [8]. In the case
when dXt = dWt, similar results can be found in [5] and [15]. In [11], the authors

looked at the normed differences between some integral θ and its estimators θ̂n,

where θ was of the form
∫ T

0
νr(Xs)ds, r > 0, and they got stable convergence in law

for them in the case when n → ∞. We believe that the approach from the article

mentioned last can also be used in the case of the integral
∫ T

0
f(Xs)dXs and its

approximations (estimators)
∑n
i=1 f(Xti−1

)(Xti − Xti−1
) (see Theorem 5., Section

4.5 in [11] for α = 1
2 ), but the calculations for getting limiting distribution can be

complicated.

We present here a unifying approach to a series of well-known results that were
previously proved using individual approaches. We hope that our approach will
lead to possible further generalizations. Here, in Theorem 2, we prove that random
vectors whose j-th component is 1√

∆n

∑n
i=1

∫ ti
ti−1

gj(Xs)(fj(Xs)−fj(Xti−1))dWs, for

j = 1, . . . , d, converge stably in law to a mixed normal random vector. All other
interesting limiting distributions in this paper will be easily calculated based on this
general result. Let us point out that in the last couple of years, many authors are
interested in a limiting distribution of the terms

∑n
i=1 f(Xti −Xti−1) when n→∞,

for a different kind of processes X and for a suitably chosen function f (for example,
f(x) = |x|r, r > 0), and they found a limiting distribution when an appropriate
normalized constant is used (see, for example, [7, 2, 11]). However, this kind of
approximations for diffusion is not discussed in this paper.

In our case, stable convergence in law plays an important role because the vari-
ance in a limiting distribution depends on the path (Xt, 0 ≤ t ≤ T ), i.e. it is a random
variable. Stable convergence in law allows us to divide the difference with the square
root of some approximation of variance and we will still have convergence to nor-
mal distribution. These results can be used to find approximate confidence intervals
for stochastic integrals with respect to diffusions and to estimate the approximate
standard error of the approximations of stochastic integrals.

The paper is organized in the following way. In the next section, we introduce
notations and definitions we need. The main results and proofs are presented in
Section 3. In the last section, we will present three interesting examples. In the first
example, we deal with the approximation of Itô’s integral, in the second we do a
simulation study for the geometric Brownian motion, and in the third example, we
present one theoretical result which is proved in the [10] as the straight consequence
of our main Theorem 2.

2. Preliminaries

We denote by ‖ · ‖ the norm induced by the scalar product 〈·, ·〉 in the d-dimensional
Euclidean space Rd. We will denote the L1(P)-norm by ‖ · ‖1 := E[| · |] and the
L2(P)-norm by ‖ · ‖2 :=

√
E[(·)2]. We will denote by E an open interval, E ⊆ R.

For fixed T > 0, let (Ω,FT , (Ft)0≤t≤T ,P) be a given filtered probability space.

Let (Ω̃, F̃T , F̃ = (F̃t)0≤t≤T , P̃) be an extension of (Ω,FT , (Ft)0≤t≤T ,P) (for de-
tails, see [6]). The extension is called very good if all martingales on the space
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(Ω,FT , (Ft)0≤t≤T ,P) are also martingales on (Ω̃, F̃T , F̃ = (F̃t)0≤t≤T , P̃). Let A be
some Polish space. Let (Zn) be a sequence of A-valued random vectors, all defined
on (Ω,FT , (Ft)0≤t≤T ,P), and let Z be an A-valued random vector defined on the

extension (Ω̃, F̃T , F̃ = (F̃t)0≤t≤T , P̃). We will say that (Zn) converges stably in law

to Z, and write Zn
st⇒ Z, if

lim
n→∞

E[Y f(Zn)] = Ẽ[Y f(Z)],

for all bounded continuous functions f : A→ R and all bounded random variables Y
on (Ω,FT , (Ft)0≤t≤T ,P). For more details about this kind of convergence, see [13]
and [1].

We will say that an Rd-valued random vector Y has a mixed normal distribution
with an FT -measurable random covariance matrix C = (Cjk)j,k=1,...,d, and we write

Y ∼ MN(0, C) if E[ei〈t,Y 〉|FT ] = e−
1
2

∑
j,k=1,...,d tjtkC

jk

(see [1]). An Rd-valued
process (Yt)0≤t≤T is a centered Gaussian process if for all 0 ≤ s1 < s2 < · · · < sk ≤ T
a random matrix (Ys1 , . . . , Ysk) ∈ Rdk has a multivariate normal distribution and
E[Yt] = 0, t ∈ [0, T ].

For n ∈ N, let ti := i∆n, i = 0, . . . , n be an equidistant subdivision of the segment
[0, T ], ∆n = T

n . Let Atn := max{j : tj ≤ t} and Fn,i := Fti , i = 0, . . . , n, n ∈ N. The
following theorem is a version of Theorem 3-2 from [6] which we need for proof.

Theorem 1. Let W be a one-dimensional Brownian motion on
(Ω,FT ,F = (Ft)0≤t≤T ,P), and let χni be Fti-measurable square integrable Rd-valued
random vectors. Let C = (Cjk) be a continuous adapted process defined on (Ω,FT ,F =
(Ft)0≤t≤T ,P) such that Ct is a positive semidefinite symmetric d× d matrix for all
t ∈ [0, T ]. Assume that the following conditions hold:

sup
0≤t≤T

‖
Atn∑
i=1

E[χni |Fn,i−1]‖ P→ 0, (2)

Atn∑
i=1

(E[χn,ji χn,ki |Fn,i−1]− E[χn,ji |Fn,i−1]E[χn,ki |Fn,i−1])
P→ Cj,kt ,

∀t ∈ [0, T ], j, k = 1, . . . , d, (3)

Atn∑
i=1

E[χni (Wti −Wti−1)|Fn,i−1]
P→ 0, ∀t ∈ [0, T ], (4)

n∑
i=1

E[‖χni ‖21{‖χni ‖>ε}|Fn,i−1]
P→ 0, ∀ε > 0, (5)

Atn∑
i=1

E[χni (Nti −Nti−1)|Fn,i−1]
P→ 0, ∀t ∈ [0, T ], (6)

where N is a bounded Ft-martingale orthogonal to W .
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Then we have
Atn∑
i=1

χni
st⇒ Y on D([0, T ],Rd),

where Y is a continuous process defined on a very good filtered extension (Ω̃, F̃ , F̃ =
(F̃t)0≤t≤T , P̃) of (Ω,FT ,F = (Ft)0≤t≤T ,P) and which, conditionally on the σ-field
FT , is a centered Gaussian Rd-valued process with independent increments satisfying
Ẽ[Y jt Y

k
t |FT ] = Cjkt , t ∈ [0, T ], j, k = 1, . . . , d.

3. Main results

We assume that state space E is an open interval in R.
Let the following assumptions be satisfied:

(A1) There exists a strong solution X of SDE (1) on the time interval [0,+∞〉.
This solution X has continuous paths with values in E and if X ′ is any other
solution of SDE (1), with the same Brownian motion W , then the law of X ′

is identical to the law of X.

(A2) Functions x 7→ µ(x) and x 7→ ν(x) are two-times continuously differentiable
on E, and ν(x) > 0 for all x ∈ E.

(A3) Functions x 7→ gj(x) and x 7→ fj(x) are two-times continuously differentiable
on E, for all j = 1, . . . , d.

Let Σ be a d× d random matrix whose jk-th component is defined by

Σjk =
1

2

∫ T

0

ν2(Xs)gj(Xs)gk(Xs)f
′
j(Xs)f

′
k(Xs)ds.

Theorem 2. Assume that (A1)-(A3) hold. Then

1√
∆n


∑n
i=1

∫ ti
ti−1

g1(Xs)(f1(Xs)− f1(Xti−1
))dWs

...∑n
i=1

∫ ti
ti−1

gd(Xs)(fd(Xs)− fd(Xti−1))dWs

 st⇒MN(0,Σ).

Proof. First, let us assume that all of the functions µ, ν, gj , fj and their derivatives
are uniformly bounded. Using Itô’s formula for j = 1, . . . , d we get

1√
∆n

n∑
i=1

∫ ti

ti−1

gj(Xs)(fj(Xs)− fj(Xti−1
))dWs

=
1√
∆n

n∑
i=1

∫ ti

ti−1

gj(Xs)

(∫ s

ti−1

(f ′j(Xu)µ(Xu) +
1

2
f ′′j (Xu)ν2(Xu))du

)
dWs (7)

+
1√
∆n

n∑
i=1

∫ ti

ti−1

gj(Xs)

(∫ s

ti−1

f ′j(Xu)ν(Xu)dWu

)
dWs. (8)
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With notation lj(Xu) = f ′j(Xu)µ(Xu) + 1
2f
′′
j (Xu)ν2(Xu), the square of the L2-norm

of term (7) can be written in the form

‖ 1√
∆n

n∑
i=1

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

lj(Xu)dudWs‖22

=
1

∆n

n∑
i=1

E[(

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

lj(Xu)dudWs)
2]

+
2

∆n

∑
1≤i<k≤n

E[

(∫ ti

ti−1

gj(Xs)

∫ s

ti−1

lj(Xu)dudWs

)

·

(∫ tk

tk−1

gj(Xs)

∫ s

tk−1

lj(Xu)dudWs

)
].

The processes (
∫ t

0
gj(Xs)dWs)0≤t≤T and (

∫ t
0
gj(Xs)

∫ s
0
lj(Xu)dudWs)0≤t≤T are mar-

tingales with respect to the given filtration (Ft)0≤t≤T , hence for 1 ≤ i < k ≤ n there
holds:

E[

∫ tk

tk−1

gj(Xs)

∫ s

tk−1

lj(Xu)dudWs|Fn,k−1]

=E[

∫ tk

tk−1

gj(Xs)(

∫ s

0

lj(Xu)du−
∫ tk−1

0

lj(Xu)du)dWs|Fn,k−1]

=E[

∫ tk

0

gj(Xs)

∫ s

0

lj(Xu)dudWs −
∫ tk−1

0

gj(Xs)

∫ s

0

lj(Xu)dudWs

− (

∫ tk−1

0

lj(Xu)du) ·
∫ tk

0

gj(Xs)dWs

+ (

∫ tk−1

0

lj(Xu)du) ·
∫ tk−1

0

gj(Xs)dWs|Fn,k−1] = 0,

which implies

E[(

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

lj(Xu)dudWs) · (
∫ tk

tk−1

gj(Xs)

∫ s

tk−1

lj(Xu)dudWs)]

= E[E[(

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

lj(Xu)dudWs) · (
∫ tk

tk−1

gj(Xs)

∫ s

tk−1

lj(Xu)dudWs)|Fn,k−1]]

= E[(

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

lj(Xu)dudWs)E[

∫ tk

tk−1

gj(Xs)

∫ s

tk−1

lj(Xu)dudWs|Fn,k−1]]= 0.
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Hence, we can conclude that for j = 1, . . . , d there exists a constant k1 such that

‖ 1√
∆n

n∑
i=1

∫ ti

ti−1

gj(Xs)

(∫ s

ti−1

(f ′j(Xu)µ(Xu) +
1

2
f ′′j (Xu)ν2(Xu))du

)
dWs‖22

=
1

∆n

n∑
i=1

E[

(∫ ti

ti−1

gj(Xs)

(∫ s

ti−1

(f ′j(Xu)µ(Xu) +
1

2
f ′′j (Xu)ν2(Xu))du

)
dWs

)2

]

=
1

∆n

n∑
i=1

∫ ti

ti−1

E[

(
gj(Xs)

(∫ s

ti−1

(f ′j(Xu)µ(Xu) +
1

2
f ′′j (Xu)ν2(Xu))du

))2

]ds

≤
‖g2
j ‖∞
∆n

n∑
i=1

∫ ti

ti−1

(s− ti−1)

∫ s

ti−1

E[

(
f ′j(Xu)µ(Xu) +

1

2
f ′′j (Xu)ν2(Xu)

)2

]duds

≤ k1∆nT,

so (7) converges in the L2-norm to zero when n goes to infinity. Therefore, (7)
converges in probability to zero when n→∞. If we denote by

Zn,j =
1√
∆n

n∑
i=1

∫ ti

ti−1

gj(Xs)

(∫ s

ti−1

(f ′j(Xu)µ(Xu) +
1

2
f ′′j (Xu)ν2(Xu))du

)
dWs,

and with Zn a random vector whose j-th component is Zn,j , then it holds:

1√
∆n


∑n
i=1

∫ ti
ti−1

g1(Xs)(f1(Xs)− f1(Xti−1
))dWs

...∑n
i=1

∫ ti
ti−1

gd(Xs)(fd(Xs)− fd(Xti−1
))dWs



= Zn +
1√
∆n


∑n
i=1

∫ ti
ti−1

g1(Xs)(
∫ s
ti−1

f ′1(Xu)ν(Xu)dWu)dWs

...∑n
i=1

∫ ti
ti−1

gd(Xs)(
∫ s
ti−1

f ′d(Xu)ν(Xu)dWu)dWs

 ,
with Zn

P⇒ 0 when n→∞.
With a notation Rjt := f ′j(Xt)ν(Xt), we have

Σjk =
1

2

∫ T

0

gj(Xs)gk(Xs)R
j
sR

k
sds, j, k = 1, . . . , d.

Let C = (Cjkt )0≤t≤T be a continuous adapted process defined by

Cjkt =
1

2

∫ t

0

gj(Xs)gk(Xs)R
j
sR

k
sds, j, k = 1, . . . , d, t ∈ [0, T ],

and let χni , i = 1, . . . , n be Fti-measurable random vectors defined by

χni =

χ
n,1
i
...

χn,di

 =
1√
∆n


∫ ti
ti−1

g1(Xs)
∫ s
ti−1

R1
udWudWs

...∫ ti
ti−1

gd(Xs)
∫ s
ti−1

RdudWudWs

 .
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We will prove that Theorem 1 holds for C and χni . Since all functions are bounded,
we conclude that random vectors χni are square integrable. By its definition, Ct is a
symmetric positive semidefinite random matrix, for all t ∈ [0, T ]. Using a notation
Fn,i := Fti , i = 1, . . . , n, it holds:

E[χn,ji |Fn,i−1] = 0, ∀j = 1, . . . , d, ∀i = 1, . . . , n,

hence (2) is satisfied.
Let ε > 0. There exists a constant k2 > 0 such that

‖
n∑
i=1

E[‖χni ‖21{‖χni ‖>ε}|Fn,i−1]‖1 ≤
d

ε2

n∑
i=1

E[

d∑
j=1

(χn,ji )4] ≤ k2∆nT,

hence (5) is satisfied.
Let N = (Nt)0≤t≤T be any bounded Ft-martingal orthogonal to W . Since

(Ft)0≤t≤T is generated by the Brownian motion W , it follows from the martingale
representation theorem (see [9, Theorem III.4.33]) that Nt is equal to the constant,
so (6) is satisfied.

For j = 1, . . . , d, first using the integration by parts formula (see [14, Chapter 3,
Proposition 3.1]) and that Itô’s integrals are martingals, and then using Itô’s formula
for the function gj , we get

Atn∑
i=1

E[χn,ji (Wti −Wti−1
)|Fn,i−1]

=
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

RjudWudWs ·
∫ ti

ti−1

dWs|Fn,i−1]

=
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

(

∫ s

ti−1

dWu) ·

(
g(Xs)

∫ s

ti−1

RjudWu

)
dWs|Fn,i−1]

+
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

∫ s

ti−1

g(Xu)(

∫ u

ti−1

Rjl dWl)dWudWs|Fn,i−1]

+
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

RjudWuds|Fn,i−1]

=
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)

∫ s

ti−1

RjudWuds|Fn,i−1]

=
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

(∫ s

ti−1

(
g′j(Xu)µ(Xu) +

1

2
g′′j (Xu)ν2(Xu)

)
du

)

·

(∫ s

ti−1

RjudWu

)
ds|Fn,i−1] (9)
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+
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

(∫ s

ti−1

g′j(Xu)ν(Xu)dWu

)
·

(∫ s

ti−1

RjudWu

)
ds|Fn,i−1] (10)

+
1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

∫ s

ti−1

gj(Xti−1
)RjudWuds|Fn,i−1]. (11)

Term (11) equals zero since by the integration by parts formula and the martingale
property of Itô’s integral it holds:

E[

∫ ti

ti−1

∫ s

ti−1

gj(Xti−1)RjudWuds|Fn,i−1]

= gj(Xti−1
)E[ti

∫ ti

ti−1

RjsdWs|Fn,i−1]− gj(Xti−1
)E[

∫ ti

ti−1

sRjsdWs|Fn,i−1] = 0.

It can be shown that there exist constants k3, k4 such that

‖ 1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

(∫ s

ti−1

(
g′j(Xu)µ(Xu) +

1

2
g′′j (Xu)ν2(Xu)

)
du

)

·

(∫ s

ti−1

RjudWu

)
ds|Fn,i−1]‖1 ≤ k3

√
∆nT,

| 1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

(∫ s

ti−1

g′j(Xu)ν(Xu)dWu

)
·

(∫ s

ti−1

RjudWu

)
ds|Fn,i−1]|

= | 1√
∆n

Atn∑
i=1

E[

∫ ti

ti−1

∫ s

ti−1

g′j(Xu)ν(Xu)Rjududs|Fn,i−1]|

≤ k4

√
∆nT,

so (9) converges in the L1-norm to zero and (10) converges almost surely to zero,
hence (4) is satisfied.

It remains to prove that (3) is satisfied. Let 1 ≤ j ≤ k ≤ d. Then

Atn∑
i=1

(E[χn,ji χn,ki |Fn,i−1]− E[χn,ji |Fn,i−1]E[χn,ki |Fn,i−1])

=
1

∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

J (i,j)
u RkudWuds|Fn,i−1] (12)

+
1

∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

J (i,k)
u RjudWuds|Fn,i−1] (13)

+
1

∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs|Fn,i−1], (14)
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where J
(i,j)
s :=

∫ s
ti−1

RjudWu. It can be shown that there exist constants k5, k6, such

that

‖ 1

∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

J (i,j)
u RkudWuds|Fn,i−1]‖2 ≤ k5

√
∆n(T +

√
T ),

‖ 1

∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

J (i,k)
u RjudWuds|Fn,i−1]‖2 ≤ k6

√
∆n(T +

√
T ),

so (12) and (13) converge in probability to zero. At the end, we need to prove that

(14) converges in probability to Cjkt . There exists a constant k7 such that

1

∆n

Atn∑
i=1

E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs|Fn,i−1]

=
1

∆n

Atn∑
i=1

(E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs|Fn,i−1]

−
∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs) (15)

+
1

∆n

Atn∑
i=1

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs, (16)

and

‖ 1

∆n

Atn∑
i=1

(E[

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs|Fn,i−1]

−
∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs)‖2 ≤ k7

√
∆n

√
T ,

so (15) converges in probability to zero.

To prove that (16) converges in probability to Cjkt , we use the idea from the
proof of Theorem 5.2. in [10]. For the sake of completness, we will write down the
steps. Let

l(u, s)(ω) := (gj(Xs)gk(Xs)R
j
uR

k
u)(ω)

be a function defined on [0, T ]× [0, T ]× Ω. For fixed ω ∈ Ω, the function l(u, s)(ω)
is a bounded continuous function on [0, T ] × [0, T ], which means that there exist
u∗i (ω), s∗i (ω) ∈ [ti−1, ti] such that u∗i (ω) ≤ s∗i (ω) and∫ ti

ti−1

∫ s

ti−1

l(u, s)duds =
∆2
n

2
l(u∗i , s

∗
i ), i ∈ {1, . . . , n}.
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Hence,

1

∆n

Atn∑
i=1

∫ ti

ti−1

gj(Xs)gk(Xs)

∫ s

ti−1

RjuR
k
ududs− C

jk
t

=

Atn∑
i=1

∆n

2
l(u∗i , u

∗
i )−

1

2

∫ t

0

gj(Xs)gk(Xs)R
j
sR

k
sds (17)

+

Atn∑
i=1

∆n

2
(l(u∗i , s

∗
i )− l(u∗i , u∗i )). (18)

Since the integrand function is continuous, there exist some t∗(ω) ∈ [tAtn , t], such

that 1
2

∫ t
tAtn

gj(Xs)gk(Xs)R
j
s(θ)R

k
s (θ)ds = 1

2 (t − tAtn)gj(Xt∗)gk(Xt∗)R
j
t∗R

k
t∗ , so for

(17) we have

Atn∑
i=1

∆n

2
l(u∗i , u

∗
i )−

1

2

∫ t

0

gj(Xs)gk(Xs)R
j
sR

k
sds

=

Atn∑
i=1

∆n

2
gj(Xu∗i

)gk(Xu∗i
)Rju∗i

Rku∗i +
1

2
(t− tAtn)gj(Xu∗i

)gk(Xu∗i
)Rjt∗R

k
t∗

− 1

2

∫ t

0

gj(Xs)gk(Xs)R
j
sR

k
sds−

1

2

∫ t

tAtn

gj(Xs)gk(Xs)R
j
sR

k
sds

a.s.→ 0,

which gives us that (17) converges in probability to zero. For (18) there exists a
constant k8 such that

|
Atn∑
i=1

∆n

2
(l(u∗i , s

∗
i )− l(u∗i , u∗i ))|= |

Atn∑
i=1

∆n

2
(gj(Xs∗i

)gk(Xs∗i
)− gj(Xu∗i

)gk(Xu∗i
))Rju∗i

Rku∗i|

≤ k8

Atn∑
i=1

∆n

2
|gj(Xs∗i

)gk(Xs∗i
)− gj(Xu∗i

)gk(Xu∗i
)|.

Let ε > 0. For fixed ω ∈ Ω, the function t 7→ gj(Xt(ω))gk(Xt(ω)) is continuous on
[0, T ], so it is uniformly continuous. It means that

(∃δ > 0)(∀s, t ∈ [0, T ])(|s−t| < δ)⇒ |gj(Xs(ω))gk(Xs(ω))−gj(Xt(ω))gk(Xt(ω))| < ε.

Because ω is fixed, we omitted writing it. Since limn→∞∆n = 0, there exists n0 ∈ N
such that for all n ≥ n0, holds ∆n < δ. Then, for all n ≥ n0 we have

Atn∑
i=1

∆n

2
|gj(Xs∗i

)gk(Xs∗i
)− gj(Xu∗i

)gk(Xu∗i
)| ≤ εT

2
,

which means that (18) converges almost surely to zero 0, so it converges in probability
to zero.
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Therefore, conditions of Theorem 1 are satisfied provided that the assumption about
uniform boundedness of functions holds. If we denote by πT a projection function
πT : D([0, T ],Rd)→ Rd, defined by πT ((Xs, s ∈ [0, T ])) := XT , then by [3, Theorem
12.5] projection πT is a continuous function. Notice that

1√
∆n


∑n
i=1

∫ ti
ti−1

g1(Xs)(f1(Xs)− f1(Xti−1
))dWs

...∑n
i=1

∫ ti
ti−1

gd(Xs)(fd(Xs)− fd(Xti−1))dWs


= πT ((

Atn∑
i=1

χni , t ∈ [0, T ])) + Zn,

hence by definition and properties of stable convergence in law, our theorem holds
under the assumption that all of the functions are uniformly bounded.

In a general case (i.e. without the assumption that functions are uniformly
bounded), we again use the idea presented in [10]. For the completeness of the
proof we will write down some steps, but for details, see [10]. Let (EN , N ∈ N)
be a sequence of open and relatively compact subsets of E such that x0 ∈ E1,
Cl(EN ) ⊆ EN+1,∀N ∈ N and ∪∞N=1EN = E. For the solution (Xt, t ≥ 0) of our
SDE (1) define

TN := inf{t ≥ 0: Xt ∈ EcN}, N ∈ N,
where inf ∅ = +∞. Let (ΦN , N ∈ N) be a sequence of C∞(E)-functions such that
ΦN = 1 on Cl(EN ), and ΦN = 0 on Cl(EN+1)c. Let us define the functions
µN (x) := ΦN (x)µ(x), fj,N (x) := ΦN (x)fj(x), gj,N (x) := ΦN (x)gj(x), x ∈ E, and
let νN be continuous functions on E such that νN (x) = ν(x) for x ∈ Cl(EN ) and
νN (x) = const for x ∈ E\Cl(EN+1) (νN can be defined as νN (x) = ΦN (x)ν(x) +
(1−ΦN (x))cN , where cN := minx∈Cl(EN+1) ν(x)). For a fixed N ∈ N, let the process

XN = (XN
t , 0 ≤ t ≤ T ) be a unique strong solution of the SDE (for details see [12])

dXN
t = µN (XN

t )dt+ νN (XN
t )dWt, XN

0 = x0, x0 ∈ E.

Let Y be a random vector such that Y =
√

ΣZ, where Z is a standard normal random
vector independent of FT . Let YN be a random vector such that YN =

√
ΣNZ, where

ΣN is a random matrix Σ from the first part of this proof which we apply on the
process XN and functions νN , µN , gj,N and fj,N . From the first part of the proof,
with the notation

Vn,N :=
1√
∆n


∑n
i=1

∫ ti
ti−1

g1,N (XN
s )(f1,N (XN

s )− f1,N (XN
ti−1

))dWs

...∑n
i=1

∫ ti
ti−1

g1,N (XN
s )(fd,N (XN

s )− fd,N (XN
ti−1

))dWs

 ,
we have Vn,N

st⇒ YN .

Let us denote by Vn := 1√
∆n


∑n
i=1

∫ ti
ti−1

g1(Xs)(f1(Xs)− f1(Xti−1
))dWs

...∑n
i=1

∫ ti
ti−1

gd(Xs)(fd(Xs)− fd(Xti−1))dWs

. We



298 S. Lubura Strunjak

want to show that Vn
st⇒ Y , n→∞.

Let f : Rd → R be a bounded continuous function, and let U be a bounded FT -
measurable random variable. Let k9, k10 > 0 be constants such that |f | ≤ k9 and
|U | ≤ k10. Now, we have:

|E[f(Vn)U ]− Ẽ[f(Y )U ]|
≤ |E[f(Vn,N )U1{TN>T}]− Ẽ[f(YN )U1{TN>T}]|+ 2k9k10P(TN ≤ T ).

U1{TN>T} is a bounded, FT -measurable random variable, and Vn,N
st⇒ YN ; hence

lim
n
|E[f(Vn)U ]− Ẽ[f(Y )U ]| ≤ 2k9k10P(TN ≤ T ),

and by letting N →∞ we have

lim
n
|E[f(Vn)U ]− Ẽ[f(Y )U ]| = 0,

which implies

lim
n
|E[f(Vn)U ]− Ẽ[f(Y )U ]| = 0,

and this proves our theorem.

Let us now look at the case when d = 1. Let us denote f ≡ f1.

Corollary 1. Assume that (A1)-(A2) hold and that f is a two-times continuously
differentiable function on E. Then

1√
∆n

(

∫ T

0

f(Xs)dWs−
n∑
i=1

f(Xti−1)(Wti−Wti−1))
st⇒MN(0,

1

2

∫ T

0

ν2(Xs)(f
′)2(Xs)ds).

Proof. Since

1√
∆n

(

∫ T

0

f(Xs)dWs −
n∑
i=1

f(Xti−1
)(Wti −Wti−1

))

=
1√
∆n

n∑
i=1

∫ ti

ti−1

(f(Xs)− f(Xti−1))dWs,

the result follows from Theorem 2 for d = 1 and g1 ≡ 1.

The result about stable convergence in law for difference between Itô’s integral
with respect to diffusion and its approximation is stated in the following lemma.

Lemma 1. Assume that (A1)-(A2) hold and that f is a two-times continuously
differentiable function on E. Then

1√
∆n

(

∫ T

0

f(Xs)dXs−
n∑
i=1

f(Xti−1)(Xti−Xti−1))
st⇒MN(0,

1

2

∫ T

0

ν4(Xs)(f
′)2(Xs)ds).



Stable convergence in law for some stochastic integrals 299

Proof. It holds

1√
∆n

(

∫ T

0

f(Xs)dXs −
n∑
i=1

f(Xti−1
)(Xti −Xti−1

))

=
1√
∆n

n∑
i=1

∫ ti

ti−1

(f(Xs)− f(Xti−1
))dXs

=
1√
∆n

n∑
i=1

∫ ti

ti−1

(f(Xs)− f(Xti−1
))µ(Xs)ds

+
1√
∆n

n∑
i=1

∫ ti

ti−1

(f(Xs)− f(Xti−1
))ν(Xs)dWs.

It can be shown that 1√
∆n

∑n
i=1

∫ ti
ti−1

(f(Xs) − f(Xti−1
))µ(Xs)ds converges in

probability to 0 when n→∞, and from Theorem 2 it follows that
1√
∆n

∑n
i=1

∫ ti
ti−1

(f(Xs) − f(Xti−1
))ν(Xs)dWs converges stably in law to a mixed

normal random variable, with variance 1
2

∫ T
0
ν4(Xs)(f

′)2(Xs)ds.

Hence, 1√
∆n

(
∫ T

0
f(Xs)dXs−

∑n
i=1 f(Xti−1

)(Xti−Xti−1
)) converges stably in law

to a mixed normal random variable with variance 1
2

∫ T
0
ν4(Xs)(f

′)2(Xs)ds.

Remark 1. The result from Lemma 1 for the case when f(x) = x can be found in
[8] (see Theorem 5.5. for d = 1).

Corollary 2. Assume that (A1)-(A2) hold and that f is a two-times continuously
differentiable function on E. Then

√
2

∆n

∫ T
0
f(Xs)dXs −

∑n
i=1 f(Xti−1

)(Xti −Xti−1
)√∑n

i=1 ν
4(Xti−1

)(f ′2)(Xti−1
)

st⇒ N(0, 1).

Proof. Notice that 1
2

∑n
i=1 ν

4(Xti−1
)(f ′2)(Xti−1

)∆n converges almost surely (and

consequently in probability) to 1
2

∫ T
0
ν4(Xs)(f

′)2(Xs)ds when n→∞, so the result
follows from Lemma 1 and properties of stable convergence in law.

Remark 2. In Corollary 2, we could use any sequence vn which converges in proba-

bility to random variance 1
2

∫ T
0
ν4(Xs)(f

′)2(Xs)ds, and the result would be the same,
i.e.

1√
∆n

∫ T
0
f(Xs)dXs −

∑n
i=1 f(Xti−1

)(Xti −Xti−1
)

√
vn

st⇒ N(0, 1).

4. Applications

Example 1. Let us look at the simple case when dXt = dWt, i.e. Xt is a stan-
dard Brownian motion. In that case, µ ≡ 0, ν ≡ 1. For a two-times continuously
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differentiable function f , from Corollary 1, we conclude that

1√
∆n

(

∫ T

0

f(Ws)dWs −
n∑
i=1

f(Wti−1
)(Wti −Wti−1

))
st⇒ N(0,

1

2

∫ T

0

(f ′)2(Ws)ds).

This result can be found in [5] for the function f which satisfies some boundness
condition. We proved the same result but in the case when f ∈ C2(E). Similar
result with weak convergence can be found in Theorem 2.1. in [15]. In the special
case when f(x) = x, this result can be found in Theorem 5.1. in [8].
Let us see a simulation study where f(x) = x, dXt = dWt. In that case

1√
∆n

(

∫ T

0

WsdWs −
n∑
i=1

Wti−1(Wti −Wti−1))
st⇒ N(0,

T

2
),

where
∫ T

0
WsdWs = 1

2 (W 2
T − T ). Let −zα

2
be a α

2 -quantile of the standard normal
distribution. We simulated M realizations of a discrete random sample Wt1 , . . . ,Wtn

over equidistant points ti = i∆n, where n = 10, 50, 100, 200, 300, 500, 1000, T = 1
and ∆n = 1

n . Then we calculated how many times the values of the variable

1√
∆n

(
1

2
(W 2

tn − T )−
n∑
i=1

Wti−1
(Wti −Wti−1

))

are in the interval [−zα
2
·
√

T
2 , zα2 ·

√
T
2 ] and present that number as a percentage.

The results are given in Table 1, 2, 3 and 4. The simulations show that percentages
are close to 1− α, even for small n.
Example 2. Let Xt be a geometric Brownian motion with parameters µ and σ. It
means that Xt is a process which satisfies the SDE

dXt = µXtdt+ σXtdWt, X0 = x0. (19)

We suppose that x0 > 0. It is well known that the solution to (19) is given by

Xt = x0 exp{(µ− σ2

2
)t+ σWt}.

Let f(x) = x. Then from Corollary 2 we have
√

2

σ2∆n

∫ T
0
XsdXs −

∑n
i=1Xti−1(Xti −Xti−1)√∑n
i=1X

4
ti−1

st⇒ N(0, 1).

We simulated M realizations of a discrete random sample (Xt1 , . . . , Xtn) with x0 = 1
and parameters µ = 2, σ = 1, over equidistant points ti = i∆n, where n = 2k, T = 1
and ∆n = T

n . We simulated in the way that n′ = 2l > 2k and we use all of these

points to estimate
∫ T

0
XsdXs with

∑n′

i=1Xti−1
(Xti − Xti−1

). Then we take a sub-

sample of length n = 2k and calculate
∑n
i=1Xti−1

(Xti −Xti−1
). Then we calculate

percentage of values
√

2

σ2∆n

∑n′

i=1Xti−1
(Xti −Xti−1

)−
∑n
i=1Xti−1

(Xti −Xti−1
)√∑n

i=1X
4
ti−1

,
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which are in the interval [−zα
2
, zα

2
], where zα

2
is a (1−α)-quantile of standard normal

distribution. Results are presented in tables 5, 6 and 7. Simulations showed that
the percentage, even for small k, is a value close to 1− α.
Let f(x) = x2. Then from Corollary 2 we have

1

σ2∆n

√
2

∫ T
0
X2
sdXs −

∑n
i=1X

2
ti−1

(Xti −Xti−1
)√∑n

i=1X
6
ti−1

st⇒ N(0, 1).

We simulate in the same way as before, and calculate the percentage of values

1

σ2∆n

√
2

∑n′

i=1X
2
ti−1

(Xti −Xti−1
)−

∑n
i=1X

2
ti−1

(Xti −Xti−1
)√∑n

i=1X
6
ti−1

,

which are in the interval [−zα
2
, zα

2
]. Results are presented in tables 8, 9 and 10.

Again, simulations showed that the percentage, even for small k, is a value close to
1− α.
Example 3. Let X = (Xt, t ≥ 0) be a one-dimensional diffusion which satisfies Itô’s
stochastic differential equation (SDE) of the form

dXt = µ(Xt, θ)dt+ σ0ν(Xt)dWt, X0 = x0, t ≥ 0, (20)

where ν and µ are real functions and x0 is a given deterministic initial value of X.
Let θ0 and σ0 be true values of the drift parameter and the diffusion coefficient

parameter. We assume that σ0 > 0 is known. We assume that θ belongs to the
parameter space Θ which is a relatively compact, open and convex set in Euclidean
space Rd. Let T ∈ R be a fixed number such that T > 0 and 0 =: t0 < t1 < · · · <
tn := T , n ∈ N be an equidistant deterministic subdivision of the segment [0, T ],
i.e. ti = i∆n, i = 0, . . . , n, ∆n = T

n . Let (Xti , 0 ≤ i ≤ n) be a discrete observation
of the trajectory (Xt, t ∈ [0, T ]). If (x, θ) 7→ f(x, θ) is a real function, then we will
denote by Dm

θ f the m-th partial derivatives with respect to θ of the function f ,
m ∈ N. If θ 7→ f(θ) is a real-valued function defined on an open subset of Rd, then
we will denote by Df(θ), D2f(θ) its first and second derivatives with respect to θ.
Let K be a relatively compact set in Rd. We say that a partial derivative Dm

θ f of
a real function f : E × Cl(K) → R exists on E × Cl(K) if there exists an open set
UK ⊆ Rd, such that E × Cl(K) ⊆ E × UK , and an extension f̃ of f , defined on
E × UK , such that Dm

θ f̃ exists. Let the following assumptions be satisfied:

(A1’) For all θ ∈ Θ, there exists a strong solution X of SDE (20) on the time interval
[0,+∞〉. This solution X has continuous paths with values in E and if X ′ is
any other solution of SDE (20), with the same Brownian motion W , then the
law of X ′ is identical to the law of X.

(A2’) Function x 7→ ν(x) is two-times continuously differentiable on E, and ν(x) > 0
for all x ∈ E. For all θ ∈ Cl(Θ), function µ(·, θ) : E → R is continuously

differentiable on E. Functions (x, θ) 7→ µ(x, θ), (x, θ) 7→ ∂2

∂x2µ(x, θ), (x, θ) 7→
∂
∂xµ(x, θ), are continuous on E × Cl(Θ).
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(A3’) Functions x 7→ gj(x) are two-times continuously differentiable on E, for all j =

1, . . . , d. Functions (x, θ) 7→ fj(x, θ), (x, θ) 7→ ∂2

∂x2 fj(x, θ), (x, θ) 7→ ∂
∂xfj(x, θ),

are continuous on E × Cl(Θ), for all j = 1, . . . , d.

(A4’) Functions (x, θ) 7→ ∂3

∂x2∂θj
µ(x, θ), (x, θ) 7→ ∂

∂θi

∂
∂x

∂
∂θj

µ(x, θ) are continuous on

E × Cl(Θ), for all i, j = 1, . . . , d. For all m ≤ d + 3, there exist partial
derivatives Dm

θ µ(x, θ) and ∂
∂xD

m
θ µ(x, θ) on E×Cl(Θ). Furthermore, functions

(x, θ) 7→ Dm
θ µ(x, θ), (x, θ) 7→

∂
∂xD

m
θ µ(x, θ), m ≤ d+ 3, are continuous on E × Cl(Θ).

For each θ ∈ Θ denote by Σ(θ) a d × d random matrix whose jk-th component is
defined by

Σ(θ)jk =
σ2

0

2

∫ T

0

ν2(Xs)gj(Xs)gk(Xs)f
′
j(Xs, θ)f

′
k(Xs, θ)ds,

where f ′j is the first derivative of the function fj with respect to x, j = 1, . . . , d.
From Theorem 2 it follows:

Theorem 3. Assume that (A1’)-(A3’) hold. Then, for arbitrary fixed θ ∈ Θ it
holds:

1√
∆n


∑n
i=1

∫ ti
ti−1

g1(Xs)(f1(Xs, θ)− f1(Xti−1
, θ))dWs

...∑n
i=1

∫ ti
ti−1

gd(Xs)(fd(Xs, θ)− fd(Xti−1
, θ))dWs

 st⇒MN(0,Σ(θ)).

Note that the covariance matrix in this case depends on parameter θ.
Let

LT (θ) =

∫ T

0

µ(Xs, θ)

σ2
0ν

2(Xs)
dXs −

1

2

∫ T

0

µ2(Xs, θ)

σ2
0ν

2(Xs)
ds

be a continuous-time log-likelihood function (see [4]) and define a contrast function
by (for details, see [10])

Ln(θ) =

n∑
i=1

(
(Xti −Xti−1

)µ(Xti−1
, θ)

σ2
0ν

2(Xti−1
)

− 1

2

µ2(Xti−1
, θ)(ti − ti−1)

σ2
0ν

2(Xti−1
)

)
.

For θ ∈ Θ, let Σ(θ) be a d× d random matrix whose jk-th component is defined
by

Σ(θ)jk =
1

2

∫ T

0

ν4(Xs)
∂

∂x

∂
∂θj

µ(Xs, θ)

ν2(Xs)

∂

∂x

∂
∂θk

µ(Xs, θ)

ν2(Xs)
ds.

Under assumptions (A1’)-(A4’) it is proved in [10] that

1√
∆n

(DLT (θ)−DLn(θ))
st⇒ Y (θ),

where Y (θ) ∼ MN(0,Σ(θ)). This result allowed us to prove that the difference
between the approximate maximum likelihood estimator and the maximum likeli-
hood estimator of drift parameters is an asymptotically mixed normal (for details
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see [10]). We will show that this result follows from Theorem 3. With a notation
∂θj := ∂

∂θj
, j = 1, . . . , d, for the j-th component of 1√

∆n
(DLT (θ)−DLn(θ)) we have

1√
∆n

(DLT (θ)−DLn(θ))j

=
1√
∆n

n∑
i=1

(∫ ti

ti−1

(
1

σ2
0ν

2(Xs)
∂θjµ(Xs, θ)µ(Xs, θ0)

− 1

σ2
0ν

2(Xti−1
)
∂θjµ(Xti−1

, θ)µ(Xs, θ0))ds
)

(21)

+
1√
∆n

n∑
i=1

(∫ ti

ti−1

(
1

σ2
0ν

2(Xti−1
)
∂θjµ(Xti−1

, θ)µ(Xti−1
, θ)

− 1

σ2
0ν

2(Xs)
∂θjµ(Xs, θ)µ(Xs, θ))ds

)
(22)

+
1√
∆n

n∑
i=1

∫ ti

ti−1

ν(Xs)

σ0

(∂θjµ(Xs, θ)

ν2(Xs)
−
∂θjµ(Xti−1

, θ)

ν2(Xti−1
)

)
dWs. (23)

In article [10], is proved that (21) and (22) converge in probability to zero when
n→∞. If we define

gj(x) :=
ν(Xs)

σ0
, fj(x, θ) :=

∂θjµ(Xs, θ)

ν2(Xs)
, j = 1, . . . , d,

then the result follows from Theorem 3.

n 10 50 100 200 300 500 1000
% 0.93 0.94 0.94 0.96 1.00 0.96 0.98

Table 1: Example 1, M=100, α = 0.05

n 10 50 100 200 300 500 1000
% 0.97 0.99 0.98 1 0.99 1 0.98

Table 2: Example 1, M=100, α = 0.01

n 10 50 100 200 300 500 1000
% 0.953 0.947 0.938 0.967 0.960 0.932 0.951

Table 3: Example 1, M=1000, α = 0.05



304 S. Lubura Strunjak

n 10 50 100 200 300 500 1000
% 0.988 0.983 0.989 0.995 0.986 0.988 0.993

Table 4: Example 1, M=1000, α = 0.01

k 4 5 6 7 8 9 10 11 12
% 0.92 0.96 0.97 0.94 0.98 0.98 0.96 0.98 0.96

Table 5: Example 2, f(x) = x,, M=100, α=0.05, l=14

k 4 5 6 7 8 9 10 11 12 13 14
% 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.97 0.94 0.96 0.99

Table 6: Example 2, f(x) = x, M=100, α=0.05, l=16

k 4 5 6 7 8 9 10 11 12
% 0.922 0.938 0.943 0.956 0.96 0.955 0.954 0.961 0.981

Table 7: Example 2, f(x) = x, M=1000, α=0.05, l=14

k 4 5 6 7 8 9 10 11 12
% 0.92 0.97 0.97 0.95 0.96 0.95 0.93 0.98 1

Table 8: Example 2, f(x) = x2, M=100, α=0.05, l=14

k 4 5 6 7 8 9 10 11 12 13 14
% 0.94 0.99 0.96 0.94 0.91 0.92 0.98 0.97 0.95 0.99 0.98

Table 9: Example 2, f(x) = x2, M=100, α=0.05, l=16

k 4 5 6 7 8 9 10 11 12
% 0.947 0.945 0.944 0.95 0.962 0.961 0.958 0.968 0.981

Table 10: Example 2, f(x) = x2, M=1000, α=0.05, l=14
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