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Dynamical analysis on the discrete pentagon fractal
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Received May 16, 2024; accepted September 5, 2024

Abstract. In this study, we aim to define a new chaotic dynamical system family on a
discrete pentagon fractal, P d, a totally disconnected fractal set. One of the ways to define
dynamical systems on the discrete n−flake fractal is to use the elements of its symme-
try group. Thus, with the help of the elements of the symmetry group of the equilateral
pentagon D5 and the shift map (σ), we obtain different dynamical systems via code rep-
resentations of the points on P d. Moreover, we investigate Devaney’s chaos conditions for
this family of dynamical systems.
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1. Introduction

There exist numerous self-similar sets based on various types of structures, while the
Cantor set, the Sierpinski triangle, the Sierpinski carpet, ferns, the Koch snowflake
are the geometrical shapes that often come to mind when discussing fractals. One
such example is a fractal formed by starting with any n−gon, which is referred
to as an n−flake or polygonal fractal. For instance, the Koch snowflake can be
defined as a 3−flake fractal that originates from an equilateral triangle. Similarly,
a 5−flake fractal can be based on a pentagon, formed by scaling down each side of
the pentagon with a specific scale (contraction) factor. It is possible to generate
different variations of 5−flake fractals using different contractions.

Throughout this study, we focus on a discrete pentagon fractal, in other words, a
discrete Sierpinski pentagon or discrete pentagasket, denoted as P d, which is a totally
disconnected set. This fractal emerges as an attractor of the iterated function system
consisting of five corresponding contraction mappings. In the literature, while there
have been studies on various dynamical systems related to classical fractals like the
Sierpinski triangle, the Sierpinski tetrahedron, the Cantor dust, the Vicsek fractal
using expanding, folding mappings and symmetries [2, 3, 4, 6, 15, 16], there has not
been much research into dynamical systems on the pentagon fractal via the elements
of symmetry group D5 defined by code representations of the points.

Although there are different ways to obtain fractals such as L-systems, the escape
time algorithm, etc. ([1, 9, 14]), many of them, such as the fractals mentioned above,
are created as the attractors of iterated function systems (IFS) ([5, 9, 11, 12, 13]).
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This approach allows us to define the dynamical systems through code representa-
tions of the points associated with contraction mappings. This way makes it easier
to investigate chaos conditions and compute periodic points. In the present paper,
our main objective is to establish a dynamical system family on the discrete pen-
tagon fractal. It is known that dynamical systems can be defined in various ways,
including those associated with iterated function systems, which emerge naturally
[9]. On the other hand, special transformations such as expanding, folding, trans-
lation, rotation, etc. [3, 4, 15], with the help of the symmetries of polygons [6, 16],
are another approach to define dynamical systems. For instance, in [6], a family of
dynamical systems is defined on the Cantor dust using a combination of elements of
the 4th Dihedral group and the shift map, via code representations of the points. It
is sure that special shift maps enable to define different types of dynamical systems
which are also chaotic on a code space (see [2, 7]).

Our aim ise to use elements of the symmetry group of an equilateral pentagon
D5 to define a dynamical system family on P d. As any convex n-gon has 2n symme-
tries, the symmetry group of the pentagon comprises ten elements, five of which are
translations and five reflections. To define the dynamical systems using these sym-
metries, we first represent the points on P d via quinary numbers, meaning that each
point is represented by a sequence of terms from {0, 1, 2, 3, 4}. Then we obtain the
expressions of the symmetries of pentagon in Proposition 1 and define the family of
the dynamical system {P d;F} via code representations of the points in Definition 1.
Furthermore, we give the forms of some periodic points and verify Devaney’s chaos
conditions (see detail [10]) for this family in Lemma 1 and Theorem 1, respectively.
Finally, we examine the topological conjugacy of the dynamical systems through
Theorem 3.

2. A dynamical system family on P d via the elements of sym-
metry group D5

In this part, we first introduce a discrete pentagon fractal and representations of
its points via quinary numbers. To construct pentagon fractal, we begin with an
equilateral pentagon scaling it down by a certain scale factor and then translating

it into five copies. If the scale factor is r = 3−
√
5

2 , the classical pentagon fractal
(pentagasket or Sierpinski pentagon) is obtained as the attractor of the iterated
function systems {R2; f0, f1, f2, f3, f4}, where

f0(x, y) = (rx, ry)

f1(x, y) = (rx+ 0.618, ry)

f2(x, y) = (rx+ 0.809, ry + 0.588)

f3(x, y) = (rx+ 0.309, ry + 0.951)

f4(x, y) = (rx− 0.191, ry + 0.588) .

Using smaller scale factors than r, different discrete pentagon fractals can be
obtained; one of them is illustrated in Figure 1.

We now define the code sets of the pentagon fractal, P d0 , P
d
1 , P

d
2 , P

d
3 , P

d
4 such as

fi(P
d) = P di , where i = 0, 1, 2, 3, 4. For any α = α1α2α3 . . . αk ∈ {0, 1, 2, 3, 4}k,
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Step 0 Step 1 Step 2

Step 3 Step 4

Figure 1: The first four steps of the construction of a discrete pentagon fractal.

P dα = fα(P d), where fα = fα1 ◦ fα2 ◦ fα3 ◦ · · · ◦ fαk
. The code set of P dα refers to the

kth level sub-pentagon. Unquestionably, P dα1
, P dα1α2

, P dα1α2α3
, . . . , P dα1α2α3...αk

. . . are
nested sets respectively. Thus, these sets of sequences intersect at a unique point
A ∈ P d. This point is redefined as α1α2α3 . . . , which is called the code representation
of A. Since P d is totally disconnected, every point has a unique code representation
on P d (for details, see Figure 3 and Figure 2).

In this section, we first represent the elements of D5, which is a symmetry group
of the equilateral pentagon, via code representations. It is well known that half of
the elements of D5, ρ0, ρ1, ρ2, ρ3, ρ4, are counterclockwise rotational of 0◦, 72◦,
144◦, 216◦, 288◦, and the others, µ1, µ2, µ3, µ4, and µ5 are axial symmetries with
respect to the lines in Figure 3, respectively.

Proposition 1. Let the code representations of the points X and Y on P d be
x1x2x3 . . . and y1y2y3 . . . for xi, yi ∈ {0, 1, 2, 3, 4}, respectively. Then, the elements
of D5 are redefined via the code representations as follows:

ρ0(X) = Y ⇔ yi ≡ xi (mod 5)

ρ1(X) = Y ⇔ yi ≡ xi + 1 (mod 5)

ρ2(X) = Y ⇔ yi ≡ xi + 2 (mod 5)

ρ3(X) = Y ⇔ yi ≡ xi + 3 (mod 5)

ρ4(X) = Y ⇔ yi ≡ xi + 4 (mod 5)

µ1(X) = Y ⇔ yi ≡ 4xi + 1 (mod 5)

µ2(X) = Y ⇔ yi ≡ 4xi + 2 (mod 5)

µ3(X) = Y ⇔ yi ≡ 4xi + 3 (mod 5)
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µ4(X) = Y ⇔ yi ≡ 4xi + 4 (mod 5)

µ5(X) = Y ⇔ yi ≡ 4xi (mod 5).

Proof. By using the code representations of the points and the geometrical illustra-
tions for the pentagon fractal (Figure 2, Figure 3), one can easily verify the above
expressions of the symmetries. The images of P d0 , P

d
1 , P

d
2 , P

d
3 , P

d
4 under the mapping

ρ3 indicating the rotation of 144◦ become P d3 , P
d
4 , P

d
0 , P

d
1 , P

d
2 , respectively. This

means that other cases for rotational symmetries can be shown by observing the
paths of green, blue, yellow, colorful and dark blue parts in Figure 2, while the cases
for axial symmetries can be observed in Figure 3.

Figure 2: Rotational symmetries on P d and the image of some points under these symmetries.

In order to construct a dynamical system family {P d;F} on the pentagon fractal,
the function F is defined by using the composition of the elements of D5 with the
shift map. Then {P d;F} is expressed via quinary numbers as follows:

Definition 1. Let fiαj
i

be the elements of D5 and αji an array with j terms of

quinary numbers for i = 0, 1, 2, 3, 4 and j = 0, 1, 2, . . .. Then {P d;F} is a family of
dynamical systems, where F : P d → P d is expressed as

F (X) =



σk+1f0αk
0
(X) , X ∈ P d

0αk
0

σl+1f1αl
1
(X) , X ∈ P d

1αl
1

σm+1f2αm
2

(X) , X ∈ P d2αm
2

σr+1f3αr
3
(X) , X ∈ P d3αr

3

σs+1f4αs
4
(X) , X ∈ P d4αs

4

.
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Figure 3: Axial symmetries on P d and the image of some points under these symmetries.

Although there are 105
k+5l+5m+5r+5s number of different dynamical systems,

some of them can be topologically equivalent. Thus, we investigate these systems in
terms of topological conjugacy in the next section.

For the case k = 0, l = 0, m = 0, r = 0, s = 0, there are 105 dynamical systems
and F : P d → P d is defined as

F (x) =


σf0(X) , X ∈ P d0
σf1(X) , X ∈ P d1
σf2(X) , X ∈ P d2
σf3(X) , X ∈ P d3
σf4(X) , X ∈ P d4

.

In the case k = 0, l = 0, m = 0, r = 1, s = 0, the number of different dynamical
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systems is 109. The dynamical system family is defined as F : P d → P d such that

F (X) =


σf0(X) , X ∈ P d0
σf1(X) , X ∈ P d1
σf2(X) , X ∈ P d2

σ2f3α1
3
(X) , X ∈ P d

3α1
3

σf4(X) , X ∈ P d4

=



σf0(X) , X ∈ P d0
σf1(X) , X ∈ P d1
σf2(X) , X ∈ P d2
σ2f30(X) , X ∈ P d30
σ2f31(X) , X ∈ P d31
σ2f32(X) , X ∈ P d32
σ2f33(X) , X ∈ P d33
σ2f34(X) , X ∈ P d34
σf4(X) , X ∈ P d4

. (1)

According to a specified dynamical system for F given in (1), the movement of some
code sets can be observed in Figure 4 and Figure 5.

24

d
P24
d
P24

22

d
P

23

d
P

20

d
P 21

d
P

4sr

d
P 4 2( )dPsr

Figure 4: The image of P d
2 , where f2 = ρ4 for the dynamical system given in (1).

In the following lemma, we introduce the form of some periodic points of {P d;F}.
Thanks to the given forms, we can find a periodic point close enough to any arbitrary
points of F.

Lemma 1. Let the code representation of a point X on the discrete pentagon fractal
P d be denoted by x1x2x3 . . ., where each xi ∈ {0, 1, 2, 3, 4} and {P d;F} is the family
of dynamical systems such that

F (X) =



σk+1f0αk
0
(X) , X ∈ P d

0αk
0

σl+1f1αl
1
(X) , X ∈ P d

1αl
1

σm+1f2αm
2

(X) , X ∈ P d2αm
2

σr+1f3αr
1
(X) , X ∈ P d1αr

1

σs+1f4αs
1
(X) , X ∈ P d1αs

1

,

where fiαj
i
∈ D5, α

j
i ∈ {0, 1, 2, 3, 4}j for i = 0, 1, 2, 3, 4 and j = 0, 1, 2, . . .. Here,

Fn(X) = (σp ◦ fi)(X) represents the n-times composition and p depends on t and
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Figure 5: The image of P d
30, where f30 = µ4 for the dynamical system given in (1).

T, where t = min{k, l,m, r, s} and T = max{k, l,m, r, s} such that n(t + 1) ≤ p ≤
n(T + 1). Thus, some periodic points can be expressed in the following forms:

Case 1: If Fn(X) = (σp ◦ ρ0)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xn . . . xp.

Case 2: If Fn(X) = (σp ◦ ρ1)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(x1 + 4)(x2 + 4) . . . (xp + 4)(x1 + 3)(x2 + 3)

. . . (xp + 3)(x1 + 2)(x2 + 2) . . . (xp + 2)(x1 + 1)(x2 + 1) . . . (xp + 1).

Case 3: If Fn(X) = (σp ◦ ρ2)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(x1 + 3)(x2 + 3) . . . (xp + 3)(x1 + 1)(x2 + 1)

. . . (xp + 1)(x1 + 4)(x2 + 4) . . . (xp + 4)(x1 + 2)(x2 + 2) . . . (xp + 2).

Case 4: If Fn(X) = (σp ◦ ρ3)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(x1 + 2)(x2 + 2) . . . (xp + 2)(x1 + 4)(x2 + 4)

. . . (xp + 4)(x1 + 1)(x2 + 1) . . . (xp + 1)(x1 + 3)(x2 + 3) . . . (xp + 3).

Case 5: If Fn(X) = (σp ◦ ρ4)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(x1 + 1)(x2 + 1) . . . (xp + 1)(x1 + 2)(x2 + 2)

. . . (xp + 2)(x1 + 3)(x2 + 3) . . . (xp + 3)(x1 + 4)(x2 + 4) . . . (xp + 4).

Case 6: If Fn(X) = (σp ◦µ1)(X), then one of the n-periodic points takes the form:

x1x2x3 . . . xp(4x1 + 1)(4x2 + 1)(4x3 + 1) . . . (4xp + 1).
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Case 7: If Fn(X) = (σp ◦ µ2)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(4x1 + 2)(4x2 + 2)(4x3 + 2) . . . (4xp + 2).

Case 8: If Fn(X) = (σp ◦ µ3)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(4x1 + 3)(4x2 + 3)(4x3 + 3) . . . (4xp + 3).

Case 9: If Fn(X) = (σp ◦ µ4)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(4x1 + 4)(4x2 + 4)(4x3 + 4) . . . (4xp + 4).

Case 10: If Fn(X) = (σp ◦ µ5)(X), then one of the n-periodic points takes the
form:

x1x2x3 . . . xp(4x1)(4x2)(4x3) . . . (4xp).

Proof. Since the other cases can be proven in a similar manner, we only show Case
5:

Fn(x1x2x3 . . . ) = (σp ◦ ρ4)(x1x2x3 . . . .).

This means

Fn(x1x2x3 . . .) = (σp ◦ ρ4)(x1x2x3 . . . )

= (xp+1 + 4)(xp+2 + 4)(xp+3 + 4) . . . .

To find n periodic points, we solve the following equality: Fn(x1x2x3 . . . ) = x1x2x3 . . . .
We thus get xi ≡ xp+i + 4 (mod 5), equivalently xp+i ≡ xi + 1 (mod 5) for i =
1, 2, 3, . . . , p.

Similarly, we compute F 2n(x1x2x3 . . . ), F
3n(x1x2x3 . . . ), F

4n(x1x2x3 . . . ) and
F 5n(x1x2x3 . . . ) to follow repeating terms. By solving F 2n(x1x2x3 . . . ) = x1x2x3 . . . ,

F 2n(x1x2x3 . . . ) = (σ2p ◦ ρ24)(x1x2x3 . . . )

= σ2p((x1 + 3)(x2 + 3)(x3 + 3) . . . )

= (x2p+1 + 3)(x2p+2 + 3)(x2p+3 + 3) . . . ,

we obtain xi ≡ x2p+i + 3 (mod 5), which means x2p+i ≡ xi + 2 (mod 5) for i =
1, 2, 3, . . . , p.

Analogously, from the equalities F 3n(x1x2x3 . . . ) = x1x2x3 . . . , F
4n(x1x2x3 . . . ) =

x1x2x3 . . . and F 5n(x1x2x3 . . . ) = x1x2x3 . . . , we have x3p+i ≡ xi + 3 (mod 5),
x4p+i ≡ xi + 4 (mod 5) and x5p+i ≡ xi (mod 5) for i = 1, 2, 3, . . . , p, respectively.

Consequently, we conclude that the terms are repeated after the first 5p blocks
and n−periodic points are expressed in the following form:

x1x2 . . . xp(x1 + 1)(x2 + 1) . . . (xp + 1)(x1 + 2)(x2 + 2)

. . . (xp + 2)(x1 + 3)(x2 + 3) . . . (xp + 3)(x1 + 4)(x2 + 4) . . . (xp + 4).
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Theorem 1. In a family of dynamical systems defined in (1), {P d;F} is chaotic in
the sense of Devaney.

Proof. Based on the statement about chaos conditions in [8], it is enough to show
that {P d;F} is topologically transitive and the sets of periodic points are dense. If
F is continuous, then the above properties imply sensitivity dependence on initial
conditions. Furthermore, density of periodic points is automatically satisfied thanks
to the cases given in Lemma 1. One can easily find a periodic point close enough to
any arbitrary points.

We only need to prove that {P d;F} is topologically transitive. Let us choose
two non-empty open sets U and V ∈ P d. Since P d is a self-similar set, any ball for
every point on P d consists of a small copy of itself. Thus, there is a sub-pentagon
fractal at level p:

P d
a1a2a3...ap

= {a1a2a3 . . . apxp+1xp+2xp+3 . . . |xi ∈ {0, 1, 2, 3, 4} are arbitrary}

such that P da1a2a3...ap ⊆ U. There also exists a number n, where n(t + 1) ≤ p ≤
n(T + 1), satisfying t = min{k, l,m, r, s} and T = max{k, l,m, r, s}, such that

Fn(P da1a2a3...ap) = {x
′

p+1x
′

p+2x
′

p+3 . . . |x
′

i ∈ {0, 1, 2, 3, 4} are arbitrary}.

Then we conclude that

P d = Fn(P da1a2a3...ap) ⊆ Fn(U)

which implies Fn(U) = P d. This means that it is possible to find a natural number
n such that Fn(U) ∩ V 6= ∅. This completes the proof.

3. Classification of topologically conjugate dynamical systems
on P d

In order to classify topologically conjugate dynamical systems in Definition 1, we
firstly specify the conjugacies between the elements of D5 and the conjugate maps.
We first recall the definition of conjugate map and the theorem expressing the rela-
tion of topologically conjugate dynamical systems.

Definition 2. Let (X, d1) and (Y, d2) be two metric spaces and f : X → X and
g : Y → Y two functions. If there is a homeomorphism h such that h ◦ f = g ◦ h,
then f and g are topologically conjugate maps denoted by f ≈h g; here h is called
conjugacy ([10, 11]).

Definition 3. If f : X → X and g : Y → Y are topologically conjugate, f ≈h g,
then {X; f} and {Y ; g} are topologically conjugate dynamical systems via conjugacy
h.

Theorem 2. ([10, 11]) Let f : X → X and g : Y → Y be topologically conjugate
via h. Then the following statements hold:

i. If {x1, x2, . . . , xn} is an n-periodic cycle for f , then {h(x1), h(x2), . . . , h(xn)}
is an n-periodic cycle for g;
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ii. If and only if f is topologically transitive, g is topologically transitive;

iii. If and only if the set of periodic points of f are dense in X, the set of periodic
points of g are dense in Y.

We determine the conjugate maps of D5 with the following lemma.

Lemma 2. Some elements of D5 are topologically equivalent through the following
homeomorphisms h:

i. µ1 ≈ρ3,µ4
µ2, µ1 ≈ρ1,µ2

µ3, µ1 ≈ρ4,µ5
µ4, µ1 ≈ρ2,µ3

µ5,

ii. µ2 ≈ρ2,µ4 µ1, µ2 ≈ρ3,µ5 µ3, µ2 ≈ρ1,µ3 µ4, µ2 ≈ρ4,µ1 µ5,

iii. µ3 ≈ρ4,µ2
µ1, µ3 ≈ρ2,µ5

µ2, µ3 ≈ρ3,µ1
µ4, µ3 ≈ρ1,µ4

µ5,

iv. µ4 ≈ρ1,µ5
µ1, µ4 ≈ρ3,µ3

µ2, µ4 ≈ρ2,µ1
µ3, µ4 ≈ρ3,µ2

µ5,

v. µ5 ≈ρ3,µ3 µ1, µ5 ≈ρ1,µ1 µ2, µ5 ≈ρ4,µ4 µ3, µ5 ≈ρ2,µ2 µ4,

vi. ρ1 ≈µi
ρ4, ρ2 ≈µi

ρ3, ρ3 ≈µi
ρ2, ρ4 ≈µi

ρ1 for i = 1, 2, 3, 4, 5.

Proof. We give the proof for µ1 ≈ρ3 µ2 in Case (i).

Let the code representation of X ∈ P d be x1x2x3 . . . , where xi ∈ {0, 1, , 2, 3, 4}
for i = 1, 2, 3, . . . . If µ1 and µ2 are topologically conjugate maps via conjugacy ρ3,
then the following equality holds:

(ρ3 ◦ µ1)(x) = (µ2 ◦ ρ3)(X).

On the other hand, by using the symmetries

µ1(X) =y ⇔ yi ≡ 4xi + 1 (mod 5),

µ2(X) =y ⇔ yi ≡ 4xi + 2 (mod 5)

and

ρ3(X) = y ⇔ yi ≡ xi + 3 (mod 5),

we obtain

(ρ3 ◦ µ1)(X) = ρ3((4x1 + 1)(4x2 + 1)(4x3 + 1) . . . )

= (4x1 + 4)(4x2 + 4)(4x3 + 4) . . .

(µ2 ◦ ρ3)(X) = µ2((x1 + 3)(x2 + 3)(x3 + 3) . . . )

= (4x1 + 4)(4x2 + 4)(4x3 + 4) . . . .

Therefore, (ρ3 ◦ µ1)(X) = (µ2 ◦ ρ3)(X) holds, which means that µ1 and µ2 are
topologically equivalent via conjugacy ρ3.
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Throughout this study, we denote the conjugate maps of f by f∼. For instance,
according to Lemma 2, we thus note that the conjugate maps of µ1 are denoted by
µ1∼, which are µ2, µ3, µ4 and µ5. The relationships of conjugate maps of ρi are
ρ1∼ = ρ4, ρ4∼ = ρ1, ρ2∼ = ρ3, ρ3∼ = ρ2.

We now give a practicable theorem to classify topologically conjugate dynamical
systems.

Theorem 3. Let fi, gi be elements of the symmetry group D5 for i = 0, 1, 2, 3, 4.
{P d; f} and {P d; g} are topologically conjugate dynamical systems via homeomor-
phism h, where

f : P d → P d, f(x) =


f0(X) , X ∈ P d0
f1(X) , X ∈ P d1
f2(X) , X ∈ P d2
f3(X) , X ∈ P d3
f4(X) , X ∈ P d4

,

g : P d → P d, g(x) =



g0(X) , X ∈ P dh(0)
g1(X) , X ∈ P dh(1)
g2(X) , X ∈ P dh(2)
g3(X) , X ∈ P dh(3)
g4(X) , X ∈ P dh(4)

if the conditions below are satisfied:

i. gi = ρ0 if fi = ρ0 for i = 1, 2, 3, 4

ii. Otherwise, gi = fi or gi = fi∼ for i = 1, 2, 3, 4.

Proof. i. Since ρ0 is an identity element, the proof is clear.
ii. Let fi 6= ρ0 and fi ∈ {ρ1, ρ2, ρ3, ρ4}. Then either gi = fi according to the

commutative property such that ρm ◦ ρn = ρn ◦ ρm, where ρm, ρn 6= ρ0 for m 6= n or
gi = fi∼ from Lemma 2.

If fi ∈ {µ1, µ2, µ3, µ4, µ5}, then gi must only be fi∼ from Lemma 2 that satisfies
(h ◦ fi)(x) = (gi ◦ h)(x) for any x ∈ P d.

Corollary 1. Let f and g be topologically equivalent in terms of Theorem 3. Then
the composition of f and g with the shift map given as F = σ ◦ f and G = σ ◦ g is
also topologically conjugate.

We discuss the following examples in terms of topologically conjugacy and peri-
odic points.

Example 1. Suppose that the functions are defined as

f : P d → P d, f(X) =


µ2(X) , X ∈ P d0
ρ1(X) , X ∈ P d1
ρ3(X) , X ∈ P d2
ρ0(X) , X ∈ P d3
µ5(X) , X ∈ P d4

,
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g : P d → P d, g(X) =


µ3(X) , X ∈ P d0
ρ0(X) , X ∈ P d1
ρ2(X) , X ∈ P d2
ρ4(X) , X ∈ P d3
µ1(X) , X ∈ P d4

.

Then, the dynamical systems F = σ ◦ f and G = σ ◦ g are topologically equivalent
via h = µ4.

One can compute the fixed points of F as 02, 10432, 24130, 3, 41, by using the
definition of F. On the other hand, the fixed points of G can be calculated in an
easier way via homeomorphism µ4 such that

µ4(02) = 42, µ4(10432) = 34012, µ4(24130) = 20314, µ4(3) = 1, µ4(41) = 03.

On the other hand, the dynamical system

T (X) =



σµ4(X) , X ∈ P d0
σ2µ1(X) , X ∈ P d10
σ2µ5(X) , X ∈ P d11
σ2ρ2(X) , X ∈ P d12
σ2ρ0(X) , X ∈ P d13
σ2µ2(X) , X ∈ P d14
σρ3(X) , X ∈ P d2
σµ3(X) , X ∈ P d3
σρ4(X) , X ∈ P d4

on P d is not topologically conjugate with both F and G since {P d;T} has a different
number of fixed points than {P d;F} and {P d;G}. The fixed points of T are 04, 1001,
1144, 1240230134, 13, 1413, 24130, 30, 40123.

In addition, you can observe that the fixed points 24130 and 40123 are compatible
with the forms given in Case 4 and Case 5 of Lemma 1, respectively. One can
compute and check the other periodic points according to Lemma 1.

4. Conclusion

In this paper, we define a new family of chaotic dynamical systems on the discrete
pentagon fractal P d via the elements of D5 and a shift map. We also find useful
forms to compute the periodic points of {P d;F} in Lemma 1. Considering this
study, the method can be generalized for the discrete n-flake fractal via symmetry
groups of any n−gon.
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[5] N.Aslan, İ. Aslan, Approximation to the classical fractals by using non-affine con-
traction mappings, Port. Math. 79(2022), 45–60.

[6] N.Aslan, F.D.Koparal, M. Saltan, Y. Özdemir, B. Demir, A family of chaotic
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