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Abstract 
Designing effective and accurate analytical techniques to determine hydrazine is essential 
for preserving the environment. Herein, an electrochemical sensor based on a carbon 
paste electrode (CPE) modified with SnS2 nanoplates (SnS2NPs) and ionic liquid (IL) was 

presented for determination of hydrazine in water samples. The SnS2NPs were synthesized 
using the hydrothermal method and characterized through field emission scanning 
electron microscope, Fourier transform infrared spectrometer and energy dispersive 
spectroscopy. The use of cyclic voltammetry in electrochemical investigations has shown 
that incorporating IL and SnS2NPs in an electrochemical sensor significantly improves its 
efficiency. These results in a considerable increase in the oxidation peak current and a 

decrease in the oxidation peak potential of hydrazine compared to an unmodified CPE. 
The method of differential pulse voltammetry was utilized to accurately measure the 

quantity of hydrazine. The SnS2NPs/ILCPE showed improved sensing capabilities, resulting 
in a noticeable sensitivity of 0.0747 µA/µM and a low limit of detection of 0.05 µM for a 
broad linear range of hydrazine concentration from 0.08 µM to 450.0 µM. In addition, the 

SnS2NPs/ILCPE sensor was successfully utilized to measure the amount of hydrazine 
present in water samples, with a recovery range of 96.0 to 104.4 %. The relative standard 
deviation was found to be lower than 3.6 % (n = 5), indicating that the developed sensor 
is suitable for accurately determining hydrazine in water samples with high sensitivity. 
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Introduction 

According to the World Health Organization (WHO) and the United States Environmental 

Protection Agency (USEPA), hydrazine (N2H4) and its derivatives are recognized as strong 

carcinogens, with a maximum allowable concentration of 0.1 ppm. Hydrazine is a crucial chemical 

that acts as a potent reducing agent. These harmful chemicals are frequently present in aerospace, 

military, agriculture, pharmaceutical, and industrial environments, especially in industrial and 

agricultural sewage [1-5]. It is important to note that hydrazine is highly mutagenic and carcinogenic, 

causing severe problems in the liver and brain. It can also damage deoxyribonucleic acid (DNA) and 

affect the nervous system [5-7]. In addition to its high solubility, there is significant concern 

regarding hydrazine contamination of soil and water [8]. Considering the environmental concerns, 

it is important to develop simple, fast, and low-cost methods for the determination of hydrazine in 

water samples to aid in environmental monitoring and control. Therefore, it is necessary to develop 

an effective extraction method before a powerful analytical performance for the preconcentration 

and determination of pollutants by gas chromatography-mass spectrometry, fluorescence spectro-

scopy, flow injection analysis, high-performance liquid chromatography, and colorimetry [8-13]. 

Some methods offer high accuracy, sensitivity, and selectivity. However, their usage can be chal-

lenging due to time-consuming measurement processes, high-cost instruments, and a need for 

highly skilled technicians.  

An electrochemical approach is reliable for detecting hydrazine with enough precision and 

sensitivity. To meet this need, the creation of a top-performing hydrazine sensor is a priority. This 

has spurred efforts to produce a crucial electrochemical sensor capable of effectively and 

simultaneously identifying hydrazine. The simplicity, affordability, real-time capability, efficiency, 

and sensitivity of electrochemical detection make it the preferred method for analyzing compounds 

within a broad range of operations [14-23]. This is because they limit their extensive applications. 

Solid carbon-based electrodes are widely used in electroanalysis due to their low background 

current, broad potential window, low cost, rich surface chemistry, chemical inertness and suitability 

for various sensing and detection applications [23-25].  

Carbon paste electrodes (CPEs) are prepared by mixing graphite powder and pasting liquid such 

as paraffin oil. The advantages of CPEs have recently drawn the attention of researchers, who have 

exploited these advantages for a variety of measurements, especially voltammetry, as evidenced by 

numerous studies [26-29]. The modification of electrodes through the development and application 

of functional materials is crucial to enhance their electrochemical performance. These materials 

should provide high electrical conductivity, high surface area, and compatibility [30-32].  

Nanostructured materials have outstanding potential for use as base materials in emerging tech-

nologies. Nanomaterials have become increasingly popular in recent years for use in electrochemical 

sensing applications. This is due to their excellent catalytic activity, high adsorption capacity, high 

surface-to-volume ratio, and high electrical conductivity compared to their bulk counterparts [34-37]. 

Various types of electrode modifiers have been employed to develop high-performance 

electrochemical sensors. These modifiers include carbon nanomaterials like fullerene, graphene, and 

carbon nanotubes, metal and metal oxide nanoparticles, metal chalcogenides, metal -organic 

frameworks, and many others. Among these, layered metal dichalcogenides are a relatively new class 

of 2D materials with unique thickness-dependent band gaps and exceptional electrochemical and 

thermal properties. As a result, they have been widely used in various applications [38-40]. Tin 

disulfide (SnS2) is a type of layered metal dichalcogenide. It is a well-known n-type semiconductor with 

an indirect bandgap of 2.43 eV [41]. Due to its non-toxic, chemically stable, and excellent physical and 
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chemical properties [42], SnS2 has been widely utilized in the manufacturing of batteries [43], 

supercapacitors [44], gas sensors [45], photocatalysts [46], and electrochemical sensors [47-49]. An 

ionic liquid (ILs) has become a popular choice for volumetric analysis design due to its unique features, 

including possible catalytic activity, electrochemical stability, low toxicity, and excellent conductivity 

[50,51]. In CPE preparation, IL can fully replace pasting liquid and act as a binder. IL can be used as an 

additional component of CPE. It has been reported that an IL-based CPE performs better than 

conventional CPEs, which contain non-conductive binders, such as paraffin oil.  

The objective of this study was to determine hydrazine levels using an SnS2NPs/IL-modified CPE 

sensing platform with electrochemical performance and to test it for the analysis of hydrazine in 

some water samples. 

Experimental 

Instrumentation 

In this work, the AUTOLAB PGSTAT 302N potentiostat/galvanostat was used for electrochemical 

investigations. A reference electrode of Ag/AgCl/3.0 M KCl was utilized. Pt wire and SnS2 nano-

particles were used as the counter and working electrodes, respectively, in an electrochemical cell. 

Electrochemical data were processed using GPES software. 

Reagents 
Graphite powder, paraffin oil, IL (n-hexyl-3-methylimidazolium hexafluoro phosphate), sodium 

hydroxide, and phosphoric acid were obtained from Sigma-Aldrich. Merck company provided tin (II) 

chloride dihydrate (SnCl22H2O), thiourea and other reagents for the synthesis of SnS2NPs. 

Synthesis of SnS2 NPs 

SnS2 nanoparticles were synthesized using a straightforward hydrothermal method. 2 mmol of 

SnCl22H2O (0.45 g) and 12 mmol of SC(NH2)2 (0.91 g) were dissolved in 80 mL of deionized water 

under magnetic stirring for 15 minutes. After being prepared, the solution was placed in a Teflon-

lined stainless steel autoclave and subjected to hydrothermal treatment at 190ºC for 12 hours. After 

being allowed to cool naturally to ambient temperature, the resulting precipitate was collected 

using centrifugation, washed multiple times with ethanol and deionized water, and then dried under 

vacuum at 70 °C for 15 hours. 

Preparation of modified CPE 

The SnS2NPs/ILCPE was prepared by mixing graphite powder and SnS2NPs in the ratio of 

95:5 (w/w) and paraffin oil and IL in the ratio of 8:2 (v/v). The mixture was then homogenized in an 

agate mortar using a pestle. The obtained paste was packed in a glass tube, and a copper wire was 

used for electrical contact. 

Results and discussion 

Characterization of SnS2NPs 

The FTIR spectrum of SnS2 nanoparticles was collected in the range of 400 to 4000 cm-1 and 

presented in Figure 1. The absorption peak at 622 cm-1 corresponds to the Sn-S stretching vibration. 
Stretching vibration and bending vibration of -OH groups from free or adsorbed solvent molecules 

can be observed at around 1630 and 3437 cm-1, respectively. 
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Wavenumber, cm-1 

Figure 1. FT-IR spectrum of SnS2 NPs 

The morphology and structure of the SnS2 nanoparticles that were prepared were studied using 

FE-SEM (as shown in Figure 2). The SnS2 displayed a layered structure that was two-dimensional 

(2D). Additionally, the SnS2 nanoparticles were stacked on top of each other, creating a flower-like 

morphology. Figure 3 revealed Sn and S as the main elements in the structure of SnS2. 

 
Figure 2. FE-SEM images of SnS2NPs at different magnifications 

Tr
an

sm
it

ta
n

ce
, a

.u
. 



A. Haji Alizadeh et al. J. Electrochem. Sci. Eng. 14(5) (2024) 617-630 

http://dx.doi.org/10.5599/jese.2350  621 

 
Energy, keV 

Figure 3. EDS spectrum of SnS2NPs 

Electrochemical behavior of hydrazine at the surface of various electrodes 

Recorded voltammograms of hydrazine were investigated at SnS2NPs/ILCPE under different pH 

values (4-9) of 0.1 M phosphate buffer solution (PBS) to study pH effects. Based on the results 

obtained, it was found that the oxidation potential decreased with an increase in pH. This suggests 

that protons play a crucial role in the oxidation mechanism process of hydrazine. Moreover, the 

electrochemical studies and measurements showed that the highest peak current was observed at 

pH 7.0, which is considered the optimum pH in all experiments. 

In the next step, the response of hydrazine was recorded on the surface of unmodified CPE 

(Figure 4, curve a), and SnS2NPs/ILCPE (Figure 4, curve b). At the SnS2NPs/ILCPE surface, the 

oxidation potential of hydrazine was reduced compared to unmodified CPE. In addition, the 

modification of CPE resulted in an enhancement of the oxidation current of hydrazine. These 

observations can be related to the improvement in surface area along with the enhancement of the 

electrical conductivity of the modified CPE due to the presence of SnS2NPs and IL. 

 
Figure 4. Cyclic voltammograms at 50 mV s-1 of 100.0 µM hydrazine recorded at the surface of:  

(-) unmodified CPE and (-) SnS2NPs/ILCPE  
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Effect of potential scan rate 

The voltammograms of hydrazine were recorded on the surface of SnS2NPs/ILCPE, with a scan rate 

range of 10 to 400 mV s-1, Figure 5. The regression linear equation Ipa = 1.0693v1/2 - 0.3468 was obtained 

(Figure 6), indicating that the oxidation reaction of hydrazine is a diffusion-controlled process.  

 
Figure 5. Cyclic voltammograms of 75.0 µM hydrazine on SnS2NPs/ILCPE at different scan rates:  

(a) 10, (b) 25, (c) 50, (d) 75, (e) 100, (f) 200, (g) 300, and (h) 400 mV s-1 

 
Figure 6. The relationship between Ipa and v1/2 for electro-oxidation of 75.0 µM hydrazine on SnS2NPs/ILCPE 

Chronoamperometric studies 

During the hydrazine oxidation process on the surface of SnS2NPs/ILCPE, the chronoamperometric 

method with an applied potential of 850 mV was used to determine the diffusion coefficient (D) of 

hydrazine (Figure 7). Figure 8 illustrates the Cottrell plots relative to hydrazine oxidation on the surface 

of modified CPE. Then, a linear dependence was observed for the slopes of Cottrell plots when plotted 

against the corresponding concentrations of hydrazine (Figure 9). Using the obtained slope and based 

on the Cottrell equation, the value of D was calculated to be about 3.9×10-6 cm2 s-1. 
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Figure 7. Chronoamperograms of: (a) 0.1, (b) 0.2, (c) 0.33 and (d) 0.43 mM hydrazine recorded at 

SnS2NPs/ILCPE 

 
Figure 8. Cottrell plots obtained from chronoamperograms in Fig. 7  

 
Figure 9. Slopes of Cottrell plots in Figure 8 against hydrazine concentration  
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Differential pulse voltammetry (DPV) measurements 

Differential pulse voltammograms (DPVs) of hydrazine on the surface of SnS2NPs/ILCPE are 

shown in Figure 10. DPV measurements were performed for different hydrazine concentrations 

using optimized parameters (step potential (0.01 V) and pulse amplitude (0.025 V)). It is observed 

that there was a linear relationship between current and hydrazine concentration in the range of 

0.08-450.0 μM, with the regression linear equation: Ipa = 0.0747 CHydrazine + 1.0918 (R2 = 0.9995) (as 

shown in Figure 11). The limit of detection (LoD) was calculated based on Equation (1): 

LoD = 3S/m (1) 

where m is the slope value obtained from the calibration plot and S is the standard deviation 

(9 measurements of blank solution). The LoD was found to be 0.05 μM.  

 
Figure 10. DPVs of hydrazine at concentrations of (a) 0.08; (b) 2.5; (c) 7.5; (d) 15.0; (e) 30.0; (f) 50.0;  

(g) 75.0; (h) 100.0; (i) 150.0; (j) 200.0; (k) 250.0; (l) 300.0; (m) 350.0; (n) 400.0 and (o) 450.0 µM 

 
Figure 11. Plot of Ipa as a function of hydrazine concentration 

Table 1 shows the analytical performance of the designed sensor in this work in comparison to 

earlier hydrazine sensors already reported in the literature.  
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Table 1. Analytical performances of different electrode-based assays for hydrazine detection 

Modified electrode Linear range LoD, µM Ref. 

SnS2NPs/ILCPE 0.08 to 450.0 µM 0.05 µM This work 
NiCo-layered double hydroxides@hierarchical  

Ni nanowires/glassy carbon electrode 
10 µM to 8 mM 0.29 µM [15] 

Ag-Ni/reduced graphene oxide/glassy carbon electrode 1.0 μM to 1.05 mM 0.3 μM [17] 
CuO nanosheets decorated the surface of cellulose acetate 

butyrate/glassy carbon electrode 
0.5 to 100 mM 0.15 µM [52] 

Ag@Fe3O4 core-shell nanospheres/glassy carbon electrode 0.25 µM to 3.4 mM 0.06 µM [53] 

Real sample analysis  

The SnS2NPs/ILCPE's ability to detect hydrazine in water samples was tested using a standard 

addition strategy, as shown in Table 2. The recovery values in the range of 96.0 to 104.4 % demon-

strate the developed sensor's strong ability to accurately determine hydrazine in real samples.  

Table 2. Analysis of hydrazine in real water samples using SnS2NPs/ILCPE 

Sample 
Concentration, µM 

Recovery, % RSD, % 
Added Founded 

River water 

5.0 4.9 98.0 3.6 
7.0 7.1 101.4 1.9 

9.0 9.4 104.4 2.5 
11.0 10.9 99.1 2.2 

Tap water 

5.0 5.1 102.0 2.3 
7.5 7.2 96.0 3.5 

10.0 10.4 104.0 1.8 

12.5 12.4 99.2 2.7 

Conclusion 

In this study, we successfully synthesized and characterized SnS2NPs. An efficient electrochemical 

hydrazine sensor was developed by modifying CPE with SnS2NPs and IL. Studies conducted on the 

performance of the modified electrode (SnS2NPs/ILCPE) have yielded positive results by enhancing 

peak current and minimizing peak potential for the oxidation of hydrazine. Additionally, the 

modified CPE has displayed a strong response in determining hydrazine levels. Linear dependence 

between peak current intensity and hydrazine concentration from 0.08 to 450.0 µM was observed 

with a high sensitivity of 0.0747 µA/µM and a LoD of 0.05 µM in the SnS2NPs/ILCPE sensor under 

optimal conditions. The SnS2NPs/ILCPE sensor developed in this study was successfully applied for 

real sample analysis, with satisfactory recovery results (96.0-104.4 %) and low RSD values (≤3.6 %). 
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