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Abstract 
Acetylcholine (ACH) is one of the excitatory neurotransmitter in the human body. It is the 
most abundant neurotransmitter responsible for triggering the activation of postsynaptic 
neurons, leading to an excitatory response. ACH plays a crucial role in various physiological 
processes, including muscle contraction, autonomic nervous system regulation, and 
cognitive functions such as learning and memory. In this study, an electrochemical sensor 
was prepared based on WO3 nanorods modified glassy carbon electrode for the detection 
of ACH. The WO3 nanorods provided excellent properties for the electrochemical 
determination of ACH. The proposed sensor exhibited a wide linear detection range of (0.1 
to 400.0 µM) and a low detection limit of 0.025 µM for ACH. These results demonstrate the 
sensor's high sensitivity in detecting this important neurotransmitter. In addition the 
developed sensor showed good ability for ACH determination in real samples. This study 
offers an innovative strategy for the electrochemical detection of ACH, showcasing the 
potential of nanomaterials in the development of advanced sensing technologies.   
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Introduction 

Acetylcholine (ACH) is a prominent neurotransmitter found throughout the central and 

peripheral nervous systems. ACH is vital for various cognitive processes in the human CNS, including 

memory, learning, attention, sleep, and consciousness. Dysfunction of the cholinergic system has 
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been clinically linked to certain neuropsychiatric disorders, like Alzheimer's, and Parkinson's 

diseases. However, the precise effects of ACH in the brain on cognitive functions and 

neuropsychiatric disorders remain not fully understood. As a result, there is a pressing need to 

develop rapid and sensitive in vivo techniques for measuring ACH [1-3]. To this end, researchers 

have developed a variety of analytical techniques that enable the reliable and quantitative 

determination of ACH concentrations in various biological samples, such as LC-MS/MS, fluorescence 

spectroscopy, high-performance liquid chromatography (HPLC) and colorimetry [4-7]. However, 

these measurement methods are frequently time-consuming, costly, and necessitate extensive 

sample preparation before analysis. Electrochemical techniques offer significant advantages for the 

real-time quantitative analysis of analytes, as they are generally faster, more user-friendly, and can 

provide continuous and reversible responses without interference from the sample [8-15]. 

Electrochemical sensors typically consist of a transducer coated with a chemical or biological 

recognition layer, where the interaction between the target analyte and the sensitive layer provides 

the analytical information [16-25]. 

In recent years, the rapid progress of nanoscience has resulted in the emergence of nano-

materials with distinctive photonic, catalytic, electronic, and magnetic properties owing to their high 

surface area, specific morphologies, and various applications [26-35]. Especially, the high surface-

to-volume ratio, high chemical stability, prominent electrical conductivity, and biocompatibility of 

nanostructures can significantly increase their use in electrochemical sensors and biosensors [36-

46]. Among various nanomaterials, nanostructured tungsten oxides (WO3) have attracted consider-

able attention due to their large surface area and other good properties.  WO3 nanostructures have 

been widely applied in numerous fields, such as gas sensing, photocatalysis, etc. [47-50]. 

In this study, we developed a sensitive and convenient non-enzymatic electrochemical sensor for 

ACH detection. The non-enzymatic electrochemical sensors are very advantageous due to their low 

cost, stability, and easy preparation. The sensor was made by attaching WO3 nanorods (NRs) to the 

surface of the glassy carbon electrode (GCE). The electrocatalytic properties of the sensor WO3-NRs-

modified GCE were investigated using cyclic voltammetry (CV), chronoamperometry and differential 

pulse voltammetry (DPV). WO3 NR/GCE sensor provides a new method for sensitive detection of ACH. 

Experimental 

Instruments and chemicals 

The electrochemical measurements were conducted using an Autolab PGSTAT 302N system (Eco 

Chemie, the Netherlands). A Metrohm pH meter (model 710) was used to measure the pH of the 

solutions. The chemicals, ACH, NaOH, H3PO4 and other chemicals used in the study were of analytical 

grade and were used as received, without any additional purification. These chemicals were 

purchased from Merck and Sigma-Aldrich companies. 

The synthesis and characterization of WO3 NRs were described in our previous work [51]. Figure 

1 shows the FE-SEM image of WO3 NRs. 

Modification of GCE modified with WO3 nanorods  

The bare GCE was carefully pretreated by polishing with an alumina slurry on a polishing cloth. 

After polishing, the electrode was washed with double-distilled water. Next, 1.0 mg of WO3 NR was 

added to 1 mL of double-distilled water. The suspension was then sonicated for approximately 

30 minutes to ensure homogeneous dispersion of the nanorods. Lastly, the solvent was allowed to 

evaporate at room temperature, immobilizing the WO3 NRs immobilized on the GCE surface. This 
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immobilization of the synthesized nanomaterial onto the GCE surface was a crucial step in the 

fabrication of the electrochemical sensor device. 
 

 
Figure 1. FE-SEM image of WO3 NRs 

Results and discussion 

Electrochemical activity of ACH on WO3 NRs/GCE 
The electrochemical characteristics of the WO3 NRc/GCE were investigated using cyclic 

voltammetry (CV). Figure 2 presents a comparison of the CVs obtained using (a) a bare GCE, and (b) 

the WO3 NRc/GCE in phosphate buffer solution (PBS, 0.1M) at pH 7.0 and a scan rate of 50 mV/s.  

 
E / mV vs. Ag/AgCl/KCl 

Figure 2. The CVs of (a) bare GCE and (b) WO3 NR/GCE in the presence of 100.0 μM ACH in  
PBS (0.1 M, pH 7.0) and a scan rate of 50 mV s-1 
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The CV of the bare GCE showed a weak oxidation peak for ACH in the studied potential range. 

Compared to the bare (unmodified) GCE, the WO3 NRs/GCE exhibited significantly higher current 

responses and lower peak potential towards the oxidation of ACH. This enhanced electrochemical 

performance can be attributed to the improved specific surface area provided by the WO3 NRs. The 

integration of the WO3 NRs onto the electrode surface increased the effective surface area available 

for electrochemical reactions. This higher surface area allowed for more efficient electron transfer 

kinetics and redox processes compared to the bare GCE. These results indicate that modifying the 

electrode surface with WO3 NRs/GCE can enhance the sensitivity and reduce the overpotential. 

Figure 3 illustrates the impact of varying scan rates on the oxidation currents of ACH. Increasing 

the scan rate led to an enhancement of the peak currents. Moreover, the linear relationship 

between the peak currents (Ip) and the square root of the scan rate (ν1/2) suggests that the oxidation 

process is diffusion-controlled (Figure 3 inset).  

 

E / mV vs. Ag/AgCl/KCl 
Figure 3. The CVs of a WO3 NRs/GCE in PBS (0.1M, pH 7.0) containing 100.0 μM ACH at various scan rates 
(10 (1), 50 (2), 100 (3), 200 (4), 300 (5), and 400 (6) mV s-1). Inset: the variation of the anodic current as a 

function of the ν1/2 

Chronoamperometry studies 
After the initial analysis of the CV data, a more in-depth investigation was conducted using the 

chronoamperometry (CA) method to determine the diffusion coefficient of ACH at the WO3 NRs-

modified electrode. Figure 4 presents a series of chronoamperograms obtained for ACH over the 

concentration range of 0.1 to 2.0 mM. These measurements were performed at a constant potential 

of 820 mV versus the Ag/AgCl reference electrode, which corresponds to the anodic oxidation of 
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ACH. Experimental plots of current versus the square root of time (t-1/2) were generated, and the 

best-fit lines were obtained for different concentrations of ACH (Figure 4, A). The slopes of these 

linear plots were then plotted against the ACH concentration (Figure 4, B). Using the Cottrell 

equation, the mean value of the diffusion coefficient (D) was calculated from the slope of the plot 

in Figure 4B. The determined value of the diffusion coefficient was 3.1×10-5 cm2 s-1. 

 
Figure 4. The chronoamperograms obtained at the WO3 NRs/GCE in PBS (0.1 M, pH 7.0) for different con-

centrations of ACH ((1) 0.1, (2) 0.3, (3) 0.7, (4) 1.2, and (5) 2.0 mM). Insets: (A) the plots of current versus t-1/2 

obtained from the chronoamperograms and (B) the plot of slopes of the straight lines shown in (A) against the 
ACH concentration 

Calibration curves 

Figure 5 presents the differential pulse voltammetry (DPV) curves of the WO3 NRs/GCE with 

varying concentrations of ACH. As shown in Figure 5, the current of the DPV responses increases 

with the increasing concentration of ACH. The relationship between the current and the 

concentrations of ACH (0.1-400.0 µM) is exhibited in the inset of Figure 5. This linear relationship 

demonstrates the excellent sensitivity of the WO3 NRs/GCE sensor towards ACH. Furthermore, the 

LOD of the WO3 NRs-modified GCE for ACH was determined to be as low as 0.025 μM. These results 

indicate that the WO3 NRs/GCE exhibits exceptional analytical performance, with a wide linear range 

and a remarkably low detection limit for the electrochemical determination of ACH. This highlights 

the potential of the developed sensor for practical applications. 
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Figure 5. The DPVs of the WO3 NR/GCE in PBS (0.1 M, pH 7.0) containing different concentrations of ACH  

(1) 0.1, (2) 2.5, (3) 7.5, (4) 15.0, (5) 30.0, (6) 70.0, (7) 100.0, (8) 200.0, (9) 300.0 and (10) 400.0 μM. Inset: the 

plot of the current as a function of the ACH concentration in the range of 0.1 to 400.0 μM 

Real sample analysis 

Urine samples were collected. The urine samples were then centrifuged at 2000 rpm for 15 

minutes using 10 mL of the sample. The supernatant was filtered through a 0.45 μm filter. A certain 

volume of the filtered supernatant was then transferred to 25 mL volumetric flasks and diluted with 

0.1 M PBS of pH 7.0 up to the mark. Different concentrations of ACH were added to spike the diluted 

urine and ACH tablet samples. The proposed electrochemical method was then used to analyze the 

ACH contents in the spiked urine samples and ACH tablets using the standard addition method. The 

results of this analysis are presented in Table 1. 

Table 1. Determination of ACH on the WO3 NRs/GCE surface in real samples (n = 5). 

Sample 
Concentration, µM 

Recovery, % RSD, % 
Spiked  Found  

ACH tablet 

0 4.8 - 3.5 

1.0 5.7 98.2 2.8 

2.0 7.0 102.9 1.8 

3.0 7.7 98.7 2.2 

4.0 8.9 101.1 2.1 

Urine 

0 - - - 

5.0 5.1 102.0 2.3 

7.0 6.9 98.6 3.0 

9.0 9.1 101.1 2.1 

11.0 11.4 103.6 2.7 

CACH / mM 
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Conclusion 

This work presents a novel electrochemical platform for the quantitative determination of ACH 

using a GCE modified with WO3 NRs. The electrocatalytic performance of the WO3 NRs-modified 

GCE was investigated. The obtained results demonstrated favorable sensitivity, and precision in the 

detection of ACH. Under optimized conditions, the DPV signal exhibited a linear relationship 

between the oxidation current and the concentration of ACH, ranging from 0.1 to 400.0 µM. 

Importantly, a low LOD of 0.025 µM was achieved. This electrochemical probe was successfully 

employed to monitor ACH levels in ACH tablets and urine samples. The excellent analytical 

performance of the WO3 NR-modified GCE highlights its potential for practical applications in the 

quantitative determination of ACH in various biological samples. 
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