
532 TECHNICAL JOURNAL 18, 4(2024), 532-539

ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) Original scientific paper
https://doi.org/10.31803/tg-20230825125127 Received: 2023-08-25, Accepted: 2023-09-12

Reducing ACO Population Size to Increase Computational Speed

Luka Olivari

Abstract: Ant Colony Optimization (ACO) is a powerful metaheuristic algorithm widely used to solve complex optimization problems in production and logistics. This paper presents
a methodology for enhancing the ACO performance when applied to Traveling Salesman Problems (TSP). By reducing the number of ants in the colony, the algorithm's
computational speed improves but solution quality is sacrificed. An optimal number of ants to produce the best results in the shortest time is specific to the problem at hand and
can't be defined generally. This paper investigates the effect of ant population reduction relative to the problem size by measuring its impact on solution quality and execution time.
Results show that for certain problem sizes ant population and execution time can be halved with practically no reduction in solution quality, or they can be reduced 5 times at the
price of slightly worse solution quality. Reduction of ant population is much more impactful on reduction of execution time than it is on solution quality.

Keywords: ACO; Ant Colony Optimization; colony population; number of ants; speed up

1 INTRODUCTION

 Ant Colony Optimization (ACO) is considered to be a
reliable and efficient algorithm for solving many problems in
production such as facility layout design to determine the
optimal arrangement of machines to minimize material
handling; job scheduling on the CNC machines to optimize
the scheduling of jobs on machines in manufacturing
processes, ensuring efficient resource utilization and
minimizing completion times; tool path optimization on
CNC machines to increase production and reduce costs; and
many more problems that can be approximated with
Traveling Salesman Problem (TSP). ACO is also often used
in logistics for Vehicle Routing Problem (VRP) to optimize
the routing and scheduling of vehicles, reducing travel
distances and operational costs.

Both TSP and VRP belong to the NP-hard problem
category [1, 2], implying that solving them using exact
methods becomes significantly more challenging as the
problem size increases. Due to long calculations, exact
methods are not feasible for practical use. Heuristics and
metaheuristics, such as ACO, are used for finding near-
optimal solutions in time acceptable for practical use. Fast
execution time is increasingly important as many of today’s
real-world problems are dynamic in nature, and solutions
need to be found on the go. ACO is considered to be a more
popular algorithm than any other metaheuristics with
publications in highly reputed journals [3] whose
convergence has been analytically proven. [4] These are
some of the reasons why ACO still attracts the attention of
many researchers to further its performance. It's important to
clarify that an algorithm's performance encompasses both
efficiency (finding solutions with minimal resource
consumption, like time) and effectiveness (achieving
solutions with the highest fitness or quality).

ACO population size corresponds to the number of
generated solutions in each iteration. What is called "an ant"
is actually one generated solution by the algorithm in one
iteration. As a larger population means more generated
solutions, it is expected that more ants will have a higher
chance of producing a better-quality solution. Also, a bigger

population means more computational time is needed to
generate all solutions in each iteration.

This research investigates how reducing the ant colony
population relative to the problem size affects the efficiency
and effectiveness of the ACO algorithm when applied to TSP
instances. In essence, the study seeks to optimize the trade-
off between computational speed and solution quality.
Reducing the number of ants in each iteration is expected to
reduce the execution time of the ACO algorithm, with an
expected trade-off of lower solution quality.

The literature survey shows that an optimal number of
ants as an integer is specific to the case at hand and can’t be
defined generally. This paper is unique because it
investigates a number of ants in relation to the size of the
problem in the hope of finding a pattern that can be applied
generally to problems of similar size. A similar research was
conducted but it focused on the Ant Colony System (ACS)
unlike the Ant System (AS) which is a focal point of this
paper.

The aim of this paper is to quantify the impact of
reducing the ant colony population (i.e., the number of ants)
on the efficiency and effectiveness of the Ant System
algorithm, focusing on problem sizes ranging from 100 to
200 nodes. Additionally, it aims to provide guidelines for
enhancing the performance of ACO algorithms used to tackle
similar problems. The novelty of this research lies in its
focused investigation into the impact of population size
reduction in ACO and the identification of population size
“sweet spots” for balancing efficiency and effectiveness in
solving TSP instances.

 The authors hope that the research findings can serve as
benchmark data for comparing the efficiency and
effectiveness of ACO variations and other optimization
algorithms in solving TSP and related problems. Also, these
insights can help practitioners using ACO algorithms for
optimization problems to make it more feasible to find
solutions in dynamic and time-sensitive situations which can
lead to cost savings in terms of increased operational
efficiency and reduced computing resources.

Section 2 provides an overview of the Ant System and
speed-up techniques unique to ACO algorithms, as well as a

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

TEHNIČKI GLASNIK 18, 4(2024), 532-539 533

literature survey. Section 3 presents the time analysis of AS,
details the methodology and experiment, and finally presents
the results of the research. In Section 4, we discuss findings,
present guidelines, and conclude with Section 5.

2 ANT COLONY OPTIMIZATION

Ant Colony Optimization (ACO) is a metaheuristic
framework that incorporates algorithms inspired by the
indirect coordination of ants in nature. Simple agents, ants,
without memory and unaware of each other are able to solve
complex tasks by modifying their environment. Ants
communicate indirectly by depositing pheromone trails and
marking paths from the colony to food sources. Pheromone
quantities on different paths vary. Shorter paths will
accumulate more pheromones than longer paths due to
pheromone evaporation, as it takes an ant more time to travel
the longer path, pheromones will have more time to
evaporate.

If there are multiple possible paths to reach the
destination an ant will select a path semi-randomly based on
pheromone levels. Shorter paths with higher pheromone
concentrations hold a greater probability of selection.
Repeated use of a shorter path results in added pheromones,
increasing its appeal until competing paths lose all
pheromones, rendering them unviable options. The described
mechanism is imitated by ACO to solve complex problems
like TSP and VRP. [5]

ACO metaheuristic framework encompasses a variety of
ant-inspired algorithms, including the Ant System (AS), the
first algorithm in the ACO family proposed in 1992 by Marco
Dorigo in his PhD thesis. [6] AS was introduced to solve the
classical Traveling Salesman Problem (TSP). [7] The
objective of TSP is to find the shortest path while visiting
every city exactly once and then return to the origin. The
problem is represented with a complete graph in which nodes
represent cities. The solution to TSP is a Hamiltonian cycle
of minimal length. Ants in the AS algorithm “move” through
the graph, from node to node, until all nodes are visited, and
ant returns to the starting node. Ants choose the next node
probabilistically based on pheromone levels on edge between
nodes and heuristic information i.e., the distance between
nodes. After the tour is complete, ants mark their path with
pheromones according to path length i.e., solution quality.

To avoid infeasible paths that might have acquired large
pheromone amounts by chance, a pheromone evaporation
mechanism is employed. Before the deposition of
pheromones in the current iteration of the algorithm,
evaporation occurs reducing the overall pheromone levels on
all edges between nodes. The evaporation rate is set to values
between 0 and 1. The 0 represents no evaporation at all, and
1 represents 100% evaporation of pheromones.

Several techniques are available to enhance algorithm
performance, including coding style adjustments, and
algorithm refinements. Usually, coding style speed-up
techniques shouldn’t impact the algorithm’s effectiveness
only its efficiency. Coding style techniques include reducing
the complexity of calculations if possible, minimizing

redundant operations, using vectorization instead of loops,
minimizing function calls to avoid overhead, avoiding
unnecessary display of the results and visualizations, etc.

Improvements made to the algorithm usually intend to
enhance efficiency or effectiveness. Sometimes,
improvements are realized in both, as is the case with the
Rank-Based Ant System (RAS). [8] This variant of AS
reinforces pheromone deposition of the top-ranked solutions,
effectively increasing the convergence rate and quality of the
solution, and simultaneously reducing the computational
time as only a limited number of ants update their pheromone
trails. It is a considerable reduction in computation,
compared to the AS where all ants update their pheromone
trails. Another improvement of AS is the MAX-MIN Ant
System (MMAS), where typically the iteration-best or
overall-best ant alone updates pheromone trails. [9] MMAX
has a slower convergence rate compared to AS or RAS, but
it produces better solutions in the long run.

Certain efficiency-focused methods can compromise the
algorithm’s effectiveness. In such scenarios, the trade-off
between efficiency gains and potential drawbacks should be
carefully evaluated. One such method is the use of Candidate
lists. For big problems, when constructing a solution, an ant
has a large number of possible choices for movement which
causes an increase in execution time. Using Candidate lists,
a list of nearest neighbors for each node in the problem, the
computation can be accelerated. During the construction of
the tour, an ant can move to nodes that are not on the
Candidate list only if every node on the list is already visited.
Although an optimal solution often can be found within a
reasonably small number of nearest neighbors, this technique
can make it impossible to find the optimal solution. [5, 10]

On the other hand, increasing the effectiveness of the
algorithm often comes at the price of longer computational
time. A good example is combining ACO with Local Search
(LS) algorithms. ACO and LS complement each other rather
nicely, as ACO is able to quickly find good quality near-
optimal solutions, and Local Search is used to fine-tune those
solutions as its effectiveness is largely influenced by the
starting solution. There are many ways to combine ACO and
LS, use it only to improve the final solution or use it to
improve solutions in each iteration. Also, advanced LS
algorithms produce better-quality solutions, but the general
rule is always the same, better-quality solutions come at the
price of longer execution time. [5, 11]

The construction of the tour is independent for each ant,
which means that ACO naturally allows parallel
implementation of the algorithm. Communication overhead
can be a problem for smaller problems, resulting in longer
computational time than it was initially. Because of this, and
many other factors that influence parallel implementation,
the exact problem size, when parallelization becomes
beneficial, should be determined. [5] A case where multiple
colonies run on multiple processors is common, although the
easiest and most effective way of parallelizing ACO is to
independently run many ACO algorithms. [7, 8]

Finally, the choice of programming language could
significantly impact algorithm efficiency. This may not be

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

534 TECHNICAL JOURNAL 18, 4(2024), 532-539

the case for small problem sizes where a solution is generated
in a fraction of a second. However, it becomes a considerable
influence for large problems. Generally, lower-level
programming languages, like C, exhibit greater speed
compared to higher-level counterparts like C# or Python. The
reason is that higher-level programming languages are user-
oriented to be more accessible to a wider audience, while
lower-level languages are machine-oriented, which makes
them easier to process by the machine, but it makes coding
more complex compared to higher-level languages.

Another aspect to consider is the distinction between
compiled and scripted languages. Compiled programming
languages with superior speed come at the price of overhead.
Using compiled language, a user must edit, compile, run, and
debug code to test it. Scripted languages allow interactive
coding and easy testing of parts of the code but are generally
considered to be slower. MATLAB, as a higher-level,
scripted language proved to be slower than other
programming languages, such as C#, R, or Python for small
problem sizes. As problem size increases MATLAB turns out
to be a very efficient programming language with faster
execution speed than the mentioned programming languages,
which could be a result of optimized internal functions and
processes. [14, 15]

2.1 Literature Survey

 In [16] authors try to overcome the low efficiency of the
Ant Colony System (ACS), an extension of AS, in solving
TSP within a limited time. The authors define the correlation
coefficient between the initial population size and the number
of nodes in the problem. Improvement was tested on
benchmark instances ranging from 30 to 127 nodes.
 In [10] authors present an analysis of the number of ants
in the Ant Colony System (ACS) algorithm. The paper
studies the effect of gradually changing the number of ants
from 1 to 100 on the algorithm’s behavior. Tests were
performed on eil51 and kroA100 TSP benchmark instances.
The authors conclude that a large number of ants did
enhanced the algorithm performance, and for tested problems
small number of ants in ACS is recommended.
 On the other hand, in [17] authors discuss the application
of hyperpopulated ant colonies to solve TSP. The authors
propose an increased number of ants in the colony or
assigning more colonies to the same problem to reduce the
number of iterations in finding the solution. The parallel
implementation makes it possible to reduce processing time.
 In [18] authors investigate the number of ants (in the
range of 3 to 12) used in a hybrid method based on ACO and
Artificial Neural Networks in relation to the number of
iterations, penalized objective function, and optimization
time. The authors note that the optimum number of ants is
specific to the dataset considered, and report that for their
data set best results were achieved with five ants, and
increasing the number of ants resulted in increased execution
time.

In [19] authors introduce k-means clustering to group
nodes in TSP and apply ACO to individual groups. Finally,
using the connection technique join these groups into a single

route. This way computational time of the ACO algorithm is
reduced to 32% of the original run without clustering.
Improvement was tested on benchmark instances ranging
from 30 to 150 nodes.
 In [20] authors made the basic alterations in the Ant
Colony System (ACS) and Max-Min Ant System (MMAS)
with respect to the Ant System (AS). Also, they compare the
results based on different parameter adjustments for chosen
algorithms. One parameter adjustment was the number of
ants. The authors increase the population size from 16 ants to
52 ants in five steps. According to their findings, the MMAS
execution time grows fastest with increased population
compared to the other two algorithms.
 In [21] authors introduce a novel Partial ACO (P-ACO)
variant for solving larger TSP cases, achieved through the
reduction of extensive memory demands, utilization of
parallel CPU hardware, and the introduction of a substantial
efficiency-enhancing strategy. By partially modifying the
best tour only this approach resulted in increased efficiency
and effectiveness of the algorithm. The algorithm was
applied to TSP instances of up to 200 000 nodes and achieved
solutions that are 5-7% longer than the best-known tours so
far.

In [22] authors study the ACO algorithm’s performance
variations with the number of ants. They conclude that less
ants favors exploration, while more ants favors exploitation,
so the optimal number of ants depends on each specific
problem.
 In [23] and [24] authors have studied the influence of the
number of ants on the performance of the MMAS algorithm,
applied to the multi-objective problem of wireless sensor
network design. In the first paper, they fixed the number of
iterations and increased the number of ants from 1 to 10
incrementally. In the second paper, they compared the
influence of the number of ants and the number of iterations
on solution quality.

In [25] authors focus on the number of ants in the
Simplified Ant Colony Algorithm (SACO) using the
optimization of grillage structure. They conclude that there is
a correlation between the number of ants and the number of
design variables as more ants are required to achieve the
optimum solution in the cases with more design variables.
This correlation cannot be defined with a regular function.

In [26] authors propose a warm-up procedure for ACO,
which initializes the pheromone matrix to provide a good
starting point to obtain better results in fewer iterations. The
warm-up procedure is based solely on the graph that
formalizes the problem. The procedure was tested on
benchmark instances as well as on a simulation of the real
warehouse which was represented by the graph with 380
nodes.

In this study [27] the effect of optimization parameters
in ACO, such as the number of ants, was investigated. The
authors used 21 colonies with 5 to 5000 ants. Depending on
the increase in the number of ants, the number of iterations
decreased, and the optimization time increased nonlinearly.
The authors conclude that the optimum number of ants is
crucial for reaching the best solution in a short time.

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

TEHNIČKI GLASNIK 18, 4(2024), 532-539 535

In [28] authors propose a dynamic adaptive ACO
algorithm (DAACO) that dynamically determines the
population size of the colony to prevent falling into the local
optimum, it also implements a hybrid local selection strategy
to increase the quality of solution and reduce the execution
time. Algorithm was tested on benchmark instances ranging
from 291 to 1577 nodes with results showing that DAACO
has advantages in convergence and solution quality
compared to similar ACO algorithms.

3 METODOLOGY AND EXPERIMENT
3.1 Time Analysis of the Ant System

 In this paper Ant System (AS), the first algorithm in the
ACO framework, was applied to Traveling Salesman
Problem (TSP).

Ant System algorithm consists of the following integral
parts: Initialize Algorithm, Main Loop, and Display Results.
The Main Loop is further divided into several steps:
Construct Tour using the Roulette Wheel function, Calculate
Fitness, Update Pheromones, and Optional Actions. The
procedure of AS can be visualized with the pseudo-code
presented in Fig. 1.

Figure 1 Ant System in pseudo-code [author]

The problem and parameters (such as pheromone

evaporation rate and stopping criteria) are defined in the
Initialising Algorithm section of the code. In this case, the
stopping criteria are the maximum number of iterations.
Initial pheromone levels are deposited according to the
solution obtained with the Nearest Neighbour algorithm.
Construct Tour manages ants in the colony that
independently “walk the graph” i.e., construct solutions.
Individual ant chooses the next node using the Roulette
Wheel function based on pheromone levels and heuristic
information. Each ant represents one possible solution to the
TSP. When all tours are constructed, their lengths are
calculated using the Calculate Fitness function. Before each
ant deposits pheromones based on tour fitness using the
Update Pheromone function, existing pheromones must
partially evaporate. Optional Activities can include a Local
Search algorithm to further improve tours, depositing
additional pheromones on the best-so-far tour, etc. This paper
did not incorporate any optional activities within the ACO
algorithm. Finally, solution (order of visiting nodes) and
solution fitness (tour length) are displayed.

Figure 2 Time analysis of Ant System [author]

For time analysis, the AS algorithm used in this paper

was applied to the kroA100 benchmark problem and analyzed
using MATLAB’s Run and Time option. The colony
population was 100 ants, and the stopping criteria were 500
iterations. Time analysis, illustrated in Fig. 2, shows that
most of the computational time was consumed by the
Construct Tour function. Considering that the Roulette
Wheel function is called from within the Construct Tour
function it is clear that constructing solutions takes almost
90% of the total time needed to run the algorithm.

3.2 Methodology

As mentioned before, the efficiency of the algorithm

refers to computational speed which is the execution time of
an algorithm for a limited number of iterations. Effectiveness
refers to solution quality which is measured by tour length, a
shorter tour indicates higher quality.

To quantify the impact of the reduced number of ants on
the efficiency and effectiveness of the Ant System, the
algorithm was applied to classic TSP benchmark instances
kroA100, kroA150, and kroA200 found in TSPLIB [30].
These benchmark problems were chosen because of their
round number of nodes in order to minimize the need for
rounding adjustments in ant numbers during
experimentation. Recommended parameters from [5] were
used.

Parameters are as follows: α = 1, β = 5, ρ = 0.5, and initial
pheromone levels before the first iteration, are calculated
according to the equation τ0 = m/Cnn. Where the number of
ants is denoted with m and Cnn stands for the tour length
obtained through the Nearest Neighbor algorithm. The
recommended number of ants (m) is the same as the number
of nodes (n) in the problem (m = n) for general good
performance. [5]

 A total of 12 tests were conducted for each benchmark
problem (kroA100, kroA150, and kroA200).

First, results for each benchmark problem were obtained
using 100% of the recommended number of ants. For
kroA100, 100 ants were used. For kroA150, 150 ants were
used. For kroA200, 200 ants were used. For future reference,
these first tests will be called Test 1, as other tests will be
compared to it.

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

536 TECHNICAL JOURNAL 18, 4(2024), 532-539

Subsequent tests involved a gradual reduction of ants by
10%. Test 2 used 90% of the recommended ant population,
Test 3 used 80%, Test 4 used 70%, and so on, down to Test
10, which employed 10% of the recommended number of
ants. The final two tests were carried out with 6% and 2% of
the recommended ant count.

The tour lengths of subsequent tests were compared to
the optimal solution and the tour lengths obtained in Test 1
for each benchmark problem. The execution time of
subsequent tests was compared to the execution time of Test
1.

Experiments were performed using MATLAB R2021a
on the Windows 10 64-bit operating system. The computer
configuration was Intel(R) Core(TM) i5-10210U CPU 2.10
GHz, installed RAM 8 GB. The algorithm used is accessible
through the GitHub repository [31]. Results are averaged for
10 independent runs due to the probabilistic nature of ACO
and to reduce the influence of background processes.

3.3 Experiment results

Test results for each benchmark problem are presented

in Tabs. 1, 2, and 3. The first column (No. Ants) shows the
percentage of ants used in the test - 100% corresponds to the
number of nodes in the problem (m = n). For the kroA100
benchmark, Test 1 (first row) employed 100 ants, followed
by 90 ants in the second test (second row), and so forth.

Table 1 Test results for benchmark instance kroA100

N
o.

 A
nt

s

So
lu

tio
n

qu
al

ity

D
ev

ia
tio

n
fro

m

th
e

op
tim

um

D
ev

ia
tio

n
fro

m

th
e

Te
st

 1

Ex
ec

ut
io

n
tim

e
(s

)

R
ed

uc
tio

n
of

ex

ec
ut

io
n

tim
e

100% 22756 6.9% - 135.2 -
90% 22800 7.1% 0.2% 120.5 89.1%
80% 22955 7.9% 0.9% 105.4 78.0%
70% 23007 8.1% 1.1% 92.65 68.5%
60% 23051 8.3% 1.3% 79.4 58.7%
50% 23088 8.5% 1.5% 66.7 49.3%
40% 23193 9.0% 1.9% 53.6 39.6%
30% 23180 8.9% 1.9% 40.6 30.0%
20% 23251 9.3% 2.2% 27.55 20.4%
10% 23343 9.7% 2.6% 14.5 10.7%
6% 23510 10.5% 3.3% 9.2 6.8%
2% 24170 13.6% 6.2% 3.4 2.5%

The second column (Solution quality) shows the lengths

of an average solution obtained in 10 runs of the algorithm.
In the third column (Deviation from the optimum) obtained
solutions are compared to the optimal solution. The
percentage of deviation from the optimal solution is given.
It's calculated using the equation ((average solution length /
optimal solution length) ⁎ 100%) – 100%). This value
represents the percentage by which the average tour length
surpasses the optimal tour length. For instance, when using
100 ants in the kroA100 benchmark test, the resulting tour
was 6.9% longer than the optimal solution.

In the fourth column (Deviation from the Test 1) results
of subsequent tests (tests 2 to 12) are compared to the Test 1.

It presents a comparison of tour lengths obtained with a
reduced ant count against those obtained using the
recommended number of ants (100% ants). The values show
how much longer or shorter are the tour lengths compared to
Test 1. For example, the average solution for benchmark
problem kroA100 using 90 ants is 0.2% longer than the
average solution using 100 ants. A negative percentage
means that the tour was shorter than the average solution in
Test 1.

The fifth column (Execution time [s]) shows the average
execution time for one run of the algorithm. Execution time
was measured using tic and toc functions in MATLAB, and
the results are expressed in seconds.

The sixth column (Reduction of execution time) shows
the difference in execution time between tests 2 to 12 with
the reduced number of ants and Test 1. For example, for
benchmark problem kroA100 using 90 ants produced a
solution in 120.5 seconds, which is 89,1% of the time needed
to produce a solution using 100 ants (135,2 seconds) in Test
1.

Table 2 Test results for benchmark instance kroA150

N
o.

 A
nt

s

So
lu

tio
n

qu
al

ity

D
ev

ia
tio

n
fro

m

th
e

op
tim

um

D
ev

ia
tio

n
fro

m

th
e

Te
st

 1

Ex
ec

ut
io

n
tim

e
(s

)

R
ed

uc
tio

n
of

ex

ec
ut

io
n

tim
e

100% 28733 8.3% - 375.1 -
90% 28620 7.9% -0.4% 337.5 90.0%
80% 28552 7.6% -0.6% 299.6 79.9%
70% 28616 7.9% -0.4% 264.6 70.5%
60% 28742 8.4% 0.0% 225.65 60.2%
50% 28727 8.3% 0.0% 189.9 50.6%
40% 28831 8.7% 0.3% 152.45 40.6%
30% 28811 8.6% 0.3% 115 30.7%
20% 28887 8.9% 0.5% 76.7 20.4%
10% 29094 9.7% 1.3% 39.05 10.4%
6% 29379 10.8% 2.2% 23.9 6.4%
2% 29973 13.0% 4.3% 9.8 2.6%

Table 3 Test results for benchmark instance kroA200

N
o.

 A
nt

s

So
lu

tio
n

qu
al

ity

D
ev

ia
tio

n
fro

m

th
e

op
tim

um

D
ev

ia
tio

n
fro

m

th
e

Te
st

 1

Ex
ec

ut
io

n
tim

e
(s

)

R
ed

uc
tio

n
of

ex

ec
ut

io
n

tim
e

100% 32129 9.4% - 811.2 -
90% 32172 9.5% 0.1% 736.3 90.8%
80% 31878 8.5% -0.8% 643.3 79.3%
70% 32071 9.2% -0.2% 563.4 69.5%
60% 32189 9.6% 0.2% 482.5 59.5%
50% 32206 9.7% 0.2% 401.6 49.5%
40% 32326 10.1% 0.6% 322 39.7%
30% 32403 10.3% 0.9% 243.6 30.0%
20% 32347 10.1% 0.7% 163.3 20.1%
10% 32983 12.3% 2.7% 82.4 10.2%
6% 33452 13.9% 4.1% 49.7 6.1%
2% 34170 16.4% 6.4% 17.4 2.1%

Data from the tables is visually represented in Figs. 3, 4,

and 5 for benchmark instances kroA100, kroA150, and
kroA200, respectively.

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

TEHNIČKI GLASNIK 18, 4(2024), 532-539 537

It is clearly shown that computational time increases
linearly with the number of ants. Computational time is
directly related to the number of ants. For example, using
50% of ants will complete the calculation in half the time
compared to Test 1. 50 ants in kroA100 instance will
complete the calculation in 66,7 seconds, which is roughly
50% of the total time needed to produce a solution using 100
ants (235,2 seconds) in the same problem.

Figure 3 Tour length and execution time for kroA100

For benchmark problem kroA100, using the

recommended number of ants (Test 1) produced a solution
6.9% longer than the optimum. Using the recommended
number of ants, the kroA150 solution was 8.3% longer, and
the kroA200 solution was 9.4% longer than the optimal
solution. Using 100% of the ant population produces
increasingly worse solutions as the problem size grows.

The smallest ant count in these tests was 2% of the
recommended population size, which expectedly reduced
computational time to approximately 2% of execution time
compared to Test 1. The solution obtained with 2% of the
recommended population size was 13.6% longer than the
optimal solution for the kroA100, 13% longer for the
kroA150, and 16.4% longer for the kroA200. Compared with
results obtained with Test 1, using 2% of ants produced tours
6.2% longer for kroA100, 4.3% longer for kroA150, and
6,4% longer for kroA200. Using a very small population
generates noticeably worse solutions compared to Test 1.

In all three cases, the solution quality drastically
improves when the ant population is increased from 2% to
20% of the recommended population size. For example, the
solution for kroA100 using 2% of the recommended
population deviates 6,2% from the solution obtained in Test
1. While using 20% of the recommended population, the
solution deviates 2,2% from the solution obtained in Test 1.
Solutions for kroA200 using 2% ants deviate 6,4% from the
solution obtained in Test 1, while using 20% of ants solution
deviate 0,7% from the solution obtained in Test 1.

Increasing the population up to 50% still increases
solution quality but at a slower rate. For example, using 50%
of ants in kroA100 problem, the solution is 1,5% longer
compared to the solution obtained in Test 1.

For kroA100 problem, increasing population size
beyond 50% gradually increased solution quality, and using
100% ants produced the best results.

For kroA150 and kroA200 problems, increasing the
population beyond 50% didn’t show a significant increase in
solution quality. It is interesting that using 70 or 80% of the
population in both cases produced slightly better results
compared to Test 1 (using 100% of the ant population), but
this can be credited to the probabilistic nature of ACO.

Figure 4 Tour length and execution time for kroA150

Figure 5 Tour length and execution time for kroA200

4 DISCUSSION

As indicated in the literature survey, some papers (like
[18], [22], and [25]) try to determine an optimal number of
ants as a constant number and conclude that the optimal
number of ants is specific to the case at hand and can't be
defined generally. In this paper, we investigate the population
size of the Ant System (AS) in relation to the size of the
problem to find a good compromise between computational
speed and solution quality. Similar research was conducted
for other ACO algorithms, specifically Ant Colony System
(ACS) in [16] and [29] in which authors initialize population
size relevant to the number of nodes in the problem.

Decreasing the ant population decreases solution quality
and computational time. The decrease in computational time
is much more prominent than the decrease in solution quality.
The computational time scales linearly with the proportion of
the recommended ant number, equating to the corresponding
fraction of the ant population. This means that by reducing
population size computational time can be reduced
predictably.

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

538 TECHNICAL JOURNAL 18, 4(2024), 532-539

Tests show that reducing the number of ants has a
stronger effect on the solution quality of smaller problem
sizes (100 nodes) than it has on larger problem sizes (200
nodes), this could be because of the smaller absolute number
of ants.

Solution quality increases rapidly with the increase of
population size from 2% to 20% of the recommended
population size, after which it gradually increases up to 50%
of the recommended population size. Using more than 50%
of the recommended number of ants doesn’t increase solution
quality noticeably.

For problems with 150 and 200 nodes using 80% of ants
produced better results than using 100% of ants. That effect
could be because ACO is a probabilistic method. The
influence of randomness, or "luck", could be decreased with
more runs of the algorithm to average out the results. But this
effect could also indicate that using more ants over a certain
threshold doesn’t necessarily improve solution quality.

For problem sizes similar to kroA150 and kroA200, two
values could be considered "sweet spots" for a good
efficiency/effectiveness ratio, using 50% or 20% of ants.
With 50% of the population size computational time could be
halved with solutions quality remaining approximately the
same as in Test 1. Using 20% of ants produces 0.5% and 0.7%
longer solutions for kroA150 and kroA200 benchmark
instances compared to Test 1 while computation is five times
faster.

For benchmark instance kroA100, and problems of
similar size, "sweet spot" is an even lower number of ants,
concretely 10% of the population. In that case, computational
time would be 10 times faster. An increase in computational
speed comes at the price of a noticeable 2.6% longer solution.
The second "sweet spot" is using 70 or 80% of the population
which produces roughly 1% longer solution compared to Test
1.

It should be noted that using improved variants of the
ACO algorithm would produce better overall results in a
shorter time. For example, in a Rank-based Ant System
(RAS) only a limited number of ants deposit pheromones
which increases computational speed compared to AS. In
MAX-MIN Ant System (MMAS) only one ant deposits
pheromones in each iteration, which reduces computational
time even more. It is proven that RAS and MMAS produce
better solutions than basic AS. [5]

For future research, the influence of reduced population
size on the improved ACO algorithms such as the MAX-MIN
Ant System, the Rank-Based Ant System, and many new
variants are often proposed in the literature. Also, bigger
problems should be tackled as benchmark problems in
TSPLIB can go up to tens of thousands of nodes.

5 CONCLUSIONS

 It has been a while since Ant Colony Optimization
(ACO) established its place as a reliable and efficient
algorithm for solving many problems in production and
logistics, but it still attracts the attention of many researchers
who are determined to increase its efficiency and
effectiveness. As an increased number of problems in the real

world are dynamic in nature it is paramount to increase the
computational speed of ACO to be useful in practice.

One method of increasing ACO efficiency is reducing
the number of ants which considerably increases
computational speed but slightly lowers solution quality. As
the optimal number of ants depends on a specific case, we
focused on the reduction of population size relevant to the
number of nodes in the problem.

For problems of approximate size 150 - 200 nodes, the
number of ants can be reduced by 50%, effectively halving
computational time while solution quality remains roughly
the same. For the same problem sizes, by reducing the
number of ants to 20%, computational speed can be 5 times
faster for a 0,5% to 0,7% reduction of solution quality. The
reduction of ant population has a much stronger, positive,
effect on computational speed than it has a negative effect on
solution quality.

The limitation of this research lies in the probabilistic
nature of ACO. In each test, the algorithm was run 10 times
to reduce the influence of “luck” in generating solutions.
More runs are always better, but also more time-consuming.
Theoretically, the infinite number of runs would eliminate
the effect of lucky guesses, but that is not possible to do
because of obvious reasons.

In future research, the influence of reduced population
size on bigger problems and improved ACO variants should
be investigated.

6 REFERENCES

[1] Laporte, G. (1992). Traveling Salesman Problem: An overview

of exact and approximate algorithms. Eur. J. Oper. Res., 59(2),
231-247.

[2] Kumar, S. N. & Panneerselvam, R. (2012). A Survey on the
Vehicle Routing Problem and Its Variants. Intell. Inf. Manag.,
4(3), 66-74. https://doi.org/10.4236/iim.2012.43010

[3] Mavrovouniotis, M., Yang, S., Van, M., Li, C. & Polycarpou,
M. (2020). Ant colony optimization algorithms for dynamic
optimization: A case study of the dynamic travelling
salesperson problem. IEEE Comput. Intell. Mag., 15(1), 52-63.
https://doi.org/10.1109/MCI.2019.2954644

[4] Gutjahr, W. J. (2000). A Graph-based Ant System and its
convergence. Futur. Gener. Comput. Syst., 16(8), 873-888.
https://doi.org/10.1016/S0167-739X(00)00044-3

[5] Dorigo, M. & Stützle, T. (2004). Ant colony optimization.
Cambridge, Massachusetts: The MIT Press.

[6] Dorigo, M. (1992). Optimization, Learning and Natural
Algorithms. PhD thesis, Politec. di Milano, Italy.

[7] Dorigo, M., Maniezzo, V. & Colorni, A. (1996). Ant system:
Optimization by a colony of cooperating agents. IEEE Trans.
Syst. Man, Cybern. Part B Cybern., 26(1), 29-41.
https://doi.org/10.1109/3477.484436

[8] Bullnheimer, B., Hartl, R. F. & Straub, C. (1997). A New Rank
Based Version of the Ant System. A Comput. study, 1, 1-16.

[9] Stuetzle, T. & Hoos, H. (1997). MAX-MIN Ant System and
local search for the traveling salesman problem. Proc. IEEE
Conf. Evol. Comput. ICEC, 309-314.
https://doi.org/10.1109/icec.1997.592327

[10] Gambardella, L. M. & Dorigo, M. (1996). Solving symmetric
and asymmetric TSPs by ant colonies. Proc. IEEE Conf. Evol.
Comput., 622-627. https://doi.org/10.1109/icec.1996.542672

[11] Olivari, L. (2023). Comparison of improved ACO algorithms

Luka Olivari: Reducing ACO Population Size to Increase Computational Speed

TEHNIČKI GLASNIK 18, 4(2024), 532-539 539

for tool path optimization in multi-hole drilling. Proc. ICIL, 75-
78.

[12] Middendorf, M., Reischle, F. & Schmeck, H. (2002). Multi
colony ant algorithms. J. Heuristics, 8(3), 305-320.
https://doi.org/10.1023/A:1015057701750

[13] Stutzle, T. (1998). Parallelization strategies for ant colony
optimization. Int. Conf. Parallel Probl. Solving from Nature.
Heidelb. Springer Berlin, 722-731.
https://doi.org/10.1007/bfb0056914

[14] Olivari, L. & Olivari, L. (2022). Influence of Programming
Language on the Execution Time of Ant Colony Optimization
Algorithm. Tehnički Glasnik, 16(2), 231-239.
https://doi.org/10.31803/tg-20220407095736

[15] Aruoba, S. B. & Fernández-Villaverde, J. (2015). A
comparison of programming languages in macroeconomics. J.
Econ. Dyn. Control, 58, 265-273.
https://doi.org/10.1016/j.jedc.2015.05.009

[16] Liu, F., Zhong, J., Liu, C., Gao, C. & Li, X. (2018). A novel
strategy of initializing the population size for ant colony
optimization algorithms in TSP. ICNC-FSKD 2017 - The 13th
Int. Conf. Nat. Comput. Fuzzy Syst. Knowl. Discov., 249-253.
https://doi.org/10.1109/FSKD.2017.8393166

[17] Siemiński, A. (2016). Using hyper populated ant colonies for
solving the TSP. Vietnam J. Comput. Sci., 3(2), 103-117.
https://doi.org/10.1007/s40595-016-0059-z

[18] Sivagaminathan, R. K. & Ramakrishnan, S. (2007). A hybrid
approach for feature subset selection using neural networks and
ant colony optimization. Expert Syst. Appl., 33(1), 49-60.
https://doi.org/10.1016/j.eswa.2006.04.010

[19] Chang, Y. C. (2017). Using k-means clustering to improve the
efficiency of ant colony optimization for the traveling salesman
problem. IEEE Int. Conf. Syst. Man, Cybern. SMC 2017, 379-
384. https://doi.org/10.1109/SMC.2017.8122633

[20] Jangra, R. & Kait, R. (2017). Analysis and comparison among
Ant System; Ant Colony System and Max-Min Ant System
with different parameters setting. The 3rd IEEE Int. Conf., 1-4.
https://doi.org/10.1109/CIACT.2017.7977376

[21] Chitty, D. M. (2018). Applying ACO to Large Scale TSP
Instances. Advances in Intelligent Systems and Computing,
650, 104-118.

[22] Abdelbar, A. M. & Salama, K. M. (2018). The effect of the
number of ants parameter in the ACOR algorithm: A run-time
profiling study. IEEE Symp. Ser. Comput. Intell. SSCI 2017 -
Proc., 1-8. https://doi.org/10.1109/SSCI.2017.8280799

[23] Fidanova, S., Marinov, P. & Paparzycki, M. (2014). Multi-
objective ACO algorithm for WSN layout: performance
according to number of ants. Int. J. Metaheuristics, 3(2), p. 149.
https://doi.org/10.1504/ijmheur.2014.063145

[24] Fidanova, S. & Marinov, P. (2013). Number of Ants Versus
Number of Iterations on Ant Colony Optimization Algorithm
for Wireless Sensor Layout. Proc. Work. ICT New Mater.
Nanotechnologies, Bankya, 90-93.

[25] Aydin, Z. (2018). Determination the number of ants used in
ACO algorithm via grillage optimization. Uludağ Univ. J. Fac.
Eng., 22(3), 251-262. https://doi.org/10.17482/uumfd.298586

[26] Neroni, M. (2021). Ant Colony Optimization with Warm-Up.
Algorithms, 14(10), p. 295. https://doi.org/10.3390/a14100295

[27] Yilmaz, A. H. & Aydin, Z. (2022). Examination of parameters
used in ant colony algorithm over truss optimization. Balıkesir
Üniversitesi Fen Bilim. Enstitüsü Derg., 24(1), 263-280.
https://doi.org/10.25092/baunfbed.955408

[28] Liu, H., Lee, A., Lee, W. & Guo, P. (2023). DAACO: adaptive
dynamic quantity of ant ACO algorithm to solve the traveling
salesman problem. Complex Intell. Syst..
https://doi.org/10.1007/s40747-022-00949-6

[29] Alobaedy, M. M., Khalaf, A. A. & Muraina, I. D. (2017).
Analysis of the number of ants in ant colony system algorithm.
The 5th Int. Conf. Inf. Commun. Technol. ICoIC7 2017, 3-7.
https://doi.org/10.1109/ICoICT.2017.8074653

[30] http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
(accessed: 16.1.2023)

[31] https://github.com/l-olivari/AS2023 (accessed: 23.8.2023)

Author’s contacts:

Luka Olivari, mag. ing. mech., senior lecturer
Šibenik University of Applied Sciences,
Trg Andrije Hebranga 11, 22 000 Šibenik, Croatia
(022) 311-060, lolivari@vus.hr

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [2400 2400]

 /PageSize [612.000 792.000]

>> setpagedevice

