6 Li (³ He, d) ⁷ Be REACTION AT LOW ENERGIES

M. R. ALEKSIC, R. V. POPIC; D. M;. STANOJEVIC and B. Z. STEPANčIC

Institute »Boris Kidrič«, Beograd

Received 18 December 1969; revised manuscript received 3 March 1970

Abstract: The reactions 'Li ('He, d_o) 'Be_r, and 'Li ('He, d_i) 'Be₀₁ have been investigated for 'He energy interval from $0.5 - 1.3$ MeV by measuring the 'Be 431 keV and 'Li 478 keV gamma-rays resulting from the d 1^{**+**} 3^+ 1 **presence of a** $\frac{1}{2}$ or $\frac{1}{2}$ state $(T = -)$ in ³B at 17.20 \pm 0.02 MeV, with $\frac{1}{2}$ 20 $\frac{1}{2}$ 20 $\frac{1}{2}$ $\frac{1}{2}$ and $\frac{1}{2}$ of a direct maskeping application indicating that **r = 110 ± 30 keV, and of a direct mechanism contribution indicating that wave furiction extranuclear contribution is dominant in the region just above the reaction threshold.**

1. I ntroduction

The 6Li (3He, d) 7Be reaction has not yet been measured at low 3He energies. It was investigated in the energy region from 8–18 MeV¹ where a **direct mechanism was demonstrated. Therefore it was of interest to measure the excitation curves for** d_0 **and** d_1 **groups from 0.5 - 1.3 MeV ³He energy in order to:**

a) check the presence of highly exoited ⁹B levels, which in the corresponding energy interval, until now were demonstrated only by the ⁷B (d, p) ⁸Be **reaction²>, and**

b) investigate the mechanism of this reaction at lower energies .

2. Experimental procedure and results

The 1.5 MeV Cockcroft — Walton accelerator of the »Boris Kidrič« Insti**tute was used for production of the** ³**He beam. The beam analysis was made** by an electrostatic analyser defining the ³He energy to \pm 3 keV. The beam **was collimated and focussed at the centre of target chamber; the current**

corresponding to 3**He beam was, after its collection, measured by a current integrator. The targets were made of 96 % enriched 6Li evaporated on nickel** foil. After the absorption of oxygen they were typically about 50 μ g/cm² thick. Since the deuteron energy is small because of $Q = 0.115$ MeV for 6 Li (3 He, d_0) 7 Be_{*a*}, and $Q = -0.316$ MeV for 6 Li (3 He, d_1) 7 Be₄₃₁, the detection **of gamma-rays following these reactions was made by using a** 40 **cm3 Ge (Li)** detector with 1.1 % (5 keV) resolution and a $5'' \times 6''$ NaJ (T1) detector with **8 % resolution. Both detectors were calibrated for energy and intensity** measurements using a set IAEA calibrated gamma sources.

The typical 431 keV gamma spectrum in the vicinity of photo peak taken with Ge (Li) and NaJ (T1) detectors, respectively, are shown in Fig. 1.

Fig. 1. Typical 431 keV gamma spectrum in the vicinity of the photo peak for Ge (Li) and NaJ (Tl) detectors.

The procedure for measuring the 6 Li (3 He, d_1) ⁷Be reaction was the **following:**

1) one of the gamma-detectors set at 120° with respect to ³He beam mea**sured the yield of 431 keV gamma-ray resulting from the decay of ⁷Be from the first excited to its ground state;**

2) the calibration of the gamma-detector was previously made by placing the IAEA sources in the target position inside the target chamber; and

3) simultaneously the yield of iprotons from the ⁶Li (³He, p) ⁸Be reaction, for which the cross section is known³>, was measured with a silicon detector, whose geometry was carefully determined.

In this way the relation between ⁶Li (³He, d¹) ⁷Be431 and ⁶Li (³He, p) ⁷Be cross-sections was established.

Fig. 2. Experimental excitation function for 'Li ('He, d₀) 'Be and 'Li ('He, d₁) 'Be.u reactions.

The procedure for measuring the 6L i (3He , d_0) 7Be ₈.s. reaction was different **from the previous one:**

1) for each energy a separate target was irradiated with 3He beam and the yield of the 478 keV gamma-ray bas been determined in a low-background room;

2) during the irradiations of targets with 3**He beam, the beam current and the yield of . protons from 6Li (3He, p) 8Be, were measured in order to be able to normalise the 478 keV gamma-yield from the corresponding targets; and**

3) each of the irradiated targets were measured a day or two after irradiation and a month later.

The time factors of ⁷Be decay and the percentage of the decay to 478 keV ^{*7*Li level were taken into account, as well as the fact that ⁷Be activity is for-} med by the 6Li (He, d_0) ⁷Be₄... and the 6Li (³He, d_1) ⁷Be₄₃₁ reactions.

The energy of the 3 He beam was varied in steps of 50 keV from $0.7 - 1.3$ MeV for d_1 **reaction, and from 0.5 - 1.3 MeV for** d_0 **reaction. The excitation** curves for d_0 and d_1 reactions are given on Fig. 2. The points below 0.7 MeV **(ilab) were measured only by the NaJ (T1) detector, while ali other points are an average of several measurements by both detectors.**

3. Discussion

Since the Coulomb barrier is dominating strongly the behaviour of exci**tation curves at low energy, we have computed the quantity**

$$
A = \frac{\sigma_{\exp}}{4 \pi \frac{k_{\text{out}}}{k_{\text{in}}} P_{t_{\text{in}}} P_{t_{\text{out}}}}
$$
 (1)

where σ_{exp} is the cross section taken from our excitation curves (Fig. 2), k_{in} refers to ³He, and k_{out} to d_0 or d_1 , while $P_{i_{\text{in}}}$ and $P_{i_{\text{out}}}$ are Coulomb barrier **penetration factors for incoming and outgoing channels, respectively. Because the intrinsic parities of incoming and outgoing channels are opposite, the incoming and outgoing orbita! momenta bave also opposite parities. There**fore, we calculated two combinations: $l_{\text{in}} = 0$, $l_{\text{out}} = 1$ and $l_{\text{in}} = 1$, $l_{\text{out}} = 0$. The quantity A computed for d_0 in the exit channel is given in Fig. 3. The **existence of 0.6 MeV (CM) resonance is seen clearly for both combinations of orbital momenta, which leaves as possible spin-parity assignements** $\frac{1^2}{2^2}$ **,** $\frac{3^2}{2^2}$ 5^{-} 1^{1} or $\frac{3}{2}$ with $T = \frac{1}{2}$. The fit to the Breit-Wigner one-level formula, taking into account that a 10 % error coming from our experimental data must be attributed to each point in Fig. 3, gives E_{α} (${}^{9}B$) = 17.20 $+$ 0.02 MeV and $\Gamma = 110 \pm 30$ keV. However, it is seen from Fig. 3 that this resonance **»rides« on a flat curve indicating that the compound nucleus mechanism**

for 'Li ('He, d_o) 'Be reaction.

probably is not the only existing one. This is stiU better seen from Fig. 4 where the quantity A is computed for d_1 in exit channel. The curve for $l_{\text{H}_e} = 0$, $l_{\text{d}_1} = 1$ may be fitted with $\Gamma = 110 \pm 30$ keV resonance at 0.6 MeV **contributing about one fifth of the whole yield, while the resonance-subtracted curve is monotonically decreasing with increasing energy. However, simi-Dub** $\int dx$ fit for $l_{\text{Hg}} = 1$, $l_{\text{d}1} = 0$ curve after removal of the $\Gamma = 110 \pm 30$ keV **resonance gives a nonmonotonical resonance-subtracted curve. Therefore,**

we are inclined to the conclusion that $l_{\text{Hg}} = 0$, $l_{\text{d}1} = 1$ combination is more acceptable. This would mean that the 17.20 \pm 0.02 MeV level in ⁹B has 1^+ 3^+ **1** \ldots **1** \ldots **1** \ldots **1 assignements** $\frac{1}{2}$ or $\frac{3}{2}$ (*T* = $\frac{1}{2}$). It has been shown⁴) that a *T* = $\frac{3}{2}$ state at similar energy in 9 Be appears with Γ < 0.47 keV - therefore $\Gamma = 110 \pm 30$ **1 keV** in our case could not be attributed to anything else but $T = -$. The **2** absense of gamma-ray decays from 17.20 \pm 0.02 MeV level in ${}^{9}B$, which we checked in separate experiments, establishes also $T = \frac{1}{2}$ for this level. The fact that the major contribution to quantity A for d_1 data, monotonically **increases with decreasing energy, could suggest, in our opinion, that for low-energy outgoing particles most of the reaction yield is due to a direct**

reaction mechanism. It is evident from Fig. 2 that the low-energy cross section from d_1 group falls down to 10 μ b. Therefore, one can suppose that a model, similar to the one proposed by R. G. Thomas⁵ for direct capture reactions is applicable in the energy region just above the threshold. Beyond **the ,threshold, the wave function extranuclear contributions seem to be playing the most important role in the region of very low Coulomb barrier penetration.**

Reference

1) H. Liidecke, Tan Wan-Tjin, H. Werner and J. Zirnrnerer, Nucl. Phys. 109A (1968) 676; 2) R. W. Kavanagh, Nucl. Pbys. 18 (1960) 492;

3) J. P. Schiffer, T. W. Bonner, R. H. Davis and F. W. Prosser, Phys. Rev. 104 (1956) 1064; 4) J. B. Woods and D. H. Willdnson, Nucl. Phys. 61 (1965) 661;

S) R. G. Thomas, Phys. Rev. 84 (1951) 1061.

6 Li (³ He, d) ⁷ Be REAKCIJA NA NISKIM ENERGIJAMA

M. R. ALEKSić, R. V. POPlć, D. M. STANOJEVIć i B. Z. STEPANćlć

Institut »Boris Kidrič«, Beograd

S a drža j

Radi ispitivanja nivoa sa visokom energijom ekscitacije u 9B kao i ispitivanje mehanizma reakcija na ruskim **energijama, izmerene su ekscitacione funkcije za ⁶Li (³He, d₀) ⁷Be i ⁶Li (³He, d₁) ⁷Be₄₃₁ reakcije na** $\Theta = 120^{\circ}$ **za** energije ³He od 0.5 - 1.3 MeV. Koristeći aktivacionu metodu izvršena su **merenja .gama zraka od 478 ikeV iz** 7**Li za do grupu, odnosno gama zraka od 431 keV jz ⁷Be za d1 grupu, pomoću Ge (Li) i NaJ (Tl) detektora. Eksperimentalni rezultati merenja ekscitacionih funkcija dati su na sl. 2. Da odstranimo efekte Coulomb-ove barijere reducirali smo eksperimentalne reakcione preseke računajući prema formuli (1) funkciju A koja je za d_o i d₁ grupe data na sl. 3 i 4. Analizom krivih sa sl. 3 i 4 ustanovili smo:**

a) da pri ekscitaciji od 17.20 \pm 0.02 MeV postojeći nivo u ⁹B ima širinu

$$
\Gamma = 110 \pm 30
$$
 keV, spin i parnost $I^{\pi} = \frac{1^{+}}{2}$ ili $\frac{3^{+}}{2}$ i izospin $T = \frac{1}{2}$;

b) da se blizu energetskog :praga reakcija ⁶Li (³He, d¹) ⁷Be431 najvećim delom odigrava ipreko direktnog mehanizma, što nagoveštava da ekstranuklearni deo talasne funkcije, slično mehanizmu predloženom od R. G. Thomasa za reakcije zahvata, igra bitnu ulogu u ovoj reakciji blizu praga.