'Li ('He, d) 'Be REACTION AT LOW ENERGIES

M. R. ALEKSIĆ, R. V. POPIĆ, D. M. STANOJEVIĆ and B. Z. STEPANČIĆ

Institute »Boris Kidrič«, Beograd

Received 18 December 1969; revised manuscript received 3 March 1970

Abstract: The reactions 'Li ('He, d₀) 'Be₁, and 'Li ('He, d₁) 'Be₁ have been investigated for 'He energy interval from 0.5 — 1.3 MeV by measuring the 'Be 431 keV and 'Li 478 keV gamma-rays resulting from the decay of 'Be. The excitation curves for both reactions were obtained. Their analysis shows 1^+ 3^+ 1presence of a $\frac{1}{2}$ or $\frac{1}{2}$ state ($T = \frac{1}{2}$) in 'B at 17.20 \pm 0.02 MeV, with $\Gamma = 110 \pm 30$ keV, and of a direct mechanism contribution indicating that wave function extranuclear contribution is dominant in the region just above the reaction threshold.

1. Introduction

The ⁶Li (³He, d) ⁷Be reaction has not yet been measured at low ³He energies. It was investigated in the energy region from 8—18 MeV¹) where a direct mechanism was demonstrated. Therefore it was of interest to measure the excitation curves for d_0 and d_1 groups from 0.5 — 1.3 MeV ³He energy in order to:

a) check the presence of highly excited ${}^{9}B$ levels, which in the corresponding energy interval, until now were demonstrated only by the ${}^{7}B$ (d, p) ${}^{8}Be$ reaction², and

b) investigate the mechanism of this reaction at lower energies.

2. Experimental procedure and results

The 1.5 MeV Cockcroft — Walton accelerator of the »Boris Kidrič« Institute was used for production of the ³He beam. The beam analysis was made by an electrostatic analyser defining the ³He energy to \pm 3 keV. The beam was collimated and focussed at the centre of target chamber; the current corresponding to ³He beam was, after its collection, measured by a current integrator. The targets were made of 96 % enriched ⁶Li evaporated on nickel foil. After the absorption of oxygen they were typically about 50 μ g/cm² thick. Since the deuteron energy is small because of Q = 0.115 MeV for ⁶Li (³He, d₀) ⁷Be_{g.1} and Q = -0.316 MeV for ⁶Li (³He, d₁) ⁷Be₄₃₁, the detection of gamma-rays following these reactions was made by using a 40 cm³ Ge (Li) detector with 1.1 % (5 keV) resolution and a 5" × 6" NaJ (T1) detector with 8% resolution. Both detectors were calibrated for energy and intensity measurements using a set IAEA calibrated gamma sources.

The typical 431 keV gamma spectrum in the vicinity of photo peak taken with Ge (Li) and NaJ (T1) detectors, respectively, are shown in Fig. 1.

Fig. 1. Typical 431 keV gamma spectrum in the vicinity of the photo peak for Ge (Li) and NaJ (T1) detectors.

The procedure for measuring the ⁶Li (3 He, d₁) ⁷Be reaction was the following:

1) one of the gamma-detectors set at 120° with respect to ³He beam measured the yield of 431 keV gamma-ray resulting from the decay of ⁷Be from the first excited to its ground state;

2) the calibration of the gamma-detector was previously made by placing the IAEA sources in the target position inside the target chamber; and

3) simultaneously the yield of protons from the ⁶Li (³He, p) ⁸Be reaction, for which the cross section is known³), was measured with a silicon detector, whose geometry was carefully determined.

In this way the relation between ${}^{6}Li$ (${}^{3}He$, d_{1}) ${}^{7}Be_{431}$ and ${}^{6}Li$ (${}^{3}He$, p) ${}^{7}Be$ cross-sections was established.

Fig. 2. Experimental excitation function for ⁶Li (³He, d₀) ⁷Be and ⁶Li (³He, d₁) ⁷Be_{44i} reactions.

The procedure for measuring the ⁶Li (³He, d_0) ⁷Be₈... reaction was different from the previous one:

1) for each energy a separate target was irradiated with ³He beam and the yield of the 478 keV gamma-ray has been determined in a low-background room;

2) during the irradiations of targets with 3 He beam, the beam current and the yield of protons from 6 Li (3 He, p) 8 Be, were measured in order to be able to normalise the 478 keV gamma-yield from the corresponding targets; and

3) each of the irradiated targets were measured a day or two after irradiation and a month later.

The time factors of ⁷Be decay and the percentage of the decay to 478 keV ⁷Li level were taken into account, as well as the fact that ⁷Be activity is formed by the ⁶Li (He, d_0) ⁷Be_s... and the ⁶Li (³He, d_1) ⁷Be₄₃₁ reactions.

The energy of the ³He beam was varied in steps of 50 keV from 0.7 - 1.3 MeV for d₁ reaction, and from 0.5 - 1.3 MeV for d₀ reaction. The excitation curves for d₀ and d₁ reactions are given on Fig. 2. The points below 0.7 MeV (lab) were measured only by the NaJ (T₁) detector, while all other points are an average of several measurements by both detectors.

3. Discussion

Since the Coulomb barrier is dominating strongly the behaviour of excitation curves at low energy, we have computed the quantity

$$A = \frac{\sigma_{exp}}{4\pi \frac{k_{out}}{k_{in}} P_{i_{in}} P_{i_{out}}} , \qquad (1)$$

where σ_{exp} is the cross section taken from our excitation curves (Fig. 2), k_{in} refers to ³He, and k_{out} to d_0 or d_1 , while $P_{l_{in}}$ and $P_{l_{out}}$ are Coulomb barrier penetration factors for incoming and outgoing channels, respectively. Because the intrinsic parities of incoming and outgoing channels are opposite, the incoming and outgoing orbital momenta have also opposite parities. Therefore, we calculated two combinations: $l_{in} = 0$, $l_{out} = 1$ and $l_{in} = 1$, $l_{out} = 0$. The quantity A computed for d_0 in the exit channel is given in Fig. 3. The existence of 0.6 MeV (CM) resonance is seen clearly for both combinations of orbital momenta, which leaves as possible spin-parity assignements $\frac{1^+}{2}$, $\frac{3^+}{2}$ or $\frac{5^-}{2}$ with $T = \frac{1}{2}$. The fit to the Breit-Wigner one-level formula, taking into account that a 10 % error coming from our experimental data must be attri-

buted to each point in Fig. 3, gives E_{ex} (${}^{9}B$) = 17.20 + 0.02 MeV and $\Gamma = 110 \pm 30$ keV. However, it is seen from Fig. 3 that this resonance wrides on a flat curve indicating that the compound nucleus mechanism

Fig. 3. Energy dependence of the quantity $A = \sigma_{exp}/4\pi \frac{\kappa_{d_0}}{k_{^3He}} P_l^{^3} P_l^{^4}$ for ⁶Li (³He, d_o) 'Be reaction.

probably is not the only existing one. This is still better seen from Fig. 4 where the quantity A is computed for d_1 in exit channel. The curve for $l_{3He} = 0$, $l_{e_1} = 1$ may be fitted with $\Gamma = 110 \pm 30$ keV resonance at 0.6 MeV contributing about one fifth of the whole yield, while the resonance-subtracted curve is monotonically decreasing with increasing energy. However, similar fit for $l_{3He} = 1$, $l_{e_1} = 0$ curve after removal of the $\Gamma = 110 \pm 30$ keV resonance gives a nonmonotonical resonance-subtracted curve. Therefore, we are inclined to the conclusion that $l_{^{3}\text{He}} = 0$, $l_{^{4}\text{I}} = 1$ combination is more acceptable. This would mean that the 17.20 ± 0.02 MeV level in ⁹B has assignements $\frac{1^{+}}{2}$ or $\frac{3^{+}}{2}$ ($T = \frac{1}{2}$). It has been shown⁴) that a $T = \frac{3}{2}$ state at similar energy in ⁹Be appears with $\Gamma < 0.47$ keV — therefore $\Gamma = 110 \pm 30$ keV in our case could not be attributed to anything else but $T = \frac{1}{2}$. The absense of gamma-ray decays from 17.20 ± 0.02 MeV level in ⁹B, which we checked in separate experiments, establishes also $T = \frac{1}{2}$ for this level. The fact that the major contribution to quantity A for d₁ data, monotonically increases with decreasing energy, could suggest, in our opinion, that for low-energy outgoing particles most of the reaction yield is due to a direct

reaction mechanism. It is evident from Fig. 2 that the low-energy cross section from d_1 group falls down to 10 µb. Therefore, one can suppose that a model, similar to the one proposed by R. G. Thomas⁵) for direct capture reactions is applicable in the energy region just above the threshold. Beyond the threshold, the wave function extranuclear contributions seem to be playing the most important role in the region of very low Coulomb barrier penetration.

Reference

1) H. Lüdecke, Tan Wan-Tjin, H. Werner and J. Zimmerer, Nucl. Phys. 109A (1968) 676; 2) R. W. Kavanagh, Nucl. Phys. 18 (1960) 492;

3) J. P. Schiffer, T. W. Bonner, R. H. Davis and F. W. Prosser, Phys. Rev. 104 (1956) 1064; 4) J. B. Woods and D. H. Wilkinson, Nucl. Phys. 61 (1965) 661;

5) R. G. Thomas, Phys. Rev. 84 (1951) 1061.

⁶Li (³He, d) ⁷Be REAKCIJA NA NISKIM ENERGIJAMA

M. R. ALEKSIC, R. V. POPIC, D. M. STANOJEVIC i B. Z. STEPANCIC

Institut »Boris Kidrič«, Beograd

Sadržaj

Radi ispitivanja nivoa sa visokom energijom ekscitacije u ⁹B kao i ispitivanje mehanizma reakcija na niskim energijama, izmerene su ekscitacione funkcije za ⁶Li (³He, d₀) ⁷Be i ⁶Li (³He, d₁) ⁷Be₄₃₁ reakcije na $\Theta = 120^{\circ}$ za energije ³He od 0.5 — 1.3 MeV. Koristeći aktivacionu metodu izvršena su merenja gama zraka od 478 keV iz ⁷Li za d₀ grupu, odnosno gama zraka od 431 keV iz ⁷Be za d₁ grupu, pomoću Ge (Li) i NaJ (T1) detektora. Eksperimentalni rezultati merenja ekscitacionih funkcija dati su na sl. 2. Da odstranimo efekte Coulomb-ove barijere reducirali smo eksperimentalne reakcione preseke računajući prema formuli (1) funkciju A koja je za d₀ i d₁ grupe data na sl. 3 i 4. Analizom krivih sa sl. 3 i 4 ustanovili smo:

a) da pri ekscitaciji od 17.20 \pm 0.02 MeV postojeći nivo u ⁹B ima širinu

$$\Gamma = 110 \pm 30$$
 keV, spin i parnost $I^{\pi} = \frac{1^+}{2}$ ili $\frac{3^+}{2}$ i izospin $T = \frac{1}{2}$;

b) da se blizu energetskog praga reakcija ⁶Li (³He, d₁) ⁷Be₄₃₁ najvećim delom odigrava preko direktnog mehanizma, što nagoveštava da ekstranuklearni deo talasne funkcije, slično mehanizmu predloženom od R. G. Thomasa za reakcije zahvata, igra bitnu ulogu u ovoj reakciji blizu praga.