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Abstract: Determination of the radial part of the total three-body nuclear wave

function which depends on the symmetric scalar argument is discussed.
The complete »soft« core is included into the known Irving-Gunn radial
function. With this function electric charge form factors for the ‘H and ‘He
nuclei are calculated using different percentage of the S, S’ and D compo-
nents, as well as dependence of the single nucleon charge form-factor on the
momentum transfer. Comparison with the experimental results is discussed.
With the same function the p-meson capture by the *He nucleus is calcu-
lated using the non-relativistic limit of V-A theory. The usually accepted
percentages of S, S’ and D-states give very good agreement with the
experiment.

1. Introduction

The previous analysis of the total three-body ground state wave function?*
was based on the group theoretical considerations. There it was noticed that
its radial part, which depends on the symmetric scalar argument, cannot be
obtained using a pure group theoretical method. In order to determine the
plausible form of the radial dependence one starts from a simple form
which fits a particular experiment. The included parameters are connected
with some, arbitrarily chosen, static physical properties. A functional form
by which an experimental result is successfully fitted, usually fails to explain

* We shall refer to this paper as I. The formulae cited from it are always
preceeded by I.
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other experiments, or the same one but in some other momentum transfer
region. Many simple radial dependences were already explored. The Gaussian
function with the parameter adjusted to fit the Coulomb energy was used in
the form factor calculation®® and good agreement was obtained only for
small values of the momentum transfer (¢ < 4fm™). However, with the
same function it was not possible to explain the low energy photodesinte-
gration data*3. The superposition of the two Gaussian functions® gives good
(it for the photodesintegration processes, but it fails to explain the radiative
capture data?. The Irving function, with the parameter adjusted to give the
correct Coulomb energy value?3, also reproduces the electromagnetic form
factor values, but for the photodesintegration cross-section one obtains a
rather large value for the differential cross-section maximum®9. With the
Irving-Gunn function one finds acceptable explanation for the photodesinte-
gration cross-section® ), but the form factor values for the momentum-trans-
fer region higher than 5 fm™ are badly reproduced®. Gibson! has tried to
include a part of the soft core into the Irving-Gunn radial form and has
succeeded in explaining many data concerning the electromagnetic properties
of the three-nucleon bound state system. However, the physical meaning of
the Gibson’s function is not very clear. On the other hand, it is not difficult
to include the complete soft-core part into the Irving-Gunn radial dependen-
ces. This function was already used in explaining the thermal neutron radia-
tive capture on deuteron'? and in the electromagnetic form factor calcula-
tions for ‘He nucleus . The successes of these calculations are not due to
the same physical reasons. In Ref.”? the function was used to avoid additio-
nal parameters which come into play with the unclear nature of the exchange
magnetic moment operator, while good agreement in Ref.) comes from the
fact that the Irving-Gunn radial function with the complete soft core has si-
multaneously correct behaviour at large and small distances, and in the inter-
mediate region represents a sort of Jastrow’s interparticle correlation. Tn
Chapter 2 we shall briefly explain how the complete soft-core function in-
cluded into the Irving-Gunn radial dependence might be obtained from the
general asymptotic properties of the three-nucleon Schrédinger cquation with
the two particle potential. In Chapter 3 the electric charge form factor cal-
culations for *He and °H nuclei are presented. The points of view used in the
calculations are explained and prediction for the possible place of the dif-
fraction minimum is given. This prediction comes automatically as a con-
sequence of the very good agreement in the experimentally explored mo-
mentum transfer region. In Chapter 4 the p-meson capture by ‘He nuclei is
treated. It is shown that the complete soft-core included in the Irving-Gunn
radial dependence gives correct value for the capture rate within the expe-
rimental errors. Again, comparison with the previously published calculations
is given. In Chapter 5 some conclusions, and in the Appendix some useful
mathematical formulae are given.
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2. Properties of the Radial Part of the Wave Function.
The inclusion of the »soft« core

We shall now briefly sketch the arguments by which one is led to con-
clude that the Irving-Gunn functional dependence of the symmetric scalar
argument comes from the nucleon-nucleon interaction considerations, and
that the inclusion of the core is only the introduction of the known proper-
ties of this interaction.

Let us consider two-nucleon interaction,

Vi=UF—rm0G,j) , (1)

where O (i, j) contains the spin-isospin part, whose matrix element can be
written as

< S, t 'O(l,])l St > = M+, 20 Us 2

where s and ¢ are the spin and isospin values respectively, A is the coefficient
depending on the total spin and isospin of the state, and U. is the scalar
coefficient. From the invariance properties of (1) in the spin and isospin
space follows the general form of the O (i, j), which is the known superposi-
tion of the Wigner, Bartlett, Heisenberg and Majorana forces. The full inter-
action in the three-particle system is then:

VeVt Vst Vai=UO + O + UL N
3

Uy=Uh—1) + U= + U(—7)

where the index S corresponds to the symmetric, and 1 and 2 to the mixed
representation of the S; group. The corresponding function is the superposi-
tion of the S and S’ components, since the D-components are being generated
from the tensor part of the nucleon-nucleon interaction. Consequently, in
this analysis we shall take only S and S’ state and write:

V=¥ +WVo—V90 . (O]

The function (4) is antisymmetric. The functions ¥,, ¥, and ¥: depend on the
radial variables, and the functions ®., ® and ®: on the spin-isospin variables.
The indices have evident meaning. A system of coupled equations for the
¥, ¥, and ¥: functions was given by Verde'. It is sufficient to consider only
the symmetric function for which we have
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T—E)¥ = —% (Fop + ) ULW, ——;— (ap+ M) ('l + Ui ) (3)

The operator T is the sum of the kinetic energies of the three particles. Using
the transformation (I. 4) for the operator T one finds

R - h

h! — —
i Ve — M (Vo' + Vo) - (6)

T = — (-6121'- g:’—i— 6:’) = —
- M

In a dynamical analysis, when only the qualitative behaviour is considered,
one can neglect the small S’ components. Once ¥. dependence is known it is
straightforward to form the ¥. radial dependence. When necessary using only

the group theoretical arguments. By the requirement of the translational

invariance Rs is eliminated and Eq. (5) reads:

[— % (3;{ + -enz’) + }.U,] v, = EVY,, )

with N = _;_ Chan + M) -

Let us consider now only the asymptotic properties of the solution of this
equation. From the properties of the nucleon-nucleon potential, U. — 0,
rii = oo, this corresponds to the free particle wave equation

h1

— g Vs V) B R Ry = Ev ®, R @®)

. = . . e .
The function ¥, (Z, R;) can be thought as a function in a six-dimensional
space in wich we can write the solution of the Eq. (8) in the form!9:

‘!’1 (Rl, Rz) =fo (R) P (
} 4

~ -
where R is the intensity of the vector Ri = (I-Z)., Ry) in the six-dimensional
space:

| )

1) , ©)

" R

R = (R + R = {% zr.-f]m- (10)
I'<f
&

The function ¢« ( is a part of the harmonic polynominal

R

~

Pt (-?zl, E) = R‘Q’K (E' R_:):

which satisfies the equation:
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(’61&12 + 6;122) Px (72)., E)z) =0. (11)

From the Eq. (8) follows the equation for the function f« (R):

N1 o3 [, B K(K+4) _
—HEW(R —a}T)h (R)—[E—-—ﬁ,———] fo (R) = 0. (12)

For R - o, and for any K we have:

g _
(_372; + v.) fe® =0, (13)

and fx (R) for the bound state reads:

{(R) ~  ew {_Vy_ ) R} ) 13)

-—
The angular average of the function @« (—R--: %—) gives the constant con-

tribution which can be incorporated in the parameters which are often
subject to a trial procedure. Therefore, for the large values of R it follows

f(R) = R" exp {(—B R} , (14)

where B and m are parameters. This is known as the Irving-Gunn function.
For small distances it was already suggested!» that the Eq. (14) has to be
modified by the inclusion of the hard core radius

0 for vy <re,
f (flz, s, ru) =
fo (ra, rz, 1) [(ra—71.) (rs—re) (ru— 1)1 . 15)

This is a rather drastic condition which introduces the hard core radius
which is not experimentally well established. However, Egs. (15) can be
slightly modified by putting 7. = 0 under the condition that the full depen-
dence should be that of the symmetric scalar argument. This is a fraction
which we call a complete »soft« core function:

¥s (symmetric scalar) = f (R) [II 7] =
1 - = "l’<’ (16)
= {1_6 R [BR’ + R — 12 (R Rz)‘]} R"? exp {—BR} .
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As it was noticed in the preceeding Chapter, this function has a good beha-
viour at small and at large distances, and the factor [II r./]** emphasizes the

known particle correlation term for any distances. l\ﬁith this function, for
n = 1; m = —2 fair agreement was already obtained for neutron-deuteron
capture cross-section?, and for the electriccharge form factor of the ‘He
nucleus®).

3. Charge Form Factors for *H and 3He nuclei

The expression for the cross-section of the elastic scattering of electrons
on nuclei derived from the current-current interaction in the Born approxi-
mation (usually called the Rosenbluth formula) apart from the Mott scatte-
ring crosssection term, contains the following important dynamical quan-
tities:

1) a combination of the charge form factor of single nucleons,

2) the Fourier transform of the charge distribution in nuclei (lo which one

refers as to the charge form factor), and

3) the Fourier transform of a magnetic moment distribution (to which one

refers as to the magnetic form factor)®, 17),

Here we shall restrict ourselves to the charge form factor calculations.

Apart from the body form factor calculations, when one supposes that
the proton and neutron form factors are 1 and 0, respectively, (what allows
one to put the whole dynamics of the electron-nucleus scattering into the
quantity which is the Fourier transform of the nuclear wave function), there
are two other analyses of the charge distribution in the three-particle nuclei.
One of them is reported in the work of Schiff and his collaborators? !, 18
and the other in the work of Srivastava. In the former it is supposed that
the neutron charge form factor F." (q°) is always zero, but the analysis is
extended to S, S’ and D components of the nuclear wave function. In the
latter, the analysis is done only with the S state function, but the momen-
tum transfer dependence of the neutron charge form-factor was taken into
account. Both of them are working hypotheses and neither of them can be
disregarded a priori. With function given in (16) we have calculated: «) the
body form factor, B) the Schiff like form factor, and y) the Srivastava-like
form factors and its extensions when S’ and D components are included. We
shall suppose that the D-state components might be well represented taking
only the ¥; function (I. 26).

For this case the expression for the *He form factor, F.. (*He), using (I. 28)
reads:

F. (He) = (F,f + —;- Fa.“)(P,‘ F, + Pt F..) — -;- P.P. (F,f - F.-,.ﬂ) Fe +-
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+ Py [%—- Fo® Foy, + (-%— FX + '%'Fﬂ'n) FDz] ’ (17)

and the corresponding expression for the *H nucleus is:
Fao CH) = (Fo® + 2Fa")(P:F, + PAF.) + PP, (Fi¥—Fa") F,.; +

+ Py [-;-. Fur Fo, + (—; Far + Fch") F,,z] , (18)

where F.'" are the proton and the neutron form factor, respectively, F., F.,
Fi-s are defined in (I. 31) and (I. 36), Fo, and Fp, are obtained using the defi-
nitions (I. 18). In the Appendix we have listed the explicit expressions for
these integrals when for the radial function of the symmetric scalar argu-
ment the function (16) is used. The calculations are made for (m = 0, —2,
—3, —4). While the values obtained for (m = 0, —2, -—4) deviate from the
experimental points, the values for m = —3 are very close to the experi-
mental ones, and oscillate around them depending on the percentage of the
S, § and D components and on the inclusion or exclusion of the neutron
form factor dependence on the momentum transfer.

In Table 1 we give the results of the calculations for the *He nucleus, tog-
ether with the experimental values reported by Colard et al.?. The experi-
mental values for the proton and neutron form factor are taken from Le-
vinger et al2), In column I the values for the body form factor calculations
(100 % of the S state) with the mean value of nuclear radius < ¥ > = 1.8
fm are given. In column II the Srivastava-like analysis is reproduced again
with 100 % of the S state but including the proton and neutron form factor

dependence with < r* > = V3 fm. This value of < r* >'? is the same for
both ‘He and °H nuclei as a consequence of the charge symimetry. Columns
III, IV, V and VI are calculated for this value of < 7 >' In colums III and
IV the values are obtained with 98 % of the S state and 2 % of the S’ state.
The former is without neutron form factor values while in the latter this
dependence is included. The columns V and VI contain results of the calcu-
lation with 92 % of the S state, 2 % of the S’ state and 6 % of the D-state.
Again, in first case the neutron form factor is neglected, while in the second
it is included. The parameters of the function (16) are taken in such a way
as to give the correct value for the nuclear radius which reproduces the
Coulomb energy.

In Table 2 corresponding results for the ‘H nucleus are reported. Here, in
column I the body form factor is calculated for the mean value of nuclear
radius < > = V3 fm.

In Table 3 the values for the ratios F.. ("H)/Fs+ (CHe) for all columns are
reported.
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Table 1
Fe (CHe) calculated

q’ . P& = 0.02; P& =

%‘ Psz = l Psz = 0.98, Psvz = 0.02 =S 0.02; PDz =s 0.06

0

3

~ I II III v \" VI

[
1 0.567 0.5869 0.5805 0.5575 0.5642 0.5445 | 0.5510
2 0.329 0.3477 0.3442 0.3172 0.3269 0.3050 | 0.3137
3 0209 0.2064 0.2087 0.1854 0.1949 0.1763 | 02145
4 0.132 0.1216 | 0.1272 0.1089 0.1181 0.1019 | 0.1095
5 0.081 0.0701 0.0776 0.0635 0.0707 0.0591 | 0.0636
6 0.054 0.0387 0.0465 0.0378 0.0415 0.0336 | 0.0373
8 0.017 0.0079 0.0152 0.0111 0.0131 0.0099 | 0.0118

Tab. 1. — Momentum transfer dependence of the electric charge form factor of

the 'H nucleus. The experimental values are taken from H. Colard et al® The
values for the single nucleon charge form-factors are due to Levinger and Striva-
stava?l), Column I contains the body form-factor (100% of the S state and
Fua? =1, F4" = 0), column II the charge form-factor (100 % S state and the corres-
ponding values for F.’ (g*) and F4" (g*)). Column III represents F.. (*H) taking
S=98%and S’ = 2% and F.* = 1 and F." = 0, while in column IV for the same
percentage the F.,» and F." dependence is taken into account. In column V are the
F., (CH) values obtained with 92% S, 2% S’ and 6 % D-state, and for F,> = 1
and F.," = 0, while in column VI the same percentage of the S, S’ and D-state are
used, but various F.® and F.," are taken into account.
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One can see that best agreement is found in columns IV for both cases.
That reflects the importance of the neutron form factor dependence, as well
as the ambiguities connected with the D-state function, especially, with the
D-state radius:

1
364

<R'> = 1 No* Py’ f Yo rat Yo dVe = Pyl

=3 (16 + m) 17 + m).

The experimental minimum which appears for g> = 6 fm * {see Table 3) is
probably accidental. It is intriguing that the theoretical minimum appears
only in column VI. It might happen that a reasonable change of the D-state
radius would shift it to the right position.

Table 3

F. ('H)/F.. (*He)

g exp. 1 I 11 v v VI
1 10970 1.1070 10336 | 1.0674 | 1.0994 | 1.0670 | 1.0991
2 1.1763 12160 10735 | 1.0735 | 1.979 | 11305 | 1.1973
3 1.2775 1.3411 1.1181 | 11775 | 12935 | 1.1883 | 1.1119
4 1.3258 1.4883 11714 | 12553 | 13802 | 1.2561 | 13927
5 1.4568 1.6762 12263 | 13402 | 14880 | 1.3349 | 1.4878
6 1.3889 1.9432 12667 | 13810 | 15831 { 14167 | 1.6085
8 1.7059 35316 13026 | 15586 | 1.8015 | 1.7071 | 18136

Tab. 3. — Ratio of the electric charge form-factors F., (*He)/F.. (*H) for different
momentum transfers. The values are obtained as the ratios of the quantities
taken from the corresponding columns of Table 1 and 2.



ON THE THREE-NUCLEON... 21

The calculated charge form factors both for ‘He and *H nuclei tend to
zero for the momentum transfer values of about 10 fm™. These minima are
similar to those already found in the charge form factor of the ‘He nucleus®.
Unfortunately, measurements for values of the momentum transfer g*> > 8
fm~ do not exist.

4. p-meson capture by *He nuclei

The capture rate, A, for the reaction
P+ ‘He—>"H+ v (19)

was measured by several groups®. The result® to which one usually refers
in the theoretical considerations is: A = (1410 & 140) s™'. This reaction was
considered as one of the possible tests for the induced terms in the weak
interaction®, in which case the theoretical expression for the capture rate
contains the relativistic corrections. The determination of the induced terms
presumes that the radial part of the nuclear wave function is well known.
Here, however, we want to calculate the capture rate with the new function,
and since the relativistic corrections are of the same order of magnitude
as the experimental errors, it will be sufficient to make the calculations in
the nonrelativistic limit.

Within the framework of the V-A theory of the weak interaction, the cap-
ture rate for the reaction (19) is®

(21:)! f Z Z {Gv’ Af + TS ?|’}, 0)

with
’ 3 2
137 1+M=u
where
Gv=g-; 1 +l + g:,P=GA1+—1—(Gr’—2GAGP) '
M 3
and

Gr = ﬁ(gp—g;-—gv——gu-{- gr), Ga= gh— (gv + gu) C¥T

are the constants which characterize the weak interaction; m"}1 and M are
the reduced p-meson and proton mass, respectively, v is the neutrino im-
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pulse, and ¢, the S-state p-mesic function, is taken to be a constant over
nuclear volume. (7 is the isospin operator for the particle | with which

the elementary proces .~ + p — n + v takes place, and @ is the spin operator
acting on this particle. For the wave function ¥ (CH) and ¥ (*He) as in the
preceeding chapter we shall suppose that they are composed of the S, S’ and
one of the D-components (¥:).

The quantities f1 and [ T are then:

f 1 = —71? [ZP:Fs + 4\/_2P5P5'Ps's' + 2Ps'1Fs' + Py’ (3F°1—F"2)] ’ (22)

1
- 1 2 - = 1
[7-w22>© |2 2 | v
" A A
. [—zpsts + Ps?Is + RDIID] , (23)

where Ps’, Ps* and Po* are the percentage of the S, S’ and D components in
the total wave function. When ¥ (sym. scalar) is defined by (16) all other
quantities are the integrals listed in the Appendix.

It is interesting to note that while the quantity (22) is directly related to
the form factor integrals, the quantity (23) can be expressed through them
only for the S state component.

Table 4
Pg =092
: Ps? = 0.98 2
exp. Pi=1 _ Ps? = 0.02
s Ps? = 0.02 z; = 0.06
A(s™) 1410 + 140 1555 1515 1401

Tab. 4. — The calculated capture rate, A, for the reaction p~ + ‘He — *H + w.
The experimental value is taken from Falomkin et al* The constants which cha-

racterize the weak interaction process are taken as: (g -% / g V) = — 1.18;

g = 7g~'g%—= 0.972g%; g

= 1.1473 - 10" MeV~%

<=

%:0.999g%;g.«=3.7g%;gs=gr=0;g =

We have calculated the capture rate supposing first 100 % of the S state
in the final and initial nuclei and then including 2 % of the S’ state and
6 % of the D-state. Results are given in Table 4. The obtained value given in
the last column is in very good agreement with the experimental results.
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5. Conclusion

The agreement with the experiments, obtained by including a »soft« core
into the known radial dependences for the three nucleon bound state wave
function, strongly suggests that the »core« part is important both for the
small and high momentum transfer regions. Moreover, it is a unique quan-
tity, which in a stronger form reproduces and predicts the ditfraction mini-
ma that appear an electron scattering on very light nuclei.* The determination
of the percentages of different components is a delicate question. It seems
definitely that without introducing new parameters, S’-state is about 2 %.
The analysis of the D-state implies a new parameter, its radius, which inter-
plays with the value of its percentage, or more precisely, from the very
complicate nature of the D-state it appears that the whole D-state function
is a parameter.

Appendix

For the reduction of the integrals Fs, Fs and Fs-s to the form (I. 32) the
relation:

f A0, d: & Ry exp (ig R} = Z_(I::_)l (R R)™ jo (q R) Al)

is used. For the reduction of the integrals F»; and F», to the same form, we
have used the following relations:

- R*R? -

j D.D* R Ry exp G RY duda, = 2 ‘94“’

: (Rs + R — -g R.’Rz‘) jo (q R)
A2)

8 (4w}
5

J' D:D* (B R) exp {g R dfu d: = (R R js (qR) -

The integrals in (17) are:

17
—+mri8 n+ 5 + 4
Fo=(1+2)2 [—I-F(—'2 F—

4; — —
5 z)

* Note added in proof. The experiment of electron scattering on *He nucleus for
higher momentum transfer, up to ¢ = 20 fm™, is lperformed by J. S. McCarthy
et al. Stanford and published in HELP — 635, July 1970. The diffraction mini-
mum appears at ¢ = 11.6 fm™
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m+3 m+2.5‘
2 ’ 2 ’ ’ Z)+
m+ 1 m._
2 ’ ?161_2), A.3)

21
—4m

5 (14 + m) (15 + m)

Fs_s'=_zl/i (12 + m) (13 + m) 1+ 2

'-F[9F(— m2+7;_ mz+6;4;_z) __%5(“_2).
m2+5.— m2+4;5;——z) + %(l+z)‘-
5 'I"12+2;6;-z)—%(1+z)’-
mgl,—-"—;ﬂ;—z)]. A4)

25
Fe = (1+2)? "[9F(— '";9; m2+8;4;—z)—25(l+z)'
m+7 m+ 6 22 ).
-F(— 7 3 ,5,—z)+7?(l+z)
m+5 m+4 . 7-13 .
'F(_ 2 ’ 2 ;6:-2)_ 5 (1+-)
m+3 m+2 22 .
F _m+1._m'8._” A5)
(-] -
Zm [ 360 9 8 714
—+m m+ m+
by = 2 - - . . L —_— . N
Fo = (1+2) [65 F( = =4 z) = (1+2)
F(— m2+7'_m;6:5'__ +850 a2
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Bt 45 m+ 4 1071
CF {— - -6 — _2an A .
( 7 3 ;6 z) 5 (I + z)

-F(— m+3 '”4'2—_7;-«2) +-1—9-—§—(1+z)‘-

2’ 2 63
-F(— m2+l;—%1-;8;—z)] A.6)
.. §+"l 750 m+7 m+6
Fr, = (142)2 [75—(1+z)F(— = =2 :5:—2)—
_%;7(1_'_2)2;,(_m2+5;_m;-4;6'_z)+
+-%(1+z)’i‘(—m2+3:—m;2;7;—z)—
——2:?6(1+z)‘F(—’n;1:—"71;8;—2)]. A7)

Where F (I; p; g; x) is a Gauss hypergeometric function, and z = ¢‘/128%. The
integrals in (23) are:

Is

Is’l + IS’Z ’

33 v m+l m v
+T(1+12¢')F(— 2 —7'8'—35)]’ AS)
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m+1 m v
. - s .8 — 9
F( 5 2.8, 12[3’)] ’ A9)

6 v\ 2 m+9 m+8 v
Inl='.—3'(l+iz—‘—3’l) [9F (— 7 ;_—2_—, 4D_’1'2_Bf) -
3451 v m+17 m+6 v
- = (1+12_Bf) F(— 7 T 3 '5'_12(3’)+
58 -7 Vo2 m+5 m+4 W
* 7o (1”124{) F(_ 2 T2 % 12;3*)
.VZ

16 - 111! Wl m+l m v
MR (1+1za*)F('“ 2 7 123’)]’ Al10)

6 v\ 2 51 v
Ioz=_1§(1+ﬁ—B;) [9 -—4—| (1+l—2—§7)

m+1, _m+6 . Vv 633 7! A
'F(_ - 5'_12@*)_ 25 2-5! (“123’)

m+5 m+4 v 616 9! A
.F(— ; — 6; — )+ 25 460 (1+|”,)
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. F _m+3__m+2_7._ v _208 111 v1+ A

( 2 2 123') 25 8-7!( ma‘)
m+ 1 m v

.p(_ ; ,_7,3,_1242)]. All)

The parameters 8 and m are related to the root mean square radius and
Coulomb energy by the formulae:

<r> = # [P (12 + m) (13 + m) + Ps? (16 + m) (17 + im) +
A.12)
+ P (16 + m) (17 + m)] ,
. .8 320 2-61 ,  6:29
Ee=e o Srisa=m &+ 1
12+ w 27-137 1 ,
[10 13+ m) (14 + m) (15+m)] PPot T3 5o 0 4
64-53 1 ,
+m§mf’}- ALY

m=—3; N 3
and for n=1 <r>=3fm};p =Vzi 0.4945 fm™; E. = 0.6255 MeV.

References

1) N. Bijedi¢ and Z. Marié, Fizika 1 (1969) 219;

2) L. I. Schiff, Phys. Rev. 133 B (1964) 802;

3) B. F. Gibson and G. B. West, Nucl. Phys. B1 (1967) 349;
4) M. Verde, Helv. Phys. Acta 23 (1950) 453;

5) J. C. Gunn and J. Irving, Phil. Mag. 42 (1951) 1353;

6) H. Eichmann, Z. Physik 175 (1963) 115;
7) J. P. Didelez, H. Langevin-Joliot, Z. Maric¢ and V. Radojevié, Nucl. Phys. A.143 (1370) 602;

8) J. R. Stewart, R. C. Morrison and J. S. O’Conell, Phys. Rev. 138 B (1965) 372;
9) C. Rossetti, Nuovo Cimento 14 (1959) 1171;
10) R. Roésch, J. Lang, R. Miller and W. WolIfi, Phys. Letters 15 (1965) 243;

11) B. F. Gibson. Nucl. Phys. 2 B (1967) 501;
12) J. B. Vujaklija, Mgr. Thesis, University of Belgrade, 1969 (unpublished)

13) N. Bijedi¢ and Z. Marié, Lettere Nuovo Cimento 2 (1969) 831;
14) R. J. Jastrow, Phys. Rev. 48 (1955) 1479;



28 BIJEDIC et al.

15) M. Verde, Handbuch der Physik XXXIX;

i6) A. M. Badalyan and Yu. A. Simonov, J. of Nucl. Phys. (in russian) 3 (1966) 1032;

17) L. L. Schiff, Phys. Rev. 133 B (1965) 1153;

18) B. F. Gibson and L. I. Schiff, Phys. Rev. 138 B (1965) 20;

19) B. K. Srivastava, Phys. Rev. 133 B (1964} 545;

20) H. Collard, R. Hofstarter, E. B. Hughes, A. J. Johannson, M. C. Yearian, R. B. Day
and R. T. Wagner Phys. Rev. 138 B (1964) 802;

21) J. S. Levinger and B. K. Srivastava, Phys. Rev. 137 B (1965) 426;

22) ﬁ.%F. 8F;osh, I. C. McCmacartty, R. E. Rand and M. R. Yearian Phys. Rev. 160 B

7) 874;

23) L. B. Auerbach. R. J. Esterling, R. E. Hill, B. A. Jenkins, J. T. Lach and N. . Lipmar,
Phys. Rev. Lett. 11 (1963) 23; Phys. Rev. 138 B (1965) 127;

24) 1. V. Falomkin, A. I. Filipov, M. M. Kulyukin, B. Pontecorvo, Yu. A. Shceroakov, R
N. Sulyaev, V. M., Tsupkositnikov and O. A. Zaimidoroga, Phys. Lett. 3 (1963) 229;

25) C. W. Kim and H. Primakoff, Phys. Rev. 139 B (1965) 1447;

26) R. Pascvale and P. Pascval, Nuovo Cimento 44 (1966) B434.

O TALASNOJ FUNKCIJI OSNOVNOG STANJA
TROCESTICNIH NUKLEARNIH SISTEMA

II. Svojstva radijalnog dela talasne funkcije.
Uvodenje »soft-core«. Form-faktor naelektrisanja.

Zahvat p-mezona.

N. BIJEDIC, Z. MARIC i V. ZLATAROV
Institut »Boris Kidri¢«, Beograd

Sadrzaj

U radu je diskutovano odredivanje radijalnog dela talasne funkcije tro-
nukleonskog sistema. U publikaciji? pokazano je da je argument ove funk-
cije simetri¢ni skalar.

U poglavlju 2 diskutovani su asimptotski uslovi koje funkcija treba da za-
dovoljava (relacija 13’) dok je u relaciji 16 uveden kompletan »soft-core«.

U poglavlju 3 diskutovan je form factor jezgara °*H i *He dat u (relaciji 17
i 18). Numericki rezultati za razliCite parametre funkcije (relacija 16) dati
su u tablicama 1, 2 i 3 dok su analiti¢ki rezultati dati u apendiksu.

U poglavlju 4 diskutovan je zahvat v-mezona na jezgru ’He. Analiti¢ki
izrazi za verovatnoéu procesa dati su relacijama 20, 22 i 23, dok su nume-
ri€ki rezultati dati u tablici 4.

Dobro slaganje ra¢unatih podataka sa eksperimentalnim opravdava defi-
nisanje funkcije relacijom 16, i isti¢e potrebu razmatranja korelacija krat-
kog dosega — »soft-core«.





