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Abstract: A method for treating elastic and inelastic sc.attcring of a particle on a 
system of bound particles, using the many-body techniques, is presented. 
The optical potential model for the elastic scattering is discussed and the 
way of direct inclusion of the self-consistent incoherent terms is given. Ana­
logous procedure for the inelastic scattering is described. 

1. Introduction

Despite the large amount of work done during recent years in the appli­
cation of Green function method in different domains of quantum physics , 
a systematic exposition of its use in the scattering theory does not exist. 
Especially this concerns the scattering of a particle on the system of bound 
particles. This is , however, one of the most frequent situation which one 
encounters in atomic and nuclear physics. Thus it seems regrettable, since the 
calculation techniques for the Green functions are very well developed. The 
approaches already published are either of purely formal natur\!1) ,  and phy­
sical approximations are made without neccessary clarifications , or the 
attention is restricted to the optical potential studies2> and its use in prac­
tice3>. 

The aim of this paper is to describe a model for scattering of a partide 
on the system of bound particles which is close to the reality, and in which 
the relation between the Green functions and the S-matrix appears in a very 
simple form. The model consists in the study of the evolution of a bound 
system and a particle, with the adiabatic inclusion of the full interaction 
between them, and in the end of the process, after the exclusion of the full 
interaction , we have again a bound system separated of the rest. This is 
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explained in detail in Chapter 2, where also the non-trivial situation, when the particle is of the same kind as the particles of which the system is com­posed, is treated. In Chapter 3 we describe the elastic scattering and give the relation to the optical potential. At the same time we propose a method of the evaluation of the T-matrix with the inclusion of the incoherent terms. In Chapter 4 the generalisation of the method applied for elastic scattering to the inelastic processes (excitation and ionization) is given. This generaliza­tion can be applied to the cases when the difference in the number of par­ticles in the bound system does not change considerably their excitation spectrum. The analogous formulae as for the optical potential and their modifications are also given. That is done using the two-particle Green func­tion. In Chapter 5 we indicate how this method can be generalized using many-particle Green functions and give some concluding remarks. 
2. General considerations

Consider the situation in which a particle is scattered on the system of bound particles. Generally, we can study the dynamics of the complete system (projectile plus scatterer) through the transition amplitude defined by 

( ) 
- i H( t' - t ) 

SA. t' t = < rpA t' I e c c 
I cp , t > , t--« C, C t--, C a C ( t )  

where t,. and t',, are the times of the beginning and the end o f  the collision, 
respectively, e- in <''c - 1"1 is the evolution operator in the Schrodinger represen-
tation, and I q> a, t > · I Cf>�, t > represent the evolution of the system be­fore and after collision, respectively. There is no dificulty to remove tc and 
t',, to the infinite past and, correspondingly, to the infinite future. That serves only as a description of the physical situation when before and after the interaction the projectile and the scatterer are well separated. This proce­dure allows also to avoid the unnecessary complications which arise dealing with the wave packets. 

Using the field theoretical language, we can speak of the time development of the scatterer as of the development of the vacuum. By introducing the full interaction between the particles this vacuum becomes a physical vacuum through which the projectile propagates. We shall show that this picture gives a direct relation between the S-matrix and the Green functions, as they are usually defined in the theory of many-particle systems. But, before giving the proof of this relation, we shall explain how one overcomes the difficulties which arise when the extra particle (projectile) is of the same kind as the particles by which the scatterer is built. In order to assure the 
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time development of the bound system to the state of the physical vacuum, the necessary separation of the total Hamiltonian is 
where H = Ho +  Hi , 

A + 1 A 

Ho = �  T . + � V . .
� J � lJ 
i = l i > I  

A 

H, = 2 Vi, A+I
i = I 

(2) 

(3) 

It is evident that this separation makes both Ho and H, nons)'n1etric. In order to ensure the validity of the exclusion principle, we have to reexamine a procedure by which the proper symmetry of a state is built. Let us also mention that the interaction representation, which is often used in the case of the symmetric separation of the total Hamiltonian, in this case is not applicable. Since the evolution of non-overlapping wave-packets can be described disregarding the indiscernability of the particles, we have before the collision 
- i H0 t - i E t l q> t > = e j cp > = e a l cp > � a a (4J 

where j cp a > describes n non-ovelapping wave-packets. The function (4) is not properly symmetrized. The function I cp·a, t > that satisfies the exclusionprinciple is obtained by postulating 
,._, - i E t ,._, l cp t> = C cll ! cp L > = e  

a j cp >
� � a (5) 

where o4 is the antisymmetrization projector, C is the normalization con­stant and 
(6) 

The antisymmetrization procedure at this point is well a<lapted for our 
purpose, since ] cp a >  can be represented in the second - quantization for­malism4>. 

The same considerations can be applied to the motion of the system after collision, when the wave - packets are again well separated. Taking this result into account we write the transition amplitude (1) in the form 
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In the infinite past and infinite future the formula (7) becomes 
,......, - H (t'c - le) ,-....., i E(3 t'c - i Ea tcs�a = um < cv13 j e I cp « > e 

tc -+ - oo 

t' -+ + oo 
C 

(7) 

(8) 

The »lim « in the above formu la supposes the average ove r  the phases or  the existence of a damping factor, since without that the lime s does not exist5>. 
Fo r the case of the scatte ring of n pa rtic les on a fixed ta rget consisting of A bound partic les (neg lecting the recoi l) we write 

,-....., 
+ 

I CV > = a a a0 

,..._. 
+ 

I cp� > = al3n • • •

a I A > 
«1 (9a) 

(9b) 

where a«· , afJ.. . a re the second quantization operato rs , satis fying the usua l
I l"l fermion anticommutation rules , and 

H I A > = EA I A > , ( 10) 

i. e., I A >  is the ground state of A interacting partic les with the ground stateenergy EA. We rewrite the formulae (9) in the form

Defining 

. . . 

and substituting (11) into (8), we get 

(1 l a) 

( 1 1 b) 

( 1 2) 



THE USE OF . . •

s13« = lim < A \ �. ( t' )
� - 00 t,�+ 00 
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""" ( ) 
i ( e t' - e t)

. . . a+ t I A > e f3 « 
«. 

f"J ,-J 
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( 13) 

where  a« ( t) , a� ( t )  are opera tors in the Heisenberg represen tation, and
the subscrip t  »c« is omitted. Recalling now the definition of the n-particle Green function, 

(14) 

= (- i f < A 1 TF, (t'1 )  . . .  �. (t'. )�. ( t. ) . . .  � (11 ) }  I A > I 

we see immedia tely 
S

(3« = l im t Gn (�1 t' . . . �n t't. -+ - oo 
t'-+ + 00 

( 1 5) 

The transi tion betw�en (8) and (15) is immediate. This proves our contention, that the expression for the S -matrix, wri tten in a convenient way, leads im­mediately and almost trivially to the corresponding Green functions. 

3. Elastic scattering

In or der to describe the elastic scat tering w e  note that the sta tes before and a fter collision, neglecting the r ecoil o f  the bound system, can be exac tly r epresented by 
( 1 6a) 

( 1 5b) 
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where  from it immedia tely follows 

( 
) i ( e t' - ea t) S (3a = i l im G � t' ; a t e f3

t -)- - 00
t' -)- + 00

( 1 7)

The no tation is the same as in the preceeding chapter .  Using the general relat ion between S and T matrix, 
( 18) 

and the Dyson equa tion 
G = Go + Go l: Go,  (19) 

where  Go is independent par ticle Green function and l: is the non-compact self-energy par t  o f  the Green function, one finds 
(20)

where  l: (�, a.; B) is the Fourier transform of l: (�t'; a.t) taken a t  B = e a ,  i. e. for the value of  the s ingle par ticle energy. 
At this stage it is rather s imple to see how the elas t ic s ca t tering pro cess is described as the propagat ion o f  par ticle through the phys ical vacuum. Recal­ling that using the Har tree-Fock vacuum, I Ao >, the expression for the field theoretical scat ter ing opera tor is 

S'= < Ao I S' I A0 > { 1 - i J d i d2 l:; ( 1 ,2) N[ "1 +(1 ) \J, (2)] -

- i J d i  d2 d3 d4 r (1 ,2,3,4,) N [ ,J,+ ( 1 ) '1r + (2) \J, (4) \J, (3)] + . . . } , (2 1 )

wher e  N [\f,+(1) \J,(2)] is the normal product o f  the one par t icle opera tors \JI (i) = \JI (x,, t,), and fur ther, making transition to { I a. > } basis and taking the Fourier transform, w e  get the expression 
S

13« = < Ao I S' I Ao > < Ao l a13 S' at I Ao > (22) 
Since the firs t factor is just the phase, we can interpret this expression as the mathematical descr ipt ion of  the propagat ion of  the particle through the m edium w ith the adiabat ic »switching on« o f  the full interaction. This proofs our asser tion. 
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In practice, one calculates l: (P, a; E) by the standard diagrarnmatical tech­
niques6, 7>. Taking as the one-particle basis the Hartree-Fock one, the first­
order contribution to l: (P, a.; E) is 

(23) 

(24) 

V a�, "ta is the non-symmetrized matrix element, and N·
y 

is the fermion occu­
pation number. 

This part is included in the potential. The second-order contribution is 

As it is known2> the equation (18) together with the Dyson equation 

l: = M + M G, l: (26) 

where M is the compact self-energy part, can be interpreted as the scattering 
relation 

T = V + V Go T , (27) 

where V or M plays the role of an optical potential. The approximation made 
in writing optical potential consists in neglecting all the incoherent terms. 
This definition of the optical potential is consistent with the one used in 
the multiple scattering theocy8>. 

Some calculations in atomic physics based on this idea are done3, 9> for 
e-H and e-He scattering. There, M is calculated perturbationally up to third
and second order, respectively, and then the phase shifts are calculated. But, 
there is no physical justification, at least for low energies of the incoming 
particle, which would allow one to neglect the incoherent terms. Therefore, 
we propose an alternative approach, which consists in calculating M up to a
certain order, and then solving (26). This is an infinite partial summation 
of the perturbation series, and as such should certainly ameliorate the cal­
culation. 

If we look at the 2"d (and higher) order contributions, we see that the ener­
gy denominators have zeros, and hence the diagram contributions have 
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poles, at t�e non-perturbed energies. This is an inherent limitation of this 
series . development, analogous in this respect to the Born series in the 
potential scattering. 

4. Inelastic scattering

With respect to the use of Green function method, the generalization of the 
elastic scattering procedure for the inelastic processes is, for a certain class 
of systems, almost immediate. It is sufficient that the ground state of a 
considered system, say A-, containing (A+ l) particles can be represented as 

(28) 

where j A >  is the ground state of A-particle closed shell system, defined as 
in the previous section. This is valid under the condition that both I Ao - > 
and J A > could be reasonably well described by a model in which the cor­
responding single particle states are very nearly, or more generally, for the 
case where the low-excited states of the A- system are approximatively 
given by 

+

I An > = aa, I A > (29) 

In reality, this situation is realized in heavy nuclei or in atomic systems 
where one of the bound electrons has small binding energy. In that case 
the physical picture which serves as a basis for the description of inelastic 
processes, is that of the exchange of energy between any two particles 
during the interaction. In the field theoretical language, one can think 
about the propagatio11 of two particles through a medium with the adiaba­
tically »swichirig �n« of the full interaction, which acts between all the 
particles of the. interacting system. We then write 

,.._, 
+ + +  

j q> a > = a«� / An > = a CX2 a a. j A > , 

+ + + I Cf>13 > = al3a I A n' > = al3ii 
al3, / A >

Now we c�m use (15) to get 

S
13a = - J im G2 (�1 t'. �2 t'

t -+ - oo  
t' -+ + 00 

(30a) 

(30b) 

(3 1 )  
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where 

(32) 

Introducing now a Dyson's equation analogous to ( 19 ) ,  i. e. 

G2 = GG - i Go Go re Go Go (33) 
where 

GG = G (1,3 ) G (2 ,4) - G (1,4} G (2 ,3) (34 ) 

and re is the connected vertex part, in a similar way as in obtaining (20) , 
we get 

(35) 

where r,,., is the non-compact vertex part. At this stage, by the arguments 
similar to those used to derive Eq. (22), we obtain 

+ + 
SA = < Ao I S' I Ao > < Ao I aA aA S' a a I Ao > . (36) 

1-'4 · 1-'t 1-'2 «, «1 

This justifies our intention to interpret the inelastic processes as a two-par­
ticle propagation through the medium. In calculating (35 ) all the diagrams 
are taken, except those contaiping passive loops only (because of the HF 
vacuum). The exact one-particle Green function G is diagonal in the basis
which diagonalizes 

h<1> = T + M I (37) 

where T 1s the kinetic energy, and M is the compact self energy operator.
Then we can use the Dyson equation 

G2 = GG - i GG r GG (38) 

in the same way as before , to obtain 

(39)
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r is now the compact  vertex part , c alculated by taking the skeletal dia­grams only. The expression (39) is identical with that of Zhivopistsev 1> ,  but only formally. Namely, the first order contributions to M 

(I) HF 

M(3a = V13a (40) 

in Ref.1> are neglected . Within the accepted model , the relation (�9) is an exact one. The first order contribution to (35) is simply the antisymmetrized inte r­action 
( l ) ,_, 

T = V  (4 1 )  131 '32 , « 1  «2 131 13, , (Xl (Xll Using now for convenience the symmetrized variant of the diagrams ,  we have in 2nd order 

a) b) 

The contribution of (a) is given below as an example : 
V V ta) 

= � ad� , Y1 Y:a Y1 Y2 , «1 «2 [N N + (I - N ) ( I _ N ) ] (42) (3a LJ E - B  _ 8 + i Yt Y2 Yi Y2 

Yt y2
Y1 Yt 11 

where E = s a
1 

+ s� We see that the s ame restrictions wit h respec t to the singularities produced by zeroes of the energy denominator, as in Eq. (25) , apply also in this case . The same is true for the con tribution of (b), and for those of higher order. 
· In analogy with the optical potential ,  which can be considered as an effective one-particle potential describing an overall int eraction with themedium , we can define an ef fective two-particle potential modified by thepresence of the medium. The irreducible vertex / ( 1 ,2; 3,4) is de fined as such a vertex in the skeletal diagram which can not be separated in two parts by cutting only two fermion lines. The ver tex  satisfies the integ ral equation , 
r ( 1 ,2 ;  3,4) = I (1 ,2; 3,4) + � J d5 d6 I (1 ,2; 5 ,6) G (5) G (6) r (5 ,6;  3 ,4) . (43)

This equation can be interpreted as the two-particle scatte ring e qua tion (27) , similarly as it was done in the discussion of the op tical model for elastic scattering identifying / (1 ,2; 3,4) with an effective two -partic le potential . As 
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befor e, this also can be  used as  the starting point in a more exact ca lculation  in the following way. Calculating I (1 ,2; 3,4) perturbationally up to a certainorder, we can solve in principle equat ion (43), obtaining in such a way an infinite resummation o f  the perturbational development o f  r. In analogy to the modified opt ical calculations3, 9) one can solve a two-partic le Schrodinger equation  using I ( 1,2; 3,4) a s  the int eraction potent ial, which would representan  approximation  that can b e  practically handled. In the framework o f  this formalism , the ionization processes are a particu­lar case o f  inelastic processes; it is sufficient to take in the formula (35) the final states o f  both partic les in the continuum . 

5. Concluding remarks

We have presented here a systematic method o f  calculat ing  ela st ic and in­elastic processes in the case o f  one particle colliding w ith the system of  bound partic les o f  the same  kind. The relat ion between the scattering quan­tit ies (S, T-matrices) and the corresponding many-body ones (G, �' r) was established in the simplest way. We have discussed in detail the relat ion  o f  the obtained quantities with the intuit ive notions about propagat ion o f  one or two particles through the medium consisting o f  a boun d  system of  par­ticles. In  such a way we have established a theoret ical basis for the syste­matic investigation  o f  several processes by the many-body techniques. For more than one particle out side o f  a complete  shell, the presented me­thod can be  genera lized, but then three- and more-particle Green functions come into the play and the pract ica l ca lculat ions become much more dif­ficult. 
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GREEN-OVE FUNKCIJE U PROBLEMU RASEJANJA CESTICE 

NA SISTEMU CESTICA U VEZANOM STANJU 

R. JANEV i D. ZIVANOVIC

Institut »Boris Kidric«, Beograd 
S a d r z a j

u osnovi ovog prilaza problemu rasejanja lezi veza izmedu n-cesticne 
Green-ave funkcije i S-matrice procesa rasejanja n cestica na vezanom sta­
nju sistema istih takvih cestica (zanemarujuci otskok tog sistema). Elasticno 
rasejanje cestice na vezanom sistemu neposredno je opisano jednocesticnom 
Green-ovom funkcijom. Neelasticno rasejanje maze se aproksimativno opisati 
modelom u kome se izdvaja slabo vezana cestica sistema (ako takva postoji) , 
te se posmatra rasejanje dveju cestica kroz medijum koji pretstavlja ostatak 
vezanog sistema; takav proces opisan je dvocesticnom Green-ovom funkci­
jom. Na osnovu Dyson-ovih jednacina za ove Green-ave funkcije T-matrica 
odgovarajucih procesa rasejanja izrazava se pomocu l: i r, tj. pomocu self­
-energetskog dela, odnosno verteksa. 

Tim metodom maze se tretirati rasejanje elektrona na atomu ili nukleona 
na jezgru. Problem je sveden na izracunavanje l:, odnosno r, za te fizicke
sisteme. Ako je broj cestica u vezanom stanju mali, maze se ocekivati da ce 
perturbacioni razvoj dati prihvatljiv rezultat. 

U opstem slucaju ne maze se izbeci beskonacna resumacija dijagrama u 
aproksimaciji velike (atom), odnosno male (jezgro) gustine. Diskutovan je 
takode odnos prema ranijim istrazivanjima u ovoj oblasti, a napose pitanje 
optickog potencijala i efektivne dvocesticne interakcije. 




