⁷Li + ³He REACTION AT LOW ³He ENERGY

D. M. STANOJEVIĆ, M. R. ALEKSIĆ, B. Z. STEPANČIĆ and R. V. POPIĆ

Institute of Nuclear Sciences "Boris Kidrič", Beograd

Received 10 December 1970

Abstract: The reactions 'Li ('He, p) 'Be and 'Li ('He, d) 'Be are investigated in order to study the reaction mechanism and to extract data concerning the $E_{^{3}\text{He}} = 1.1 \text{ MeV}$ resonance in "B. The excitation curves for the p₀, p₂ and d₀ groups and the angular distributions of the p₀, p₂, p₃ and d₀ groups show that: (*i*) the 'Li ('He, p) 'Be reaction proceeds via a "B compound state at $E_{s} = 18.5 \text{ MeV}$ with $\Gamma = 100 - 400 \text{ keV}$, $J^{T} = 2^{-}$ and T = 1; the nearest state at 18.8 MeV is most probably a 2⁺ state; (*ii*) the 'Li ('He, d) 'Be reaction proceeds via a direct stripping mechanism.

1. Introduction

In ¹⁰B several resonances occur above the ⁷Li + ³He threshold at 17.786 MeV. In the ⁷Li (³He, γ) ¹⁰B and ⁷Li (³He, α) ⁶Li reactions, Paul et al.^{1, 2}) have found resonances at $E_{^{3}\text{He}} = 1.1$, 1.4 and 2.2 MeV. They determined the possible spin-parity assignments for the corresponding ¹⁰B states.

The 1.1 MeV resonance studied here has been seen previously only in the ⁷Li (³He, γ) ¹⁰B and not in the ⁷Li (³He, α) ⁶Li reaction, indicating $J^{\pi} = (1^{+})$, 2^{+} , 3^{+} as possible choices. We used the ⁷Li (³He, p) ⁹Be and ⁷Li (³He, d) ⁸Be reactions to obtain additional information.

2. Experimental procedure and results

The ³He-beam of the 1.5 MeV Cockcroft-Walton accelerator of the »Boris Kidrič« Institute was analysed by an electrostatic analyser, defining the beam energy to \pm 3 keV. The ³He current at the target, placed at the centre of the scattering chamber, was typically about 0.5 µA. The target was 50

 μ g/cm² thick LiF evaporated on the nickel backing. A 2 mm thick silicon counter was used to detect protons up to $E_p = 14$ MeV. Elastically scattered ³He ions were eliminated by a 1.8 mg/cm² Al foil placed in front of the detector. The pulses from the counter were fed to a low noise preamplifier and amplifier (ORTEC) and then to a 256-channel pulse-height analyser (TMC). The energy resolution obtained in the experiment for the p₀ group was 70 keV³).

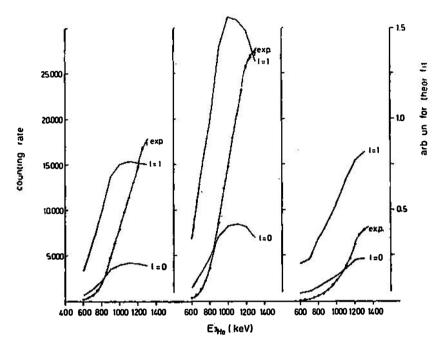


Fig. 1. 110° excitation functions for the 'Li ('He, p) 'Be ground state and second excited state reactions, and for 'Li ('He, d) 'Be ground state reaction.

The excitation functions, at $\theta_{lab} = 110^{\circ}$, for the p_0 , p_2 and d_0 groups, measured in steps of 50 keV for 600—1250 keV ³He energy are shown in Fig. 1. The angular distributions for the p_0 , p_2 , p_3 and d_0 groups were measured at 900 keV and 1100 keV, from 0°—150° in steps of 10°. In Fig. 2 these angular distributions, which were mutually normalized at 110° using the excitation functions, are shown. Typical statistical errors are indicated on each curve. The angular distributions were fitted in terms of Legendre polynomials — the coefficients are given in Table 1.

3. Discussion

Since the Coulomb barrier strongly dominates the behaviour of excitation curves at low energy, we have computed the quantity:

$$A = \frac{N_{\text{exp}}}{4 \frac{k_{\text{out}}}{k_{\text{in}}} P_{l_{\text{in}}} P_{l_{\text{out}}}},$$

where N_{exp} is the c.m. yield taken from our excitation curves, k_{in} belongs to ³He and k_{out} to p_0 , p_2 or d_0 , while $P_{l_{in}}$ and $P_{l_{out}}$ are Coulomb barrier penetration factors for incoming and outgoing channels. The quantity A computed for p_0 , p_2 and d_0 in exit channels is given in Fig. 1.

				<u> </u>	
group	$E_{^{3}\mathrm{He}}(\mathrm{keV})$	A ₀	<i>A</i> ₁	A ₂	A_3
P0	900 1100	1.000 1.000	0.268 0.310		
p ₂	900 - 1100	1.000 1.000		- 0.076 0.099	0.072 0.003
p3	900 1100	1.000	- 0.185 - 0.255	0.069 0.078	0.013 0.046
d ₀	900 1100	1.000 1.000	0.226 0.284		

|--|

Table 1. Coefficients of the Legendre polynomials from the leas-squares fit of the data at 0.9 MeV and 1.1 MeV.

The existence of the 1.1 MeV resonance is clearly seen from the p_2 data and less strongly from the p_0 data. In order to account for such behaviour it is necessary to take into consideration both 1.1 MeV and 1.5 MeV resonances. With $\Gamma(1.5) \approx 650 \text{ keV}^{1,2}$, we concluded that $100 < \Gamma(1.1) < 400 \text{ keV}$. Taking into account the calculation of the limiting values of Γ for different incoming *l* which were given by Paul et al.^{1, 2}, we conclude from $100 < \Gamma$ (1.1) < 400 keV that the 1.1 MeV resonance is made with l = 0 in the incoming channel leaving the 1⁻ and 2⁻ assignments as only possible choices for the corresponding level. However, since the p_2 group (which is the strongest proton group) could corespond to 2⁻ and 3⁻ assignments in its exit l = 0channel, we conclude that the spin and parity of 1.1 MeV resonance is 2⁻.

From Fig. 2 it is seen that the angular distributions for the p_0 , p_2 and p_3 groups show the forward-backward asymmetry, which is increasing with energy. This seems to be a rather strong indication of the interference effects coming from the presence of two wide resonances at 1.1 MeV and 1.5 MeV (with the most probable opposite parities. Since the parity of the 1.1 MeV resonance is concluded above to be odd, it is very likely that 1.5 MeV resonance has even parity and since Paul et al. stated as the most probable

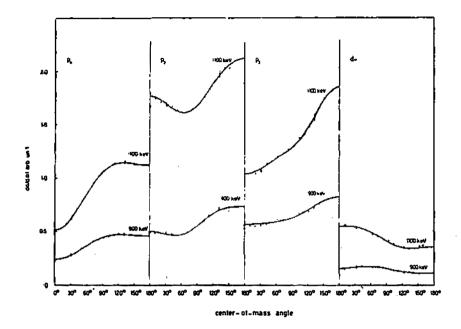


Fig. 2. Angular distributions of the proton groups, p_0 , p_1 and p_1 , from the reaction 'Li ('He, p) 'Be and of the deuteron group d_0 from the reaction 'Li ('He, d) 'Be for 0.9 and 1.1 MeV He energy. The solid line is the least-squares fit of the experi-mental points to the Legendre polynomials. choices of spin-parity assignments of the 1.5 MeV resonances 2⁺ or 1⁻, our

preceding conclusion on its even parity most probably leads to 2⁺.

As it is seen from Fig. 1 any resonant behaviour is absent from d₀ data. The fact that 1.1 MeV resonance is not seen from both our d_0 data and the data of Paul et al.², who studied alpha particles in exit channels, strongly favours the T = 1 character of this resonance. At the same time this indicates that even at such low energy the reaction $^{7}\text{Li} (^{3}\text{He}, d_{0})^{8}\text{Be proceeds via direct}$ process in which a proton stripped from ³He might be captured by ⁷Li in a p-state.

References

- 1) P. Paul, S. L. Blatt and D. Kohler, Phys. Rev. 137 (1965) 493;
- 2) P. Paul, S. L. Blatt and D. Kohler, Phys. Rev. 137 (1965) 499;
- 3) D. M. Stanojević, R. V. Popić, B. Z. Stepančić and M. R. Aleksić, Fizika 1 Suppl. 1 (1969) 39.

REAKCIJA ⁷Li + ³He NA NISKIM ENERGIJAMA ³He

D. M. STANOJEVIĆ, M. R. ALEKSIĆ, B. Z. STEPANČIĆ i R. B. POPIĆ

Institut za nuklearne nauke »Boris Kidrič«, Beograd

Sadržaj

Reakcije ⁷Li (³He, p) ⁹Be i ⁷Li (³He, d) ⁸Be ispitivane su radi dobijanja informacija o nivou na $E_x = 18.6$ MeV složenog jezgra ¹⁰B. Izmerene su ekscitacione funkcije za p₀, p₂ i d₀ grupu, na $\theta = 110^{\circ}$, u opsegu upadnih energija ³He od 0.6—1.3 MeV, kao i ugaone raspodele za p₀, p₂, p₃ i d₀ grupu na 0.9 i 1.1 MeV. Efekti Coulombove barijere odstranjeni su kod ekscitacionih funkcija računanjem veličine A (formula 1) za l = 0 i 1 i u ulaznom i u izlaznom kanalu reakcije. Ova analiza ukazala je na egzistenciju rezonance na 1.1 MeV

 $(E_x = 18.6 \text{ MeV})$ sa karakteristikama: $\Gamma = 100-400 \text{ keV}$, $J^{\pi} = 2^-$ i T = 1. Analiza ugaonih raspodela izvršena je Legendreovim polinomom metodom najmanjih kvadrata. Kompleksnost ugaonih raspodela ukazuje na uticaj bliske rezonance na 1.4 MeV, verovatna karakteristika ovog stanja je 2⁺. Analiza ekscitacione funkcije d₀ grupe iz reakcije ⁷Li (³He, d) ⁸Be nije ukazala na egzistenciju rezonance na 1.1 MeV što sugerira da se ova reakcija odigrava najvećim delom preko direktnog mehanizma.