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Abstract
In the oil and gas industry, understanding two-phase (gas-liquid) flow is pivotal, as it directly influences equipment de-
sign, quality control, and operational efficiency. Flow pattern determination is thus fundamental to industrial engineer-
ing and management. This study utilizes the Tree-based Pipeline Optimization Tool (TPOT), an Automated Machine 
Learning (AutoML) framework that employs genetic programming, in obtaining the best machine learning model for a 
provided dataset. This paper presents the design of flow pattern prediction models using the TPOT. The TPOT was ap-
plied to predict flow patterns in 2.5 cm and 5.1 cm diameter pipes, using datasets from existing literature. The datasets 
went through handling of imbalanced data, standardization, and one-hot encoding as data preparation techniques be-
fore being fed into TPOT. The models designed for the 2.5 cm and 5.1 cm datasets were named as FPTL_TPOT_2.5 and 
FPTL_TPOT_5.1, respectively. A comparative analysis of these models alongside other standard supervised machine 
learning models and similar state-of-the-art similar two-phase flow prediction models was carried out and the insights 
on the performance of these TPOT designed models were discussed. The results demonstrated that models designed 
with TPOT achieve remarkable accuracy, scoring 97.66% and 98.09%, for the 2.5 cm and 5.1 cm datasets respectively. 
Furthermore, the FPTL_TPOT_2.5 and FPTL_TPOT_5.1 models outperformed other counterpart machine learning 
models in terms of performance, underscoring TPOT’s effectiveness in designing machine learning models for flow pat-
tern prediction. The findings of this research carry significant implications for enhancing efficiency and optimizing in-
dustrial processes in the oil and gas sector.
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1. Introduction

Some engineering industries, such as chemical, geo-
thermal, and petroleum, experience multiphase flow 
(Abduvayt et al., 2003; Shoham, 2006; Jahanandish 
et al., 2011, Malbrel et al., 2024). Multiphase flow 
could be liquid-liquid, gas-liquid, or even solid-liquid in 
the case of two-phase flow. In the case of three-phase 
flows it could be gas-oil-water, oil-water-solid or gas-
liquid-solid. Two-phase gas-liquid is the most common 
multiphase flow in the oil and gas industry and is consid-
ered as an important research domain. The uniqueness 
and the properties of phase components, length and di-
ameter of well-bore tubing, pipeline, and inclination an-
gle contribute to the complexity of multiphase flow in 

the petroleum industry. Prediction of multiphase flow 
characteristics (flow pattern and liquid hold-up) in the 
petroleum industry is key for pressure gradient determi-
nation, which is very necessary for sizing production 
facilities in the field for optimum production (Attia et 
al., 2013; Duru et al., 2022). Researchers have carried 
out studies to achieve optimum production through vari-
ous methods of pressure gradient prediction. Flow pat-
tern is a spatial distribution of different phases of fluid 
flowing simultaneously in a pipe or conduit. It is an im-
portant characteristic of multiphase flow in several in-
dustrial applications (Lin et al., 2020) and several flow 
patterns have been identified in horizontal and vertical 
flow in the industry.

On the other hand, Machine Learning is an active do-
main under Artificial Intelligence (AI), focusing on de-
signing systems or models for making computer systems 
to learn, predict and make decisions based on the given 
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data, without being explicitly programmed. It involves 
the design and development of computational models 
that can analyse and interpret large amounts of data, 
identify patterns, and learn from them to improve perfor-
mance over time. Although the machine learning models 
provide an ability to predict the output from a given 
dataset, the accuracy of the machine learning model is 
considered extremely important.

Since the accuracy of the model directly relates to the 
precision of the prediction made by the machine learning 
model, it is extremely important to design a machine 
learning model that has a higher level of accuracy without 
over-fitting the data. To achieve this, several approaches 
can be employed, including the utilization of various 
models (Hernandez et al., 2019; Rushd et al., 2022; 
Mask et al., 2019), hyperparameter tuning for optimizing 
the machine learning model (Uthayasuriyan et al., 2023; 
Muthaiah et al., 2019; Batchu and Seetha, 2021), and 
hybridization of the machine learning model with Evolu-
tionary Algorithms (EAs) (Jayakumar and Raju, 2011; 
Anusha et al., 2015, Uthayasuriyan et al., 2024). How-
ever, it is a time-consuming process to evaluate all the 
designed models in terms of achieved accuracy.

With the help of AutoML, the process of building and 
optimizing the Machine Learning pipelines can be done 
effectively (Spandana et al., 2023). Among the availa-
ble AutoML models, Tree-based Pipeline Optimization 
Tool (TPOT) follows the work flow of genetic program-
ming algorithm to search and select the best machine 
learning model for a given dataset. It explores a large 
search space of possible machine learning model pipe-
lines, including data preprocessing, feature selection and 
dimensionality reduction techniques. This paper aims to 
design machine learning models using the TPOT library 
for predicting the flow pattern in two-phase gas-liquid 
flows and provides a comparison of the resulting models 
with other standard machine learning models.

2.  Automated Machine Learning  
with TPOT

The core concept of machine learning revolves around 
creating mathematical models that can automatically 
learn and adapt by learning the patterns in data or through 
previous experiences (Hafsa et al., 2023; Uthayasuri-
yan et al., 2023). These models can be trained using a 
diverse range of datatypes, such as images, text, or nu-
merical values, and various techniques are employed to 
extract meaningful features and relationships from the 
data. The machine learning algorithms utilize these ex-
tracted features to generalize and make predictions or 
take actions on new, unseen data. One of the key advan-
tages of machine learning is its ability to handle complex 
problems and large datasets more efficiently than tradi-
tional rule-based programming (Kim et al., 2020; Ma-
nami et al., 2023; Barjouei et al., 2021).

The presence of numerous machine learning algo-
rithms and the complexity involved in tuning its hyper-
parameters makes it difficult to evaluate them and to find 
the most suitable model for a particular dataset. To ease 
this process, AutoML (Automated Machine Learning) 
has been used. AutoML utilizes advanced algorithms, 
optimization techniques, and heuristics to automatically 
search, evaluate, and select the best performing machine 
learning models.

TPOT is an AutoML library that has genetic program-
ming in its framework (Le et al., 2020, Olson et al., 
2016a, Olson et al., 2016b). This allows TPOT to auto-
matically discover complex combinations of pre-pro-
cessing and modelling steps that might be challenging to 
determine manually. It is capable of finding the right ma-
chine learning model to perform classification, regres-
sion, and time series forecasting tasks (Yusof et al., 
2024). The working of TPOT involves several steps that 
include initialization, evaluation, followed by genetic 
programming and producing the output of the best-found 
machine learning model pipelines. The workflow of 
TPOT is represented in Figure 1.

TPOT randomly generates several pipelines as an ini-
tial population, where each pipeline consists of a random 
sequence of machine-learning operators. After initializa-
tion, the fitness of each of the pipelines is evaluated us-
ing metrics such as accuracy, and mean squared error. 
Additionally, cross-validation is done to assess the pipe-
line’s performance on different subsets of the training 
data. The fitness score reflects how well the pipeline per-
forms on the evaluation metric.

Genetic programming, as depicted in Figure 2, is 
used to evolve the population of pipelines over multiple 
generations. It selects the best-performing pipelines 
based on their fitness scores, that are put in the mating 
pool. The pipelines present in the mating pool undergo 
the genetic operators of crossover and mutation to create 
new pipeline offspring. In the crossover operation, TPOT 
selects two parent pipelines and combines their sequence 
of operators to create a new offspring pipeline. The com-
bination can occur at a specific operator or a subse-
quence of operators. Whereas in the mutation operation, 
TPOT randomly modifies an operator within a pipeline 
by replacing it with a different one or introducing new 
operators. This set of genetic operators allows TPOT to 
explore a wide range of pipeline configurations. This 
process is done iteratively for a specified number of gen-
erations or until a termination condition is met. After the 
specified number of iterations, TPOT selects the best-
performing pipeline from the final population. Although, 
TPOT evaluates several machine learning pipelines, 
only the best performing pipeline is retrievable and can 
be extracted. This pipeline represents the optimized so-
lution (machine learning pipeline designed) for the giv-
en dataset. The settings of TPOT used specifically in this 
research is discussed in Section 5.
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3. Design of experiments

In the oil and gas industry, the reservoir fluids are pro-
duced to the surface as soon as the well is drilled and 
completed. The reservoir fluids include oil, gas and wa-
ter and these must be processed at the surface. For prop-
er planning and handling of these fluids, operators must 
understand the basic physics of fluid flow in the pipe or 
wellbore for optimal design of surface facilities (Ganat 
and Hrairi, 2018).

The TPOT AutoML library in python programming 
language has been used to design optimal machine learn-
ing models for various prediction tasks. Since the dataset 
that is to be provided as the input to the TPOT must have 
been framed out of some experimental results, the re-
search done by Dvora Barnea, Ovadia Shoham, and Ye-
huda Taite in (Barnea et al., 1980) has been considered. 
The work presented in (Barnea et al., 1980) involves 
experiments using horizontal and inclined pipes to ob-
serve and analyze the flow patterns.

It is worth noting that the research work presented in 
this paper was carried out based on the datasets gener-
ated and presented by Barnea et al. (1980). In all the 
experiments, the exact setup was replicated or they were 
kept similar. This study aims at depicting the way of us-
ing one of the advanced machine learning techniques, 
that is AutoML, for automated design of machine learn-
ing models for identifying the flow patterns in two phase 
(gas - liquid) systems with the help of this well-struc-
tured dataset

Barnea and other authors considered various parame-
ters such as liquid and gas flow rates, pipe diameter, and 
system pressure to study their effects on flow pattern 
transitions. High-speed imaging techniques were uti-
lized to capture the flow patterns accurately.

The experimental observations reveal that the re-
searchers identified and classified different flow patterns, 
such as Dispersed Bubble Flow, Stratified Smooth Flow, 
Stratified Flow, Wavy Flow, Annular Flow, Intermittent 
Flow, and Bubble Flow. They analysed the characteris-

Figure 2: Workflow of genetic programming

Figure 1: Workflow of TPOT
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tics (Cheng et al., 2008) and behaviour of each flow pat-
tern (Wu et al., 2017; Almutairi et al., 2020) and iden-
tified the key factors that influence the transition be-
tween them (Al-Sarkhi et al., 2016). The study found 
that the transition between flow patterns is primarily in-
fluenced by the liquid and gas flow rates, as well as the 
pipe diameter. Additionally, system pressure was ob-
served to have an impact on the transition process.

Based on the data collected from the existing litera-
ture, machine learning models are created to predict the 
flow pattern from the 2.5 cm dataset and 5.1 cm dataset. 
The designed models are named as FPTL_TPOT_2.5 
and FPTL_TPOT_5.1, respectively, for 2.5 cm and 5.1 
cm datasets, in this research. The following subsection 
provides a brief about the dataset description along with 
the explanation of the parameters, and the design meth-
odology that involves data preparation and TPOT imple-
mentation.

4.  Dataset description and pre-processing 
of data

The data obtained from Barnea et al. (1980) has sev-
eral parameters which are useful to determine the flow 
pattern of the systems. The commonly known flow pat-
terns are Dispersed Bubble Flow, Stratified Smooth 
Flow, Stratified Wavy Flow, Annular Flow, Intermittent 
Flow and Bubble Flow, as observed in several investiga-
tions under various settings and shown in Figure 3 
(Shoham, 2006; Khaledi et al., 2014; Hanazadeh et 
al., 2017; Thome, 2016; Haiyan et al., 2019; Su et al., 
2022). This study also observed same flow patterns us-
ing datasets from Barnea et al. (1980). A short descrip-
tion of these flow patterns can be seen in Thome (2016).

Understanding two-phase flow patterns is vital in oil-
gas industries, chemical engineering industries, and nu-
clear reactor design laboratories, etc. Accurate flow pat-
tern identification is key for system optimization, safety, 
and efficiency. The features present in the dataset, con-

sidered for this study, are density of liquid, density of 
gas, superficial viscosity of liquid, superficial viscosity 
of gas, roughness of pipe, surface tension, inner diame-
ter of pipe, system pressure, angle of inclination, super-
ficial liquid velocity and superficial gas velocity. Of 
these features, the liquid and gas density, liquid and gas 
superficial viscosity, roughness of pipe, ST (surface ten-
sion) and ID (inner diameter of the Pipe) were observed 
to be constant throughout the experiments on the data-
sets, making them unlikely in helping the machine learn-
ing model to identify the flow pattern. The parameters 
that were observed to vary are System Pressure, Angle 
of Inclination, Superficial Liquid Velocity, and Superfi-
cial Gas Velocity. They were considered as the feature 
set. A short note on these parameters is presented below.

1.  System Pressure (in N/m) - The pressure at which 
the two-phase flow system operates is called as the 
System Pressure. It affects the density, and com-
pressibility of the fluid phases, which in turn influ-
ences the flow patterns.

2.  Angle of Inclination (in degrees) - In the petroleum 
industry the oil wells can be horizontal, vertical, or 
slanted. As seen earlier, orientation (angle of incli-
nation) of the wellbore or pipeline can affect the 
flow pattern of the multiphase fluid in the pipe and 
this has been considered during the machine learn-
ing model preparation.

3.  Superficial Liquid Velocity (in m/s) - Superficial 
Liquid Velocity (Vsl) refers to the hypothetical 
flow velocity of the liquid phase in gas-liquid two-
phase flow system, representing the average veloc-
ity of the liquid flowing through the system.

  (1)

Description of Formula in Equation 1: As observed in 
Barnea et al. (1980), Vsl is calculated by dividing the 
volumetric flow rate () of the liquid by the cross-section-
al area (A) of the pipe or channel carrying the flow, as 
shown in Equation 1 and is measured in m/s.

Figure 3: Flow Patterns observed in the prediction of two-phase flows (Shoham, 2006; Khaledi et al., 2014;  
Hanazadeh et al., 2017; Thome, 2016; Haiyan et al., 2019; Su et al., 2022)
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4.  Superficial Gas Velocity (in m/s) - Superficial Gas 
Velocity (Vsg) denotes the velocity of the gas phase 
in gas-liquid two-phase flow system, representing 
the average velocity flowing through the system.

  (2)

Description of Formula in Equation 2: As observed in 
Barnea et al. (1980), Vsg is calculated by dividing the 
volumetric flow rate ( of the gas by the cross-sectional 
area (A) of the pipe or channel, as shown in Equation 2 
and is measured in m/s.

With the considered feature set, the flow patterns 
(representing various classes) are to be determined, 
making it a classification problem. Additionally, the 
work of Barnea et al. (1980), consisted of experiments 
on a 10 m pipe length under two different diameters such 
as 2.5 cm and 5.1 cm. These measurements indicate the 
cross-sectional dimensions of the pipes through which 
the two-phase flow was conducted. The selection of dif-
ferent pipe diameters was considered as an important 
aspect of the experiment as it allows the investigation of 
the influence of pipe size on flow pattern transitions. The 
number of data points present in the 2.5 cm dataset was 
2695 and the 5.1 cm dataset consisted of 2983 data 
points. This paper uses the TPOT library in designing 
machine learning model pipelines based on the datasets 
obtained for two different pipe diameters 2.5 cm and 5.1 
cm, to solve the classification problem of identifying dif-
ferent flow patterns, with the considered feature set.

4.1. Data preparation

Data preparation is a crucial step in machine learning 
model creation that involves transforming raw data into 
a format that is suitable for training a model. It includes 
a series of techniques and operations aimed at organiz-
ing the data to enhance the performance and accuracy of 
machine learning algorithms. The 2.5 cm and 5.1 cm 
datasets were observed to be complete and devoid of any 
missing or incomplete data points. Handling of imbal-
anced data, Standardization and One Hot Encoding 
(Cerda et al., 2018) were performed in order to ensure 
that the machine learning model is able to learn the data 
accurately.

4.1.1. Handling of imbalanced data

In imbalanced data sets, the classes are unequally rep-
resented. In these datasets, one or more classes would 
have fewer or higher number of instances than the other 
classes. This is a common issue in many real-world data-
sets and also with the dataset of our interest. Usage of an 
Imbalanced dataset leads the machine learning models 
to be biased towards the majority class, as they prioritize 
accuracy. Consequently, the model may achieve high ac-
curacy for the majority, while performing poor for the 
minority class.

To handle this, the resampling techniques such as 
Under-sampling and Over-sampling were used. Under-
sampling refers to bringing the number of instances of 
the majority class to a number of minority levels and 
Over-sampling refers to the creation of synthetic sam-
ples of the minority class to match the number of major-
ity class instances. The former might reduce the number 
of samples present in the dataset, thereby compromising 
the robustness of the model. The latter however is ben-
eficial as it adds extra samples.

For the datasets used in the experiments of this paper, 
the over-sampling of data was carried out using the Syn-
thetic Minority Over-Sampling Technique (SMOTE) li-
brary. The SMOTE generates synthetic samples by inter-
polating the neighbouring instances of the minority 
class. This was done by selecting a random instance 
from the minority class, identifying its k nearest neigh-
bours, and creating new samples between the selected 
instance and its neighbours by interpolation. Table 1, 
represents the number of classes present in 2.5 cm and 
5.1 cm datasets before and after using SMOTE. The 
symbol “*” in Table 1 denotes that there was no pres-
ence of Bubble Flow in the 2.5 cm dataset. By introduc-
ing synthetic samples, SMOTE effectively increases the 
number of instances in the minority class, providing the 
model with a more balanced training dataset. This helped 
in overcoming the bias towards the majority class and 
allows the machine learning algorithm to learn from a 
more representative set of samples/instances.

Table 1: Result of using SMOTE for handling Imbalanced 
dataset

Sno Flow 
Pattern

For 2.5 cm dataset For 5.1 cm dataset
Original 

count
Resample 

Count
Original 

count
Resample 

Count

1
Dispersed 
Bubble 
Flow

270 1384 325 1521

2 Stratified 
Smooth 64 1384 76 1521

3 Stratified 
Wavy Flow 413 1384 465 1521

4 Annular 
Flow 563 1384 470 1521

5 Intermittent 
Flow 1384 1384 1523 1521

6 Bubble 
Flow 0* 0* 470 1521

4.1.2. Standardization

Standardization plays a key role in bringing the fea-
tures present in the feature set to a similar scale, prevent-
ing bias, and improving the efficiency of the learning 
process. It transforms the data in a way that each feature 
has zero mean and unit variance. As shown in the Equa-
tion 3, standardization is achieved by subtracting the 
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mean of each feature from the data and dividing it by the 
standard deviation (Ali et al., 2014). By standardizing 
the data, all the features are transformed to a similar 
scale, which was particularly useful for algorithms that 
were sensitive to the magnitude of the input variables.

  (3)

Standardization technique is a vital step in machine 
learning as it cleans and transforms raw data into a suit-
able format for training models. It improves the quality 
and reliability of the data, ensures compatibility with al-
gorithms, and enhances the overall performance of ma-
chine learning models. This was carried out for both 2.5 
cm and 5.1 cm datasets.

4.1.3. One Hot Encoding

One-Hot Encoding is a crucial data pre-processing 
technique in the field of machine learning and is particu-
larly relevant when dealing with categorical data or fea-
tures that don’t have a natural ordinal relationship (Cer-
da et al., 2018). It works by creating a binary matrix 
representation of data, where each unique category is 
represented by a distinct binary column (or “bit”). The 
term “one-hot” stems from the fact that only one bit is 
“hot” (set to 1) for a given category, while all others are 
“cold” (set to 0).

In the dataset obtained, the feature, “Angle of Inclina-
tion” was observed to have angles in degrees. It is es-
sential to apply one hot encoding for this feature since it 
preserves the information and ensures that each unique 
angle is treated as a distinct category by the machine 
learning algorithm. If not One-Hot Encoded, the algo-
rithm might interpret the angles as continuous numerical 
values, leading to misinterpretation and inaccurate re-

sults. One-Hot Encoding helps in avoiding such misin-
terpretations.

These steps (Handling of Imbalanced data, Standardi-
zation and One hot encoding) are performed in order and 
the prepared data was passed to the TPOT for identifica-
tion of the right machine learning model.

5. Experimental result and discussion

This study, leverages a contemporary machine learn-
ing tool, called AutoML, to identify the most appropriate 
machine learning model for predicting flow patterns us-
ing the datasets obtained from the experiments conduct-
ed by Barnea et al. (1980) for two distinct pipe diame-
ters of 2.5 cm and 5.1 cm. Both of these datasets were 
cleaned initially to remove the redundant data present 
and then were put to data pre-processing. All the features 
in the feature set were standardized and scaled to prevent 
bias towards any feature based on its magnitude.

Any of the flow patterns, Dispersed Bubble, Stratified 
Smooth, Stratified Wavy, Annular, Intermittent, and 
Bubble were to be predicted out of the features available 
at the 2.5 cm and 5.1 cm datasets using the models de-
signed by the TPOT. TPOT addresses this as a classifica-
tion problem to classify the data points to its flow pattern 
(class) effectively. The results obtained for the 2.5 cm 
and 5.1 cm datasets are presented in Table 2, where the 
TPOT was configured to run for 10 generations (termi-
nation condition) with a population size of 20 and with 
5-fold Cross Validation (CV). The CV designed to be 5 
denotes that the model is trained and tested five times, 
each time with a different subset serving as the test set. 
The CV score provides an overall assessment of the 
model’s consistency and generalization ability.

An in-depth explanation for the values of parameters, 
obtained from the TPOT library are as follows. From 

Table 2: Output of TPOT for 2.5 cm and 5.1 cm Datasets

For 2.5 cm dataset For 5.1 cm dataset
Generation number Best CV Score Generation number Best CV Score

1 0.9783338546554061 1 0.9726027397260275
2 0.9783338546554061 2 0.9726027397260275
3 0.9783338546554061 3 0.9726027397260275
4 0.9783338546554061 4 0.9791780821917808
5 0.9841257428839537 5 0.9791780821917808
6 0.9841257428839537 6 0.9797260273972602
7 0.9841257428839537 7 0.9797260273972602
8 0.9862840162652488 8 0.9830136986301371
9 0.9862840162652488 9 0.9846575342465753
10 0.9862840162652488 10 0.9852054794520548

Best Pipeline:
MLPClassifier (PCA (FastICA (input_matrix, tot = 0.9), 

iterated_power = 8, svd_solver = randomized), alpha = 0001, 
learning_rate_init = 0.01)

Best Pipeline:
GradientBoostingClassifier (FastICA (input_matrix, tot = 1.0), 

learning_rate = 0.5, max_depth = 3, max_features = 0.45, 
min_samples_leaf = 9, min_samples_split = 16,  

n_estimator = 100, subsample = 0.6500000000000001)
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Table 2, it can be viewed that the resulting pipeline for 
the 2.5 cm dataset is a Multi-Layer Perceptron (MLP) 
classifier, a powerful neural network architecture often 
employed for classification. In the pre-processing phase, 
which was separately carried out by the TPOT, the di-
mension of data was reduced through Principal Compo-
nent Analysis (PCA) and Fast Independent Component 
Analysis (FastICA). The PCA component was observed 
to be configured in order to retain 90% of the variance in 
the data, and specific parameters were meticulously tai-
lored to the dimensionality reduction techniques. Fur-
thermore, the MLP classifier was fine-tuned with a regu-
larization strength (alpha) set at 0.0001 and an initial 
learning rate of 0.01.

On the other hand, the 5.1 cm dataset was best classi-
fied using the Gradient Boosting Classifier, a well-estab-
lished ensemble learning algorithm utilized for classifi-
cation tasks. In the pre-processing phase, autonomously 
managed by TPOT, feature extraction and reduction 
techniques were applied. Independent Component Anal-
ysis (ICA) was used to reduce the dimensionality of the 
data, and in this instance, it was observed to achieve a 
total retention of 1.0. Moreover, the selected Gradient 
Boosting Classifier was fine-tuned with specific hyper-
parameters. The learning rate was set to 0.5, which gov-
erns the step size during optimization. The maximum 
depth of the individual decision trees in the ensemble 
was limited to 3. Additionally, a maximum of 45% of 
features considered for each split decision, denoting that 
algorithm would randomly select this subset of features, 
which could help improve the generalization of the mod-
el by making the trees less deep. The value of 9 was kept 
as samples required in a leaf node for a minimum. It 
means that if a node has fewer than 9 data points after a 
split, the tree would not continue to split it, and it would 
become a leaf node. The minimum samples necessary to 
split an internal node was set at 16, meaning that an in-
ternal node must have at least 16 data points to be con-
sidered for further splitting. If a node has fewer than 16 
data points, it would not be split, and the decision tree-
building process would proceed to other nodes that met 
this criterion. The ensemble comprises 100 boosting 
stages. A subsample of approximately 65% of the data-
set was used for training each tree in the ensemble.

Accuracy is a performance metric used in classifica-
tion tasks to gauge how effectively any machine learning 
model correctly assigns data points to their respective 
categories or classes. It is computed as the ratio of the 
number of data points that the model correctly classifies 
to the total number of data points in the dataset. In prac-
tical terms, a higher accuracy score signifies that the 
model is more proficient at making correct classifica-
tions, indicating its ability to accurately predict the class 
labels of data points. With the machine learning models 
designed by the TPOT, the accuracy scores of 97.66% 
and 98.09% were observed for the 2.5 cm and 5.1 cm 
datasets respectively. These higher accuracy scores were 
achieved using TPOT by carefully designing the ma-
chine learning models which were best suited for the 
datasets considered along with their best hyperparame-
ter settings.

A comparative study of the FPTL_TPOT models with 
other existing standard and similar machine learning 
models were carried out in two phases, as listed below.

Phase I: To compare with standard machine learning 
models.

Phase II: To compare with similar two-phase flow 
prediction models.

5.1  Comparative study with standard machine 
learning models

To compare the performance of the FPTL_TPOT 
models, several standard machine learning algorithms 
were considered as base models and were directly ap-
plied to test the accuracy of classifying the flow patterns. 
The standard machine learning models considered were 
Logistic Regression (Wright, 1995), K Nearest Neigh-
bors (Cover et al., 1967), Naïve Bayes Classifier (Rish, 
2001), Decision Tree (Magee, 1964), XGB classifier 
(Agarwal et al., 1994), Neural Network (Bishop, 1994) 
and Support Vector Classifier (SVC) (Tong et al., 2001). 
These supervised machine algorithms follow different 
mathematical methods to understand the features pro-
vided in the datasets and to classify the input based on 
this feature set. These models had been identified as ef-
fective but different in classification and regression tasks 

Table 3: The accuracy measurements of the models

Model Name
Accuracy Obtained (%)

For 2.5 cm dataset For 5.1 cm dataset Average
Logistic Regression 57.35 50.09 53.72
K Nearest Neighbors 56.83 54.2 55.56
Nave Bayes Classifier 57.94 65.33 61.64
Decision Tree 64.22 59.35 61.79
XGB Classifier 62.25 55.36 58.81
Neural Network classifier 69.04 51.67 60.36
SVC 59.17 56.00 57.59
TPOT designed Models FPTL_TPOT_2.5: 97.66 FPTL_TPOT_5.1: 98.09 97.88



Uthayasuriyan, A.; Duru, U.I.; Nwachukwu, A.; Shanmugasundaram, T.; Jeyakumar, G. 160

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 153-166, DOI: 10.17794/rgn.2024.4.12

(Gajula et al., 2024; Sawe et al., 2024; Nakhipova et 
al., 2024, Zhou et al., 2024; Hoque et al., 2024; Oye-
wole et al., 2024; Amaya-Tejera et al., 2024). Al-
though, the working of all these models and the TPOT 
AutoML model differs, any of them can be employed in 
identifying the flow patterns, as they are effective in 
classification and regression tasks. The performance of 
the models can be determined by measuring how accu-
rately they predict the right flow pattern.

The experiments were carefully designed to imple-
ment all these seven models (Logistic Regression, K 
Nearest Neighbors, Nave Bayes Classifier, Decision 
Tree, XGB Classifier, Neural Network classifier and 
SVC) along with the two newly designed TPOT models; 
(FPTL_TPOT_2.5 and FPTL_TPOT_5.1). Table 3 pre-
sents the accuracy comparison of the standard machine 
learning models along with the TPOT designed models. 
These results are visualized in Figure 4 and Figure 5.

The results for the classification of 2.5 cm dataset 
(given in Table 3 and Figure 4) show that, among all the 
models tested, the FPTL_TPOT_2.5 model outper-
formed the rest by a significant margin, achieving an im-
pressive accuracy score of 97.66%. This remarkable re-
sult indicates that FPTL_TPOT_2.5 is exceptionally 
well-suited for handling the specific characteristics of 
the 2.5 cm dataset, making it the clear frontrunner in 
terms of accuracy.

On a one-to-one comparison of the FPTL_TPOT_2.5 
model with the standard machine learning models, the 
following inferences are made.

1)  The Logistic Regression model, which has pro-
duced an accuracy of 97% in the task of detecting 
brain tumour from MRI images (Gajula et al., 
2024), achieved an accuracy of 57.35% only in the 
task of flow pattern prediction from the 2.5 cm 
dataset. However, the FPTL_TPOT_2.5 model 
has shown 40.31% of improvement in the accura-

cy of flow pattern prediction comparing to the Lo-
gistic Regression model.

2)  On a phishing web page detection task, the K-
Nearest Neighbor model has demonstrated better 
than other models with an accuracy of 97% (Sawe 
et al., 2024). However, this model could achieve 
only 56.83% of accuracy in the flow pattern pre-
diction task discussed here. The FPTL_TPOT_2.5 
model showed 40.83% improvement in the accu-
racy of flow pattern prediction, comparing to K-
Nearest Neighbor model.

3)  Though recently, the Nave Bayes Classifier proved 
its capability in predicting student achievements 
by assessing their educational performances (Na-
khipova et al., 2024), its accuracy in predicting 
the flow pattern for the 2.5 cm dataset is 57.94%. 
The FPTL_TPOL_2.5 outperformed Nave Bayes 
Classifier with the performance improvement of 
39.72%.

4)  The research work of (Zhou et al., 2024) com-
pared the performance of Decision Tree model 
with XGB classifier and Random Forest, on the 
task of estimating geo-polymer concrete compres-
sive strength. In their study, the Decision Tree 
model is used as base learner and the other two 
models as super learners. The authors showed that 
the Decision Tree model fails in outperforming 
other two models. The similar trend was shown by 
Decision Tree model in flow pattern prediction 
task also, where the FPTL_TPOT_2.5 model per-
formed better than the Decision Tree model with a 
33.44% improvement in the accuracy.

5)  The XGB classifier, which has demonstrated an 
accuracy of 94.74% in predicting breast cancer 
(Hoque et al., 2024), was outperformed by  
the FPTL_TPOT_2.5 model in the flow pattern 
prediction task for the 2.5 cm dataset. The 

Figure 4: Comparative Results of machine learning models for 2.5 cm dataset
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 performance difference between the models is 
35.41%.

6)  The Neural Network Classifier models showed ac-
curacies of 90%, 93% and 95%, etc. in various 
prediction tasks in the stock market scenario. This 
fact is available in (Oyewole et al., 2024). How-
ever, the Neural Network Classifier could demon-
strate an accuracy of 69.04% only for the flow pat-
tern prediction with the 2.5 cm dataset. This has a 
performance difference of 28.62% comparing to 
the accuracy of the FPTL_TPOT_2.5 model. It is 
worth noting that among all the seven standard 
machine learning models, the Neural Network 
Classifier is the top performer.

7)  A Support Vector Classifier added with an innova-
tive approach of randomly selecting the training 
samples from the dataset was presented in the 
work of Amaya-Tejera et al., (2024). The SVC 
presented showed a classification accuracy of 89% 
and 94.9%, for a multiclass classification, with dif-
ferent datasets. However, in the case of flow pat-
tern prediction the SVC could demonstrate an ac-
curacy of 59.17%, which is 38.49% less than that 
of the FPTL_TPOT_2.5 model.

Similarly, for the 5.1 cm dataset, the results (given in 
Table 3 and Figure 5) prove accuracy that the FPTL_
TPOT_5.1 model remains the top performer, achieving a 
higher accuracy of 98.09% on the 5.1 cm dataset. The 
Naive Bayes Classifier also notably achieved an accu-
racy of 65.33%, making it one of the top traditional 
models for this dataset. Decision Tree shows an accura-
cy of 59.35% and other models display modest scores 
but still trailed behind the FPTL_TPOT_5.1 model. It 
was observed from the one-on-one comparison that the 
FPTL_TPOT_5.1 model showed 48.00%, 43.81%, 
32.76%, 38.74%, 42.73%, 46.42% and 42.09% of per-
formance improvement compared to the Logistic Re-

gression, K Nearest Neighbors, Nave Bayes Classifier, 
Decision Tree, XGB Classifier, Neural Network classi-
fier and SVC models, respectively.

These results emphasize the critical importance of se-
lecting the right machine learning algorithm when work-
ing with specific datasets, as it can significantly impact 
the accuracy and effectiveness of the model.

5.2  Comparative study with two-phase flow 
prediction models

This section presents a comparison of the FPTL_
TPOT models with a few state-of-the-art similar models 
used for gas-liquid two-phase flow pattern prediction. 
The summary of the inferences is presented in Table 4, 
and are explained in detail below.

Mask et al. (2019) have proposed a set of machine 
learning based models for predicting gas-liquid flow pat-
tern. The machine learning models used in this work are 
Random Forest (RF), AdaBoost and XGBoost with re-
ported flow pattern prediction accuracy of 92.3%, 92% 
and 93.7%, respectively. These accuracies were com-
pared to the TPOT designed models (FPTL_TPOT_2.5 
and FPTL_TPOT_4.1) of 97.66% and 98.09%. The per-
formance improvements achieved by the FPTL_
TPOT_2.5 model was 5.33%, 5.66% and 3.96, respec-
tively, while that of FPTL_TPOT_5.1 model, respec-
tively was 5.76%, 6.09% and 4.39%.

Huang (2024), reported the performance of three ma-
chine learning models (support vector machine (SVM), 
K-Nearest Neighbor (KNN) and Random Forest (RF)) 
in the task of predicting gas-liquid flow patterns. This 
study discussed the performances of these machine 
learning models in two stages. In Stage 1, the classical 
SVM, KNN and RF machine learning models were used 
for the flow pattern prediction. The accuracy attained by 
these models were 73%, 91.9% and 94.6%, respectively. 

Figure 5: Comparative results of machine learning models for 5.1 cm dataset
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It was evident that the TPOT models are performing bet-
ter that these models with improved accuracies. The ac-
curacy improvements are (24.66%, 5.76%, 3.06%) and 
(25.09%, 6.19%, 3.49%) by the FPTL_TPOT_2.5 and 
FPTL_TPOT_5.1 models, respectively. In Stage 2, im-
proved KNN and RF models were designed where the 
input features went through a correlation analysis to 
identify more influencing features from the dataset. A 
linear interpolation procedure was applied on the data-
set, as preprocessing. The accuracy reported by the im-
proved KNN and RN models are 99.5% and 97.5%. The 
accuracy differences between these models and the 
FPTL_TPOT_2.5 and FPTL_TPOT_5.1 models are 
(-1.84%, 0.16%) and (-1.41%, 0.59%), respectively. 
Though, the performance differences are marginal, this 
comparative study adds an insight to the future works on 
this study to add a feature reduction technique as part of 
data pre-processing stage to improve the prediction ac-
curacies of the FPOT_TPOT models.

Hernandez et al. (2019) built a decision tree based 
model for flow pattern prediction under different two-
phase flow conditions. This tree based model secured 
86.32% and 49.11% accuracies for the intermittent and 
annular flow patterns, respectively. These accuracies are 
less than the accuracies achieved by the FPTL_TPOT 
models. The performance differences are presented in 
Table 4.

Ezzatabadipour et al. (2017) proposed a deep learn-
ing based algorithm to predict flow patterns in two phase 
flow under different fluid properties and pipe conditions. 
The initial model showed 83.87% of prediction accuracy, 

and an improved model had shown an accuracy of 
85.97%. Comparing to the improved model the FPTL_
TPOT_2.5 and FPTL_TPOT_5.1 models showed perfor-
mance differences of 11.69% and 12.12%, respectively.

Loyola-Fuentes et al. (2022), in their study, trained 
three classification algorithms viz K-nearest neighbors, 
multilayer perceptron and random forest for flow pattern 
classification and generated a flow pattern map with 
boundaries between the slug/plug and annual flows. The 
accuracy scores reported for these algorithms are 82.8%, 
83.9%, 82.2% and 75.8%, 77.1%, 75.6% under different 
parameter settings for ethanol and FC-72, respectively 
(Loyola-Fuentes et al., 2022). It can be observed that the 
FPTL_TPOT models are far better than these algorithms 
with higher accuracy of predictions, with good perfor-
mance difference. The results are presented in Table 4.

A comparative study on the performance of nine differ-
ent machine learning models on predicting the gas-liquid 
two-phase flow patterns in pipes (Arteaga-Arteaga et al., 
2021), identified the Extra Tree (ET) model as the best 
performing model with a prediction accuracy of 97.00%, 
which is less than but closer to the accuracies 97.66% and 
98.09% of the FPTL_TPOT models. In (Guillen-Rondon 
et al., 2018), an optimized Support Vector Machine 
(SVM) classifier was designed for gas-liquid two-phase 
flow pattern prediction. With three flow patterns (dis-
persed, segregated and intermittent) prediction system, 
SVM achieved a 97.00% accuracy, similar to the ET mod-
el of Arteaga-Arteaga, et al. (2021), which is less than 
but closer to the FPTL_TPOT models. The summary of 
above inferences is presented in Table 4.

Table 4: Comparison FPTL_TPOT models with state-of-the-art models

Reference Paper Machine Learning 
Model

Accuracy
(%)

Performance Improvement in (%)
By FPTL_TPOT_2.5
(Accuracy: 97.66%)

By FPTL_TPOT_5.1
(Accuracy: 98.09%)

(Mask et al., 2019)
RF 92.30 5.33 5.76
AdaBoost 92.00 5.66 6.19
XGBoost 93.70 3.96 4.39

(Huang et al., 2024)

SVM 73.00 24.66 25.09
KNN 91.90 5.76 6.19
RF 94.60 3.06 3.49
Improved KNN 99.50 -1.84 -1.41
Improved RF 97.50 0.16 0.59

(Hernandez et al., 2019)

Decision Tree
for intermittent flow 86.32 11.34 11.77

Decision Tree
for annular flow 49.11 48.55 48.98

(Ezzatabadipour et al., 2017) Deep Learning model 85.97 11.69 12.12

(Loyola-Fuentes et al., 2022) 
(for ethanol)

K-nearest neighbors 82.80 14.86 15.29
Multilayer perceptron 83.90 13.76 14.19
Random forest 82.20 15.46 15.89

(Arteaga-Arteaga et al., 2021) Extra Tree 97.00 0.66 1.09
(Guillen-Rondon et al., 2018) SVM 97.00 0.66 1.09
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In order to further validate the FPTL_TPOT_2.5 and 
FPTL_TPOT_5.1 models with sample test cases, few 
sample inputs are given to the models and the corre-
sponding output predicted by them are presented in Ta-
ble 5 and Table 6.

6. Conclusions

The prediction of flow patterns is more crucial in the 
oil and gas industries, as they are important for their op-
erational efficiency and system integrity. This study in-
vestigates the automated design of machine learning 
models for high accurate flow pattern prediction for two-
phase flows. Leveraging data from Barnea’s research, 
the TPOT tool (an AutoML tool utilizing genetic pro-
gramming) was employed in designing optimal machine 
learning models for flow pattern prediction using the 
datasets with 2.5 cm and 5.1 cm diameters of pipe. The 
models designed by the TPOT tool for the 2.5 cm and 
5.1 cm datasets were named as FPTL_TPOT_2.5 and 
FPTL_TPOT_5.1, respectively. A comparative study of 
these models with other standard machine learning mod-
els revealed that the FPTL_TPOT_2.5 and FPTL_
TPOT_5.1 models are performing superior in predicting 

the flow pattern, by achieving remarkable prediction ac-
curacies of 97.66% and 98.09%, respectively, for the 
given datasets. The performance of the FPTL_TPOT 
models were also compared with few state-of-the-art 
machine learning models designed for gas-liquid two-
phase flow pattern prediction. Except for a case with im-
proved KNN, the FPTL_TPOT models demonstrated 
improved prediction accuracies for other state-of-the-art 
models. The performance differences observed were in 
the range of 0.59% to 25.09%.

These findings hold significant implications for in-
dustrialists and researchers, facilitating the precise pre-
diction of flow patterns crucial for operational design 
and analysis in the petroleum industry. However, it’s 
important to note that the generalizability of the findings 
may be limited by the specific characteristics of the data-
sets used in this study. Despite this, the outcomes pre-
sented herein offer valuable insight and pave the way for 
further research works.

Future investigations could include exploring alterna-
tive machine learning models and evolutionary algo-
rithms with diverse parameter settings to delve deeper 
into the prediction of multi-phase gas-liquid flow pat-
terns, towards designing a generalized system which can 

Table 6: Test cases and prediction for 5.1 cm dataset

Test Case Pressure Ang
(In degrees) Vsl Vsg FPTL_TPOT_

5.1 Prediction
1 103390 -70 0.10 10.2 Stratified Wavy
2 101375 0 0.002 0.025 Stratified Smooth
3 103598 50 0.002 14.30 Annular
4 103080 -50 2.637 0.02 Dispersed Bubble
5 103853 70 1.517 0.092 Bubble
6 102370 -5 0.001 0.016 Stratified Smooth
7 103836 70 0.0 0.15 Intermittent
8 101999 5 0.025 16 Annular
9 104308 90 0.99 0.09 Bubble
10 102080 10 0.002 16 Stratified Wavy

Table 5: Test cases and prediction for 2.5 cm dataset

Test Case Pressure Ang
(In degrees) Vsl Vsg FPTL_TPOT_

2.5 Prediction
1 101400 0 0.04 1.5 Stratified Smooth
2 102402 20 0.0 16.8 Stratified Wavy
3 101475 0 0.25 10 Annular
4 103200 -50 0.1 9.5 Annular
5 103830 90 0.67 9.67 Intermittent
6 101367 0 0.004 0.04 Stratified Smooth
7 102748 -1 0.06 0.4 Stratified Wavy
8 102395 20 2.99 0.095 Dispersed Bubble
9 102843 -5 1.6 0.04 Dispersed Bubble
10 104020 -80 1.68 26.16 Intermittent
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work for any given dataset. Incorporation of a suitable 
dimensionality reduction technique, to identify more rel-
evant features from the dataset, towards increasing the 
prediction accuracy of the FPTL_TPOT models is also 
an interesting future scope. Integrating other Artificial 
Intelligence methodologies into this research can con-
tribute meaningfully to the ever-evolving landscape of 
the petroleum industry, for enhancing their operational 
efficiency and system reliability.

7. References

Abduvayt, P., Manabe, R. and Arihara, N. (2003): Effects of 
pressure and pipe diameter on gas liquid two-phase flow 
behavior in pipelines. In the proceedings of SPE annual 
technical conference and exhibition, Denver, Colorado, 
USA, 1-15.

Agarwal, A. K., Wadhwa, S., & Chandra, S. (1994): XGBoost 
a scalable tree boosting system. Journal of Association of 
Physicians India, 42, 8, 665.

Agash, U., Ramya, G. R. and Jeyakumar, G. (2023): Effective 
link prediction in complex networks using differential evo-
lution based extreme gradient boosting algorithm. In the 
proceedings of advanced network technologies and intel-
ligent computing. Communications in computer and infor-
mation science (CCIS). Springer. 1797, 143-154.

Ali, P. J. M., Faraj, R. H., & Koya, E. (2014): Data normaliza-
tion and standardization: A technical report. Machine 
Learning Technical Report, 1, 1, 1–6.

Almutairi, A., Al-Alweet, F.M., Alghamdi, Y. A., Almisned, O. 
A. and Alothman, O. Y. (2020): Investigating the charac-
teristics of two-phase flow using electrical capacitance to-
mography (ECT) for three pipe orientations. Processes, 8, 
1, 51.

Al-Sarkhi, A., Duc, V., Sarica, C. and Pereryra, E. (2016): Up-
scaling modeling using dimensional analysis in gas-liquid 
annular and stratified flows. Journal of petroleum science 
and engineering. 137, 240-249.

Amaya-Tejera N, Gamarra M, Vélez JI and Zurek E (2024): A 
distance-based kernel for classification via Support Vector 
Machines. Frontiers in Artificial Intelligence, 7, 1287875.

Anusha, J., Rekha, V. S. and Sivakumar, P. B. (2015): A machine 
learning approach to cluster the users of stack overflow fo-
rum. In the proceedings of artificial intelligence and evolu-
tionary algorithms in engineering systems. 325, 411–418.

Arteaga-Arteaga, HB., Mora-Rubio, A., Florez, F., Murcia-
Orjuela, N., Diaz-Ortega, CE., Orozco-Arias, S., delaPava, 
M., Bravo-Ortíz, MA., Robinson, M., Guillen-Rondon, P. 
and Tabares-Soto, R. (2021): Machine learning applica-
tions to predict two-phase flow patterns. PeerJ Computer 
Science. 29, 7, e798.

Attia, M., Mahmoud, M. A., Abdulraheem, A., and Al-Neaim, 
S. A. (2013): Evaluation of the pressure drop due to multi 
phase flow in horizontal pipes using fuzzy logic and neural 
networks. SPE middle east oil and gas show and confer-
ence, SPE-164278-MS.

Barjouei, H. S., Ghorbani, H., Mohamadian, N., Wood, D. A., 
Davoodi, S. and Moghadasi, J. (2021). Prediction perfor-

mance advantages of deep machine learning algorithms 
for two phase flow rates through wellhead chokes. Journal 
of petroleum exploration and production, 11, 1233-1261.

Barnea, D., Shoham, O., Taitel, Y. and A. E. Dukler. (1980): 
Flow pattern transition for gas-liquid flow in horizontal 
and inclined pipes. International Journal of Multiphase 
Flow, 6, 217-225.

Batchu, R. K. and Seetha, H. (2021): A generalized machine 
learning model for DDoS attacks detection using hybrid 
feature selection and hyperparameter tuning. Computer 
networks. 200.

Bishop, C. M. (1994): Neural networks and their applications. 
Review of scientific instruments, 65, 6, 1803-1832.

Cerda, P., Varoquaux, G. & Kégl, B. (2018): Similarity encod-
ing for learning with dirty categorical variables. Mach 
Learn 107, 1477–1494.

Cheng, L., Ribatski, G. and Thome, J. R. (2008): Two-phase 
flow patterns and flow-pattern maps: fundamentals and ap-
plications. Applied mechanics review. 61, 5, 050802.

Cover, T., & Hart, P. (1967): Nearest neighbor pattern classifi-
cation. IEEE Transactions on Information Theory, 13, 1, 
21-27.

Duru, U. I., Kwesi Wayo, D. D., Ogu, R., Cyril, C. and Nnani, 
H. (2022): Computational analysis for optimum mul-
tiphase flowing bottom-hole pressure prediction. Transyl-
vanian review, Computers and information science. 30, 2.

Ezzatabadipour, M., Singh, P., Robinson, M. D., Guillen-Ron-
don, P. and Torres, C. (2017): Deep Learning as a Tool to 
Predict Flow Patterns in Two-Phase Flow. arXiv:705.07117.

Gajula, S., & Rajesh, V. (2024): An MRI brain tumour detec-
tion using logistic regression-based machine learning 
model. International Journal of System Assurance Engi-
neering and Management, 15, 1, 124-134.

Ganat, T. A. and Hrairi, M. (2018): A new choke correlation to 
predict flow rate of artificially flowing wells. Journal of 
petroleum science and engineering. 171, 1378-1389.

Guillen-Rondon, P., Robinson, M.D., Torres, C. and Pereya, E. 
(2018): Support Vector Machine Application for Mul-
tiphase Flow Pattern Prediction. arXiv:1806.05054.

Hafsa, N., Rushd, S. and Yousuf, H. (2023): Comparative per-
formance of machine-learning and deep-learning algo-
rithms in predicting gas-liquid flow regimes. Processes. 
11, 1, 177.

Haiyan, W., Chunsheng, W., Yuxing, L. and Xiaohua, C. 
(2019): Flow-pattern-prediction models used for gas-liq-
uid two-phase flow. Journal of Oil & Gas Storage and 
Transportation, 1, 1, 55-60.

Hanazadeh, P., Eshraghi, J., Nazari, Y., Yousefpour, K. and Be-
habadi, M. A. A. (2017): Light oil-gas two-phase flow pat-
tern identification in different pipe orientations: An experi-
mental approach. Scientia Iranica, Transactions B: Me-
chanical Engineering. 24, 5, 2445 – 2456.

Hernandez, J. S., Valencia, C., Ratkovich, N., Torres, C. F., 
and Munoz, F. (2019): Data driven methodology for model 
selection in flow pattern prediction, Heliyon, 5, 11, e02718.

Hoque, R., Das, S., Hoque, M., & Haque, E. (2024). Breast 
Cancer Classification using XGBoost. World Journal of 
Advanced Research and Reviews, 21, 2, 1985-1994.



165 Flow Pattern Prediction in Horizontal and Inclined Pipes using Tree-Based Automated Machine Learning

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 153-166, DOI: 10.17794/rgn.2024.4.12

Huang, Z., Duo, Y. and Xu, H. (2024): Prediction of two-phase 
flow patterns based on machine learning. Nuclear Engi-
neering and Design, 421, 113107.

Jahanandish, I., Salimifard, B., and Jalalifar, H. (2011): Pre-
dicting bottomhole pressure in vertical multiphase flowing 
wells using artificial neural networks. Journal of petroleum 
science and engineering, 75, 336-342.

Jayakumar, V. and Raju, R. (2011): A multi-objective genetic 
algorithm approach to the probabilistic manufacturing cell 
formation problem. South african journal of industrial en-
gineering, 22, 1, 199-212.

Khaledi, H. A., Smith, I. E., Unander, T. E., and Nossen, J. 
(2014): Investigation of two-phase flow pattern, liquid 
holdup and pressure drop in viscous oil–gas flow. Interna-
tional Journal of Multiphase Flow, 67, 37–51.

Kim, D.H., Zohdi, T.I. and Singh, R. P. (2020): Modeling, 
simulation and machine learning for rapid process control 
of multiphase flowing foods. Computer methods in applied 
mechanics and engineering, 371, 113286.

Le, T.T., Fu, W. and Moore, J. H. (2020): Scaling tree-based 
automated machine learning to biomedical big data with a 
feature set selector. Bioinformatics, 36, 11, 250-256, 2020.

Lin, Z., Liu, X., Lao, L. and Liu, H. (2020): Prediction of two-
phase flow patterns in upward inclined pipes via deep 
learning. Energy. 210, 118541.

Loyola-Fuentes, J., Pietrasanta, L., Marengo, M. and Coletti, 
F. (2022): Machine Learning Algorithms for Flow Pattern 
Classification in Pulsating Heat Pipes. Energies, 15, 1970.

Magee, J. F. (1964): Decision trees for decision making. 
Brighton, MA, USA: Harvard Business Review, 35-48.

Malbrel, C. A., Kale, R., Agarwal, J., & Gohari, K. (2024): Mul-
tiphase Flow Pattern and Screen Selection: Two Overlooked 
Parameters Essential to Reservoir Control Valve Optimiza-
tion. SPE International Conference and Exhibition on For-
mation Damage Control, Lafayette, Louisiana, USA.

Manami, M., Seddighi, S. and Orl, R. (2023): Deep learning 
models for improved accuracy of a multiphase flowmeter. 
Measurement, 206, 112254.

Mask, G., Wu, X. and Ling, K. (2019): An improved model for 
gas-liquid flow pattern prediction based on machine learn-
ing. Journal of petroleum science and engineering. 183, 
106370.

Muthaiah, U., Markkandeyan, S. and Seetha, Y. (2019): Clas-
sification models and hybrid feature selection method to 
improve crop performance. International journal of inno-
vative technology and exploring engineering, 8, 11S2.

Nakhipova, V., Kerimbekov, Y., Umarova, Z., Suleimenova, 
L., Botayeva, S., Ibashova, A., & Zhumatayev, N. (2024): 
Use of the Naive Bayes Classifier Algorithm in Machine 
Learning for Student Performance Prediction. Internation-
al Journal of Information and Education Technology, 14, 1, 
92-98.

Olson, R. S., Bartley, N., Urbanowicz, R. J. and Moore, J. H. 
(2016a): Evaluation of a tree-based pipeline optimization 
tool for automating data science. In the proceedings of 
GECCO 2016. 485-492.

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. 
A., Kidd, L. C. and Moore, J. H. (2016b): Automating bio-

medical data science through tree-based pipeline optimiza-
tion. In the proceedings of european conference in applica-
tions of evolutionary computation. 123-137.

Oyewole, A. T., Adeoye, O. B., Addy, W. A., Okoye, C. C., 
Ofodile, O. C., & Ugochukwu, C. E. (2024): Predicting 
stock market movements using neural networks: a review 
and application study. Computer Science & IT Research 
Journal, 5, 3, 651-670.

Rish, I. (2001): An empirical study of the naive Bayes classi-
fier. In IJCAI 2001 workshop on empirical methods in ar-
tificial intelligence, 3, 22, 41-46.

Rushd, S., Gazder, U., Qureshi, H. J. and Arifuzzaman, M. 
(2022): Advanced machine learning applications to viscous 
oil-water multi-phase flow. Applied sciences. 12, 10, 4871.

Sawe, L., Gikandi, J., Kamau, J., & Njuguna, D. (2024): Sen-
tence Level Analysis Model for Phishing Detection Using 
KNN. Journal of Cybersecurity, 6, 2579-0072.

Shoham, O. (2006): Mechanistic modeling of gas liquid two 
phase flow in pipes. SPE Textbook Series, Richardson, TX.

Spandana, C., Srisurya, I.V., Nandhini, S. A., Kumar, R. P., 
Mohan, G. B. and Srinivasan, P. (2023): An efficient ge-
netic algorithm-based auto ml approach for classification 
and regression. Intelligent data communication tech. and 
internet of things. 371-376.

Su, Q., Li, J. and Liu, Z. (2022): Flow Pattern Identification of 
Oil–Water Two-Phase Flow Based on SVM Using Ultra-
sonic Testing Method. Sensors. 22, 16, 6128.

Thome, J. R. (2016). The Heat Transfer Engineering Data 
Book III. pp-publico.

Tong, Simon & Koller, Daphne. (2001). Support Vector Ma-
chine Active Learning With Applications To Text Classifica-
tion. The Journal of Machine Learning Research. 2, 45-66.

Uthayasuriyan, A., Chandran G, H., UV, K., Mahitha, S. H., & 
Jeyakumar, G. (2024): Performance Evaluation of Evolu-
tionary Algorithms on Solving the Influence Maximization 
Problem in Social Networks. International Journal of 
Modern Education and Computer Science, 16(2), 83-97.

Uthayasuriyan, A., Chandran, H G., Kavvin UV., Mahitha, 
S.H. and Jeyakumar, G. (2023): A comparative study on 
genetic algorithm and reinforcement learning to solve the 
traveling salesman problem. research reports on computer 
science. Universal wise publisher, 1, 12.

Wright, R. E. (1995): Logistic regression. In L. G. Grimm & P. 
R. Yarnold (Eds.), Reading and understanding multivariate 
statistics American Psychological Association, 217–244.

Wu, B., Firouzi, M., Mitchell, T., Rufford, T. E., Leonardi, C. 
and Towler, B. (2017): A critical review of flow maps for 
gas-liquid flows in vertical pipes and annuli. Chemical en-
gineering journal. 326, 350-377.

Yusof, K. A et al., (2024): Earthquake Prediction Model Based 
on Geomagnetic Field Data Using Automated Machine 
Learning. IEEE Geoscience and Remote Sensing Letters, 
21, 1-5.

Zhou, J., Su, Z., Hosseini, S., Tian, Q., Lu, Y., Luo, H., ... & 
Huang, J. (2024). Decision tree models for the estimation 
of geo-polymer concrete compressive strength. Mathemat-
ical Biosciences and Engineering, 21, 1, 1413-1444.



Uthayasuriyan, A.; Duru, U.I.; Nwachukwu, A.; Shanmugasundaram, T.; Jeyakumar, G. 166

Copyright held(s) by author(s), publishing rights belongs to publisher, pp. 153-166, DOI: 10.17794/rgn.2024.4.12

SAŽETAK

Predviđanje ponašanja protoka u vodoravnim i nagnutim cijevima pomoću 
automatiziranoga strojnog učenja temeljenoga na metodi stabla odlučivanja

Razumijevanje dvofaznoga protoka (plin-tekućina) od velike je važnosti u naftnoj i plinskoj industriji jer izravno utječe 
na projektiranje opreme, kontrolu kvalitete i radnu učinkovitost. U industrijskome inženjerstvu i upravljanju procesima 
važno je poznavanje obrasca protoka u procesu. U ovome su istraživanju, kako bi se dobio najbolji model strojnoga uče-
nja za navedeni skup podataka, korišten alat za optimizaciju cjevovoda temeljen na stablu odlučivanja (engl. Tree-Based 
Pipeline Optimization Tool, TPOT) i automatizirani sustav strojnoga učenja (engl. Automated Machine Learning, Auto-
ML). U radu je predstavljena izrada modela predviđanja uzorka protoka pomoću TPOT-a. TPOT je primijenjen za pred-
viđanje uzoraka protoka u cijevima promjera 2,5 cm i 5,1 cm korištenjem skupova podataka iz postojeće literature. Prije 
unošenja u TPOT skupovi podataka prošli su obradu neuravnoteženih podataka, standardizaciju i jednokratno kodira-
nje. Modeli izrađeni za skupove podataka za cijev promjera 2,5 cm i cijev promjera 5,1 cm nazvani su FPTL_TPOT_2.5 
odnosno FPTL_TPOT_5.1. U radu je provedena komparativna analiza navedenih modela, ostalih standardnih modela 
strojnoga učenja i sličnih najnovijih modela predviđanja dvofaznoga protoka te je dan osvrt na izvedbu navedenih TPOT 
modela. Rezultati su pokazali da modeli izrađeni TPOT-om postižu izvanrednu točnost, s rezultatom od 97,66 % za 
skupove podataka za cijev 2,5 cm, odnosno 98,09 % za skupove podataka za cijev 5,1 cm. Nadalje, modeli FPTL_TPOT_2.5 
i FPTL_TPOT_5.1 dali su bolje rezultate od drugih modela strojnoga učenja u smislu izvedbenih karakteristika naglaša-
vajući učinkovitost TPOT-a u stvaranju modela strojnoga učenja za predviđanje uzorka protoka. Rezultati ovoga istraži-
vanja znatno doprinose povećanju učinkovitosti i optimiziranju industrijskih procesa u naftnome i plinskome sektoru.

Ključne riječi: 
višefazni protok, dvofazni protok, predviđanje obrasca protoka, strojno učenje, AutoML
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