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Multi-class classification of breast cancer pathologi-
cal images remains challenging due to complex image 
features and limited datasets. This study proposes SS-
ResNeXt, a novel deep learning architecture incorpo-
rating a new Small-SE-ResNeXt Block with asymmet-
ric convolutions and channel attention mechanisms. 
Evaluated on the BreaKHis dataset, SSResNeXt 
achieves state-of-the-art performance with accuracies 
of 95.2%, 94.0%, 92.7%, and 93.5% for 40X, 100X, 
200X, and 400X magnification scales, respectively. 
Comparative experiments demonstrate SSResNeXt's 
superior performance over existing models, including 
ResNet and Swin Transformer variants. The proposed 
architecture offers improved feature extraction capa-
bilities for breast cancer pathological images without 
significantly increasing model complexity, providing a 
promising tool for computer-aided diagnosis systems.
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1. Introduction

Breast cancer is one of the leading causes of 
morbidity and mortality among women world-
wide, claiming countless lives each year. Time-
ly detection in its early stages is crucial for ef-
fective treatment. Clinical screening methods 
include X-ray (Lim et al., 2023) [1], CT, MRI, 
and biopsy, with biopsy being the gold standard 

for confirming cancer (Horvat et al., 2019) [2]. 
However, these methods are time-consuming 
and rely heavily on the expertise of experienced 
doctors (Proctor et al., 2017) [3], increasing 
workload and diagnostic challenges.
In recent years, advancements in computer 
hardware and computer vision algorithms have 
significantly enhanced computer-aided diagno-
sis (CAD) technology (Araújo et al., 2017) [4]. 
This technology has improved diagnostic accu-
racy, reduced doctors' workload, and provided 
more precise and objective test results (Waks et 
al., 2019) [5]. While machine learning and deep 
learning in computer vision continue to evolve, 
training highly accurate models with large data-
sets is feasible for general natural images due to 
ample training data and computational power. 
However, in medical imaging, achieving highly 
accurate models is challenging due to privacy 
concerns and high costs of data collection and 
annotation by professionals. Therefore, improv-
ing model accuracy with limited data remains a 
critical issue.
To address this problem, various model ar-
chitectures have been explored, from initial 
multi-layer neural networks to advanced deep 
convolutional models [34, 35]. New learning 
methods, such as transfer learning, have also 
been proposed. Transfer learning leverages ex-
isting knowledge from the source domain to 
enhance learning in the target domain [36, 37]. 
While deep learning methods have achieved 
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promising results in classifying breast cancer 
pathological images, they often require exten-
sive pre-training on large non-target domain 
datasets, massive model structures, and signifi-
cant computing resources [38]. This reliance on 
pre-training and complex model architectures 
can lead to diminishing returns, where addi-
tional data and model complexity result in only 
marginal improvements in performance.
Model improvements have enhanced breast 
cancer diagnosis by advancing feature ex-
traction and optimizing deep learning architec-
tures. Studies have also applied data process-
ing techniques to boost model generalization. 
Aldakhil et al. [30] propose ECSAnet, which 
integrates a Convolutional Block Attention 
Module (CBAM) into EfficientNetV2, im-
proving classification accuracy by focusing on 
critical features and using stain normalization 
and data augmentation. ECSAnet significantly 
outperforms several state-of-the-art models in 
multi-class breast cancer classification at vari-
ous magnifications. Joseph et al. [31] achieved 
the best performance by combining handcrafted 
feature extraction with DNN and utilizing data 
augmentation, reaching an average accuracy of 
97.10%. Chattopadhyay et al. [32] used a dual 
residual block in a multi-scale dual residual re-
current network (MTRRE-Net74), achieving 
superior accuracy at four magnification levels 
compared to previous models. ORTEGA-RUÍZ 
et al. [33] propose DRD-UNet, a deep learning 
architecture that enhances semantic segmenta-
tion of breast cancer tissue slices by introducing 
a DRD processing block with dilated convolu-
tions, residual connections, and dense layers. 
This architecture performs well among various 
UNet models, achieving the highest results in 
the Jaccard similarity index, Dice coefficient, 
and overall segmentation accuracy.
Our research aims to design a deep learning 
classification model for multi-class breast can-
cer pathological images by exploring various 
convolutional neural network architectures. The 
model seeks to improve feature extraction from 
these images without increasing the model size 
compared to traditional models. By enhancing 
classification performance while increasing 
data volume, it aims to provide a valuable tool 
for computer-aided diagnosis systems.

The research objectives of this article are as fol-
lows:
1. Explore the impact of different current 

model architectures on breast cancer im-
age classification;

2. Based on the residual structure, design a 
module for breast cancer pathological im-
age classification;

3. Based on the idea of multi-layer neural 
network, a network structure that does 
not need to be too deep is designed for 
multi-classification tasks of breast cancer 
pathological images.

2. Related Work

2.1. Exploration and Research on Various 
Model Structures

AlexNet (Krizhevsky et al., 2012) [6] was the 
first to use deep convolutional neural networks 
for high-resolution and large-scale image clas-
sification. The model innovatively introduced 
convolutional neural networks, ReLU acti-
vation functions, and dropout regularization 
for feature extraction and classification. Its 
five-layer structure became the foundation for 
subsequent deep learning models. LeCun et al. 
(2015) [7] used AlexNet to classify benign and 
malignant breast cancer pathological images, 
achieving a classification accuracy that was 6 
percentage points higher than traditional ma-
chine learning methods.
GoogLeNet (Szegedy et al., 2015) [8] is an im-
age classification model inspired by AlexNet, 
optimized to improve recognition rates by re-
fining network modules. It won the 2014 Im-
ageNet (Beyer et al., 2020) [9] image classi-
fication competition. The model's convolution 
blocks use 1x1 convolutions for dimensionality 
reduction, significantly reducing parameters 
and enhancing nonlinear representation capa-
bility. Fujioka et al. (2019) [10] collected 480 
images of 96 benign tumors and 467 images of 
144 malignant tumors as training data, using 
GoogLeNet to build a deep learning model. The 
results showed comparable or improved diag-
nostic performance, with AUCs of 0.913 and a 
range of 0.728–0.845, respectively.
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2.2. Residual-based Module Exploration

Gradient explosion, overfitting, and other is-
sues caused by increasing model depth and 
width highlight that simply adjusting these 
dimensions may no longer significantly im-
pact model performance. Such changes can 
introduce new problems. The introduction of 
ResNet (He et al., 2016) [18] addressed these 
issues effectively. Its core idea involves resid-
ual blocks with identity mapping, which allow 
certain layers to skip connections and weaken 
the strong inter-layer connections, thereby mit-
igating network degradation. To tackle gradient 
disappearance or explosion, ResNet also utiliz-
es data preprocessing and Batch Normalization 
(BN) layers.
Al-Haija et al. (2020) [19] used ResNet50 to 
classify benign and malignant samples from 
the BreakHis dataset (Lowe et al. 2014) [20]. 
They employed ResNet-50 pre-trained on Ima-
geNet and applied transfer learning to classify 
the dataset. The model achieved an excellent 
classification accuracy of 99%, outperforming 
other models on the same dataset.
Xie et al. (2017) [21] developed ResNeXt, 
building on ResNet and incorporating parallel 
convolutions from Inception (Szegedy et al., 
2016). This model, which uses group convo-
lutions within residual blocks, achieved sec-
ond place in the ILSVRC 2016 classification 
task (Russakovsky et al., 2016) [22], demon-
strating the scalability of the ResNet structure 
and the impact of different model architectures 
on image processing tasks. DenseNet (Huang 
et al., 2017) [23] extends ResNet's residual idea 
from local to global, where each layer's input 
includes outputs from all previous layers, im-
proving information and gradient transmission 
efficiency.
Jiang et al. (2019) [24] designed the SE-ResNet 
module, incorporating attention mechanisms 
into ResNet, resulting in BHC-Net. This mod-
el achieved a classification accuracy of 0.93 on 
the BreakHis dataset, significantly outperform-
ing models without attention mechanisms. RK 
et al. (2023) [25] proposed a redesigned Res-
Net-based model to minimize parameters and 
improve computational efficiency, using en-
hanced connections instead of traditional iden-
tity shortcuts.

VGGNet (Simonyan et al., 2014) [11] is a deep 
convolutional neural network developed by the 
Oxford University Vision Group for the 2014 
ImageNet image classification competition. It 
represents the depth and performance limits 
of traditional sequential convolutional neural 
networks. This model's simple structure excels 
at extracting deep semantic information from 
images and has been applied in areas such as 
transfer learning and interpretability analysis. 
Jahangeer et al. (2021) [12] integrated VGG-
16 deep learning technology with cascade net-
works to segment filtered images, achieving 
good results on a breast cancer dataset. Agarwal 
et al. [13] analyzed performance on the public-
ly available BreakHis dataset using deep CNN 
and four popular CNN architectures (VGG16, 
VGG19, MobileNet, and ResNet 50) for histo-
pathology image classification. Among these, 
VGG16 performed best with an accuracy of 
94.67%, a precision of 92.60%, an F1 score of 
85.21%, and a recall of 80.52%. Clement et al. 
(2022) [14] proposed a multi-scale pooled im-
age feature representation (MPIFR) deep learn-
ing architecture combined with one-to-one sup-
port vector machines for classifying 8-category 
breast cancer histopathology images.
The hybrid CNN-LSTM model proposed by 
Srikantamurthy et al. [15] in 2023 was com-
pared with existing CNN architectures for 
breast histopathology image classification, 
including VGG-16, ResNet50, and Inception 
models. All models were built using three opti-
mizers—adaptive moment estimation (Adam), 
root mean square propagation (RMSProp), and 
stochastic gradient descent (SGD)—and trained 
with varying numbers of epochs.
Patel et al. (2023) [16] proposed GARL-Net, a 
graph-based adaptive regularized deep network 
for more accurate breast cancer classification, 
using DenseNet121 as the backbone network 
for transfer learning. They redesigned the loss 
function with adaptive regularization and com-
plementary cross-entropy loss to address issues 
like uneven data distribution in pathological 
image datasets. To tackle these challenges, Ag-
bley et al. (2023) [17] introduced a method that 
combines different magnification factors of 
histopathology images using residual networks 
and information fusion in federated learning 
(FL).
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Leow et al. (2023) [26] utilized multiple deep 
convolutional networks as feature extractors to 
extract and classify image features with ran-
dom forest (RF) and k-nearest neighbor (KNN) 
algorithms. Similarly, Sahu et al. (2023) [27] 
used a pre-trained ResNet18 model for feature 
extraction from X-ray images and applied SVM 
for cancer diagnosis. To enhance performance, 
image quality was improved through contrast 
enhancement, followed by tumor segmentation 
using a histogram-based K-means technique.
Exploring different model structures and opti-
mizing breast cancer pathological image classi-
fication remains challenging. It involves more 
than just increasing model depth; it requires a 
comprehensive consideration of parameters, 
structural complexity, and other design aspects. 
We aim to explore various deep learning ar-
chitectures to achieve high performance with 
smaller model sizes and enhance computer-aid-
ed diagnosis and treatment systems.

3. SSResNet

3.1. Model Process

Based on the AlexNet framework, we designed 
a deep network using a Small SE-ResNeXt 
Block, named SSResNet, as shown in Figure 1. 
The model's feature extraction component con-
sists of four layers, each utilizing our designed 
module. When a feature tensor enters this mod-
ule, it passes through 32 parallel convolution 
branches, each performing non-linear convo-
lution. After convolution, a channel attention 
mechanism re-evaluates feature importance. 
The feature tensors from these branches are 
then concatenated to complete the feature ex-
traction process within the module. The specif-
ic model process is as follows:
1. Image Preprocessing: Images are resized 

to 224×224 after data augmentation, in-
cluding cropping and inversion, before be-
ing input into the model.

2. Initial Convolution and Pooling: The 
image undergoes a standard convolutional 
pooling layer, increasing the channel count 
to 64 and reducing the image size to 56×56.

3. Feature Extraction: The processed (64, 
56) feature tensors are passed through four 
consecutive Conv_Layers, each contain-
ing multiple Small SE-ResNeXt Blocks. 
The first block in each layer is responsible 
for downsampling the input feature tensor. 
To achieve this, we designed a Downsam-
ple Block based on the Small SE-ResNeXt 
structure. Additionally, we incorporated 
dense connections, inspired by DenseNet, 
between the first and last blocks of each 
layer to mitigate the vanishing gradient 
problem and enhance feature reuse.

4. Final Convolution and Classification: 
After passing through five convolution-
al layers, the resulting (2048, 7) tensor is 
reduced to a (2048, 1) tensor via average 
pooling (Avgpool) and then fed into a fully 
connected layer to output multi-classifica-
tion results.

3.2. Samll-SE-ResNeXt Block

We designed Small SE-ResNeXt Block based 
on ResNeXt(Xie et al., 2017). The detailed pro-
cess of the module is as follows:
1. Using asymmetric parallel convolution, 

1*3, 3*1 convolution units and 3*3 convo-
lution units share the same weight, enhanc-
ing the square convolution kernel while 
reducing the amount of model parameters, 
superimposing asymmetric convolutions 
as shown in Figure 2.

2. Add the SE channel attention module af-
ter convolution. After the feature tensor is 
processed by the channel attention mod-
ule, each feature channel is assigned a 
weight, and the neural network will focus 
on certain channels with large weight val-
ues. The entire channel attention module 
does not change the dimension and size of 
the feature tensor, but only implements 'as-
signing different weight values to different 
channels'. The channel attention mecha-
nism is shown in Figure 3.

3. After completing asymmetric convolution 
and channel attention, concatenate each 
branch to obtain an output with the same 
dimension as the input feature tensor. The 
complete module structure is shown in 
Figure 4.
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Figure 2. Superposition asymmetric convolution.

Figure 1. SSResNeXt model structure diagram.
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We assume that the input tensor is X, 
Op( p ∈ [1, ..., 32]) represents the output of each 
branch, O represents the output of a complete 
Small SE-ResNeXt Block.The complete con-
volution process of the module is expressed as:

32

1
p

p
O O X

=

= +∑
                      

(1)

( )( )1 2p p p p pO U s U W W Xδ= ∗ = ∗ ∂
       

(2)

s represents the one-dimensional weight vec-
tor obtained after processing in the channel 
attention calculation, the sigmoid function is 

expressed as δ, the relu operation is ∂ The Exci-
tation process is expressed as:

( )( )2 1s W W zδ= ∂                     (3)

Wl*h represents the length and width of the 
asymmetric convolution kernel, X represents 
the input tensor that has undergone serial asym-
metric convolution, Up represents the tensor ob-
tained by serial convolution. The convolution 
process of a branch in Block is:

( ) ( )( )( )( )1*1 3*3 1*1 1*3 3*1 1*1pU W W W X W W W X= ∂ ∂ + +

(4)

Figure 4. Small SE-ResNeXt Block.

Figure 3. Channel attention mechanism.
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3.3. Training

To optimize the performance of the pathological 
image multi-classification model, we employed 
a combination of loss functions. Specifically, 
we utilized Cross-Entropy Loss in conjunction 
with Dice Loss. Cross-Entropy Loss is suitable 
for multi-class classification tasks as it quanti-
fies the difference between predicted and ac-
tual class labels. Dice Loss, typically used in 
segmentation tasks, is particularly effective for 
handling imbalanced classes by focusing on 
small sample categories.
The loss function is defined as follows:

Loss Cross Entropy Loss Dice Lossα β= × − + ×
(5)

where α and β are the weighting coefficients. 
Based on experimental results, both α and β 
were set to 0.5 to balance the impact of each 
loss function on the overall optimization.
The adaptive momentum estimation (ADAM) 
optimization method was used in the exper-
iment, in which the initial value of the learn-
ing rate is 0.01 and is attenuated to 90% of the 
original value every 5 epochs. The dynamic 
learning rate attenuation can make the training 
process converge as quickly as possible. The 
Batch_size of the model is set to 8.

4. Experimental results and analysis

4.1. Dataset

To assess the effectiveness of our model in 
breast cancer pathology image classification, 
we utilized the BreaKHis dataset, published by 
the A Lowe team. The dataset comprises 7,909 
pathological images, categorized by magnifi-
cation into four levels: 40X, 100X, 200X, and 
400X. Each image is stored with a resolution 
of 700×460 pixels. The dataset includes eight 
categories, as illustrated in Figure 5, covering 
both benign and malignant tumors. The benign 
tumors consist of four subtypes: adenosis (A), 
fibroadenoma (FA), tubular adenoma (TA), and 
phyllodes tumor (PT). The malignant tumors 
are divided into four subtypes: ductal carcinoma 
(DC), lobular carcinoma (LC), mucinous carci-
noma (MC), and papillary carcinoma (PC).
This dataset has an imbalanced distribution, with 
malignant tumor images being overrepresented. 
This is a common issue in designing comput-
er-aided diagnostic tools for medical imaging. 
Our experiment involves multi-class classifica-
tion based on four different magnification fac-
tors. To prevent overfitting, we enhanced the 
dataset using techniques such as multiple-angle 
flipping, random cropping, and horizontal flip-
ping within the PyTorch framework, aiming to 
improve the model's robustness in recognizing 
pathological images.

Figure 5. Data set example.
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4.2. Experimental Result Evaluation Index

We adopt accuracy, precision, recall, and F1 
score as evaluation metrics to evaluate the ef-
fectiveness of various classification networks. 
These indicators are calculated as follows:

TP TNAccuracy
TP FP TN FN

+
=

+ + +           
(6)

TPPrecision
TP FP

=
+                  

(7)

TPRecall
TP FN

=
+                    

(8)

2* *1 Precision RecallF score
Precision Recall

− =
+       

(9)

These four values correspond to different cate-
gories in the binary confusion matrix. The con-
fusion matrix is shown in Table 1.

Table 1. Confusion matrix.

Predicted  
Negative

Predicted  
Positive

Actual Negative TN FP

Actual Positive FN TP

4.3. Ablation Experiment

4.3.1. Parametric Design

Obtaining good model parameters requires not 
only effective models and data but also proper 
adjustment of training parameters. These pa-
rameters impact convergence speed and model 
performance, and their effects can vary across 
different hardware environments. To evaluate 
the optimization of our model for pathological 
image classification, we conducted an abla-
tion study. This study compared four models: 
the original ResNet50, ResNeXt50 with group 
convolution, SE-ResNeXt50 with an attention 
mechanism, and our designed SSResNeXt with 

asymmetric convolution. Each model under-
went multi-class classification on data at four 
different scales.

The computer operating system used is Ubun-
tu16.04, the PyTorch version is 1.11, the CUDA 
version is 11.3, the python version is 3.9, the 
CPU is Intel(R) Core(TM) i9-12900k @3.50 
GHz, the memory is 32 GB, and the GPU is 
NVIDIA GeForce RTX3090 (24 GB).

4.3.2. Analysis of Results

We incorporate modules based on ResNet50, 
and each model variation is evaluated on four 
different scale datasets, as shown in Table 2. 
The classification performance varies with 
scale, generally decreasing as the scale in-
creases. This decline occurs because increasing 
the scale leads to a loss of global information, 
which is critical for pathological images lack-
ing clear contours where texture details are im-
portant. At the same scale, adding more mod-
ules does not necessarily improve classification 
ability. In fact, stacking SE channel attention 
blocks without considering image characteris-
tics can degrade model performance.

Our SSResNeXt model first uses asymmetric 
convolution to enhance texture details in differ-
ent areas of the feature map, followed by apply-
ing attention weights. This approach maintains 
the model's computational efficiency while en-
hancing its performance.

In order to more conveniently compare the per-
formance differences of various models in ab-
lation experiments, we performed visual data 
analysis on f1-score and drew Figure 6.

As shown in the figure, the SSResNeXt model 
performs optimally across different scales, with 
F1-scores of 0.941, 0.926, 0.922, and 0.927 for 
magnification scales of 40X, 100X, 200X, and 
400X, respectively. The limitations of the orig-
inal ResNet model for multi-class classification 
of pathological images highlight that no single 
model fits all scenarios. Appropriate network 
structures should be chosen based on the specif-
ic characteristics of the data and scenario results.
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Table 2. Comparison of F1 of each model in the ablation experiment.

Groups SE_Layer Asymmetry Precision Recall

ResNet50

40X

0.855 0.871

ResNeXt50  0.941 0.915

SE-ResNeXt50   0.9 0.886

SSResNeXt (our proposed)    0.952 0.931

ResNet50

100X

0.916 0.903

ResNeXt50  0.932 0.914

SE-ResNeXt50   0.926 0.911

SSResNeXt (our proposed)    0.94 0.915

ResNet50

200X

0.893 0.893

ResNeXt50  0.909 0.901

SE-ResNeXt50   0.897 0.9

SSResNeXt (our proposed)    0.927 0.919

ResNet50

400X

0.891 0.881

ResNeXt50  0.914 0.892

SE-ResNeXt50   0.927 0.912
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ing tumor classification can enhance diagnostic 
support for doctors. Therefore, we compared 
our model with several recently prominent 
models.
Recently, vision transformers (Dosovitskiy et al., 
2020) [28] have gained attention in medical im-
aging due to their success in various computer 
vision tasks. The Swin Transformer, a variant of 
the Vision Transformer, uses non-overlapping 
windows and self-attention within local win-
dows to effectively model image data. Tummala 
et al. (2022) [29] evaluated the SwinT ensemble 
for binary classification of benign and malignant 
tumors using the BreaKHis dataset. Jiang et al. 
(2022) [24] proposed HBCNet, a multi-classi-
fication network for medical images based on 
SE-ResNet, combining the residual structure of 
ResNet with the SE module to enhance feature 
extraction.We compare these similar models 
with the model we designed. The experimental 
results are as Table 3.
We will compare the experimental results of 
each model to assess the F1-scores for patho-
logical images at different scales. As shown in 
Figure 8, our SSResNeXt model performs best 
in multi-class classification of pathological im-
ages. Compared to the unoptimized ResNet and 
the Swin Transformer, our model demonstrates 
superior performance.

In order to prove the validity of our ablation ex-
perimental results, we repeated the experiment 
for each module at different scales ten times 
and calculated the mean and standard devia-
tion. At the same time, we provide statistical 
significance tests for performance comparisons 
as Figure 7. Let us take the 40X scale experi-
mental statistical analysis in the figure below as 
an example: the box plot represents the distri-
bution of results from ten repeated experiments, 
and '*' represents the significance of the differ-
ences between different models. The SSRes-
NeXt we designed is significantly better than 
the other three models, and colleagues' repeat-
ed experiments also ensured the stability of the 
model. It can be found that the SSResNeXt we 
designed performs best at 40X scale. The per-
formance of the same model at the 40X scale 
is also better than the other three scales. This is 
because a smaller magnification can better re-
tain the global information of the image, which 
is especially important for unnatural images.

4.4. Comparative Experiment

Since this dataset is public and widely used for 
training various models, differences between 
models in binary classification tasks are mini-
mal. In the field of medical diagnosis, improv-

Figure 6. Comparison of F1 of each model in the ablation experiment.
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Figure 7. Statistical Significance Tests & Error Bars of F1-Score Across Different Scales.

Figure 8. Comparison of F1 of each model in the comparative experiment.
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Table 3. Comparison of F1 of each model in the ablation experiment.

scale Precision Recall F1-score

BHCNet

40X

0.936 0.901 0.916

Swin T 0.942 / 0.94

ResNet 0.855 0.871 0.861

SSResNeXt (our 
proposed) 0.952 0.931 0.941

BHCNet

100X

0.918 0.896 0.906

Swin T 0.909 / 0.908

ResNet 0.916 0.903 0.908

SSResNeXt (our 
proposed) 0.94 0.915 0.926

BHCNet

200X

0.921 0.893 0.905

Swin T 0.916 / 0.916

ResNet 0.893 0.893 0.895

SSResNeXt (our 
proposed) 0.927 0.919 0.922

BHCNet

400X

0.913 0.879 0.896

Swin T 0.915 / 0.914

ResNet 0.891 0.881 0.887

SSResNeXt (our 
proposed) 0.935 0.919 0.927
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4.5. Model Complexity Comparison

Our proposed SSResNeXt model achieves ex-
cellent performance in multi-class classification 
of pathological images without significantly 
increasing model parameters or computational 
cost. Model complexity is shown in Table 4. 
Our model maintains a parameter count within 
the same order of magnitude as the base mod-
el, with potential for further optimization while 
improving the model structure. Params rep-
resents the number of model parameters, and 
FLOPs indicates the number of floating-point 
operations required for inference or training.

4.6. Discussion

We used the proposed Small-SE-ResNeXt 
Block to design a deep network model and 
achieved better F1-scores on the BreakHiS 
dataset, showing significant performance im-
provements compared to the base model. Our 

approach to module design for pathological 
images merits consideration in future experi-
ments. In this work, we focused on designing a 
module specifically for pathological image fea-
ture extraction. The SSResNeXt built with this 
module performs exceptionally well, especially 
across different image scales, demonstrating its 
potential to enhance computer-aided diagnosis 
systems in clinical environments.
However, due to the limited availability of data-
sets, we have only conducted experiments with 
a single dataset. In the future, we plan to vali-
date the model with different types of datasets. 
Additionally, the designed feature extraction 
module could be applied not only to classifica-
tion tasks but also to segmentation tasks. Many 
excellent classification and segmentation mod-
els exist in medical image processing, most of 
which use convolutional approaches to extract 
deep features layer by layer, followed by pix-
el-level classification.

Table 4. Complexity comparison.

stage output resnet resnext Our proposed

conv1 112*112 7*7, 64, stride 2

conv2 56*56

3*3, max pool, stride 
2

3*3, max pool, stride 
2

3*3, max pool, stride 
2

residual block * 3 resnext block * 3 Small-SE-ResNeXt 
Block * 3

conv2 28*28 residual block * 4 resnext block * 4 Small-SE-ResNeXt 
Block * 4

conv4 14*14 residual block * 6 resnext block * 6 Small-SE-ResNeXt 
Block * 6

conv5 7*7 residual block * 3 resnext block * 3 Small-SE-ResNeXt 
Block * 3

1*1
globa average pool 

1000-d fc, softmax

globa average pool 

1000-d fc, softmax

globa average pool 

8-d fc, softmax

params. 2.56E+07 2.50E+07 2.51E+07

FLOPs 4.13E+09 4.29E+09 4.21E+09
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5. Conclusion

This study introduces SSResNeXt, a novel deep 
learning architecture for multi-classification of 
breast cancer pathological images. By incorpo-
rating asymmetric convolutions and channel at-
tention mechanisms in the Small-SE-ResNeXt 
Block, our model achieves state-of-the-art per-
formance on the BreaKHis dataset across multi-
ple magnification scales. SSResNeXt's superior 
performance, particularly in handling different 
image scales, demonstrates its potential for im-
proving computer-aided diagnosis systems in 
clinical settings. The success of our approach 
highlights the importance of tailoring deep 
learning architectures to the specific challenges 
of medical image analysis. Future work should 
focus on validating SSResNeXt on larger, more 
diverse datasets and exploring its applicability 
to other types of pathological images. Addi-
tionally, investigating the interpretability of the 
model's decisions could further enhance its util-
ity in clinical practice. As deep learning contin-
ues to advance, architectures like SSResNeXt 
pave the way for more accurate and efficient 
diagnostic tools in breast cancer detection and 
classification.
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