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Summary

In recent years, image processing in various scientific domains has gained prominence,
particularly in materials science. This study leverages advanced deep learning techniques,
specifically the Mask Convolutional Neural Network (M-CNN), for quantitative analysis of
Scanning Electron Microscopy (SEM) images. Our approach involves the rigorous
classification of SEM images in RGB format, utilising M-CNN to intelligently scrutinise edges
and quantify cracks, pores/voids, and fibre orientation. Notably, M-CNN plays a pivotal role in
accurately predicting material strength by categorising angles into ductile (45°) and brittle (90°)
ones. The proposed software achieves a remarkable 99% accuracy in detecting and quantifying
structural elements within SEM images, marking a significant advancement in materials science
and demonstrating the potential of advanced image processing techniques for material analysis.

Key words: Deep Learning, Scanning Electron microscopy, Mask Convolutional Neural
Networks (M- CNN)

1. Introduction

Image processing serves as a fundamental and indispensable concept across a multitude of
fields, offering the vital capability to glean valuable insights from visual data. The application of
image processing techniques is now pervasive, enabling profound analysis of images and the
extraction of pertinent information [1-3]. This technology functions in various domains, including
clinical sciences, where it plays a pivotal role in the interpretation of intricate medical images such
as X-ray scans and blood/cell microscopy. Moreover, it serves as a crucial tool in space science,
facilitating the prediction of weather patterns, environmental conditions, and geographic mapping.

This study focuses on the domain of materials science, where the imaging of diverse
composites is of paramount importance. Mechanical experts routinely employ Scanning
Electron Microscopy (SEM) to capture high-resolution images of both metallic and non-
metallic surfaces [4-5]. SEM-generated images serve as a valuable resource for manual
assessments, particularly for factors such as cracks, voids, and fibre distribution on the surface.
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However, manual assessments fall short in predicting the precise quantification of these
structural elements, which significantly influence material strength [6-9].

In response to this limitation, Convolutional Neural Networks (CNNs) have emerged as
a powerful tool for deep learning. CNNs exhibit unparalleled proficiency in extracting precise
information from SEM images, offering the promise of automation. In particular, the Mask
Convolutional Neural Network (M-CNN) is employed, leveraging RGB colour representation
encompassing values within the range of 0 to 255 to execute image masking. This technique
effectively segments SEM images, enabling the identification of cracks and pores, simplifying
the isolation of individual objects and facilitating edge detection. This, in turn, contributes to
determining material strength associated with these structural elements [10-12].

Non-metallic fibre orientation assumes a pivotal role in evaluating the stiffness and strength
of composite materials, rendering it a critical parameter in their design [13-15]. Fibre orientation
directly influences mechanical properties and manufacturing consistency, encompassing
unidirectional, bidirectional, random, and multidirectional orientations [16]. Deep learning,
featuring multiple layers, including convolutional, pooling, and fully connected layers, provides
a robust approach to handling the substantial data inherent in these analyses [17-19].

This study introduces an integrated approach that capitalises on the synergy between
masking techniques and M-CNN for the automated detection of tensile strength properties in fibres
characterised by diverse inclinations. The foundation for accurate tensile strength estimation lies
in statistical analysis, obviating the need for manual assessment and enhancing predictive
capabilities. The primary objective of this endeavour is the quantitative segmentation of cracks,
voids, and orientations through the amalgamation of CNN and masking, effectively addressing the
intricate challenges associated with tensile strength property analysis in SEM images.

2. Background Work

In recent years, the utilisation of Convolutional Neural Networks (CNNs) has gained
prominence in various scientific applications, including image analysis. Seunghwan Song et al.
[20] introduced an innovative concept that embraces CNNs, particularly in the context of
Spiking Neural Network (SNN) inference. Their work proposed a weight-sharing spiking CNN
inference system (WS-SCNN), incorporating efficient convolution layers (ECLs) [21-23]. The
key innovation here lies in the efficient mapping of convolutional features between input and
filter weights, effectively reducing the hardware resources required for SNNs. Lianlin Li et al.
[24] advanced the field of deep learning by combining CNNs with iterative EM inverse
scattering solution techniques, giving birth to DeepNIS. This novel CNN-based solution has
demonstrated superior performance in comparison to traditional inverse scattering methods,
particularly in terms of image quality and processing speed.

Juanjuan Huang et al. [25] introduced an intriguing application of CNNs in the
classification of M-ary phase shift keying (PSK) and M-ary quadrature amplitude modulation
(QAM) modulation formats. Their approach hinged on a cascaded convolutional neural
network (CasCNN) that effectively categorised various modulation formats, including PSK and
QAM, demonstrating the potential for efficient digital modulation classification. Pengbo Zhang
et al. [26] delved into the realm of spatial-spectral electroencephalogram (EEG) features using
a novel structure called R3IDCNN (a fusion of deep RNN and 3D CNN). This innovative
approach exhibited impressive classification accuracy across a range of tasks, underlining its
versatility and potential applications.

Zheng Liu et al. [27] pushed the boundaries of image restoration techniques with their
network architecture, showcasing its potential in handling a wide array of visual distortions.
Their work hinted at the prospect of future research into general-purpose image restoration
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methods. Mridul Gupta et al. [28] ventured into the domain of tiny infrared target detection by
integrating CNNs into an established space-based detection processing chain. Their method
incorporated supervised training, utilising the sequence-to-sequence matching detection (SMD)
approach, which yielded significant performance improvements. Berin Seta et al. [29]
considered the impact of the fibre orientation and the strand shape's primary characteristics of
the fibres (fibre volume percentage and length-to-diameter aspect ratio) [30-32]. The fibre
orientation stayed the same but the cross-sectional strand form was altered for greater aspect
ratio fibres and lower volume fraction (but higher anisotropy levels). A horn-like shape was
created on the strand's top borders as a result of the intricate interaction between the fibre
orientation and the flow that was created inside it. Zhang et al. [33] made the case that this
unusual behaviour resulted from the longer fibres being printed at higher extrusion pressure and
the limited sideway flow in the upper section of the strand by looking at the streamlines of the
flow [34-35]. Zhihao Li and Wei Zhou [36] described how a fibre orientation device with a
vibration motor with configurable vibrational frequency was employed to prepare UHPFRC.
When making the gadget, the wall effect and fibre length were taken into account. To
investigate the impacts of vibrational frequency and the related vibrational force on the tensile
behaviours, uniaxial tensile tests were carried out on fibre-oriented UHPFRC. The test findings
revealed that the UHPFRC specimens cast using the fibre orientation procedure at various
vibrational frequencies had varying tensile properties.

Matteo Giardino et al. [37] explain scanning electron microscopy (SEM), where a four-
quadrant backscattered electron detector (FQBSD) captures information from different angles
of the sample surface. By combining these signals, researchers can create a 3D reconstruction
of the surface topography. However, processing the raw data poses the significant challenge of
integrating the gradient fields derived from the normalised signal difference between opposing
detector pairs. Traditionally, researchers have tackled this noise-sensitive task using a least-
squares integration approach, effectively averaging out inconsistencies caused by electronic
noise manifested as image noise [38-41]. S.L. Lu et al. [42] describe research investigating the
influence of neighbouring parent grain orientations on massive transformations in four o-f3
titanium alloys. The alloys were produced using three different manufacturing techniques:
electron beam powder bed fusion (EB-PBF), laser directed energy deposition (L-DED), and
conventional manufacturing followed by B-annealing.

These prior works in the field of deep learning, CNNs, and their diverse applications set
the stage for the current study's exploration of CNN-based techniques in material science and
SEM image analysis. The integration of these methodologies holds the promise of automating
and enhancing the accuracy of material property assessments.

3. Proposed Methodology
3.1 Scanning Electron Microscope (SEM)

The scanning electron microscope (SEM) is a pivotal instrument in our study. SEM
generates images through the interaction of high-energy electrons with the sample, resulting in
secondary electrons, backscattered electrons, and characteristic X-rays. These signals are
collected by detectors, forming images that are subsequently displayed on a computer screen.
The penetration depth of the electron beam into the sample depends on factors like acceleration
voltage and sample thickness, typically reaching depths of a few microns. This interaction leads
to the generation of various signals, including secondary electrons and X-rays. Fig. 1 illustrates
the process flow of our proposed methodology, where SEM images serve as the initial data,
subsequently undergoing masking and analysis via a Mask Convolutional Neural Network (M-
CNN) for quantitative assessment.
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Fig. 1 Process flow of proposed methodology

3.2 Masking Technique

A critical component of our methodology is the masking technique, employed for image
preprocessing. This technique plays a vital role in noise reduction and the enhancement of
image features. It utilises a 3x3 box filter that segregates pixel intensities into masked and
unmasked regions, assigning a value of 0 to all pixel values if they are uniform [43-44]. This
approach facilitates the identification of edges within the images, ensuring smooth edge
detection in cracks and pores, even at the periphery of SEM images. Pixels with varying
intensities remain unchanged in the output images, allowing for easy and efficient edge
detection. Table 1 illustrates the 3x3 matrix configuration of the mask.

The properties of the box filter utilised in our study are as follows:
— Odd-ordered

— Sum of all elements equals 1

— All elements are identical

Table 1 3X3 Matrix configuration of the mask

1/9 1/9 1/9
1/9 1/9 1/9
1/9 1/9 1/9

The 3x3 matrix comprises nine cells, all containing identical elements that sum to 1,
thereby satisfying the required properties. This mask technique effectively facilitates the
detection of cracks and pores along the image edges.

3.3 M-Convolution Neural Network (M-CNN)

The M-CNN plays a central role in our approach for structured data analysis. Fig. 2 shows
the system architecture of M-CNN. Its design revolves around the incorporation of high-
resolution pixel data obtained from SEM images, with pixel values ranging from 0 to 255 [45-
47]. To achieve this, we developed a dataset consisting of high-resolution pixels extracted from
SEM images, with each pixel represented in the range of 0 to 255, where white pixels
correspond to (0, 0, 0), and black pixels to (255, 255, 255). A mask is applied to these images,
preserving the Boolean values of 1 for the masked regions. This mask effectively highlights
lines and voids within the SEM images.

48 TRANSACTIONS OF FAMENA XLVIII-4 (2024)



Quantitative Automated Detection of Voids, Pores, Cracks, and G.E. Rani, M. Sakthimohan,
Fibre Orientation in Scanning Electron Microscopy Images Utilising A F. Sahayaraj, M. Sornalakshmi
Mask Convolutional Neural Networks (M-CNN) for

Natural Fibre Composite Characterisation

Convolutional
layer

Fibre
orientation

Fig. 2 System architecture of M-CNN

Different SEM images were collected for the analysis of the fibre composite images. The
M-CNN architecture comprises multiple layers dedicated to feature extraction and
classification. Specifically, the convolutional layers are responsible for discerning various
features within the images, thereby performing feature extraction [48-50]. Numerous sets of
networks consider the features extracted from the convolutional or pooling layers.

3.4 M-CNN Algorithm

The M- CNN works are explained in a
detail in Fig. 3. The M-CNN algorithm takes
SEM images in the BGR format and converts
them into the RGB format. Subsequently, the / Input: SEM Images (BGR) /

red, green, and blue values for each image are |
plotted in a 3D chart. The pixel points are BGR to RGB
then mapped to a range from (0, 0, 0) to (120, I

120, 120), effectively optimising them for

. Plot RGB into 3D Chart
grayscale images. Through Boolean values,

all pixel points from the original image are !
superimposed onto a single mask. The RGB Map Pixels
colours are treated as channels, with a matrix .0, 0) to (120, 120, 120)
size of six units in both height and width. A !

3x3 matrix is applied as a kernel to generate Create Mask
convoluted images from the input SEM T
images. Apply CNN

|

Output: Detected Pores / Voids,
Cracks and Orientation

Fig. 3 M-CNN algorithm workflow
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Fig. 4 M-CNN algorithm to analyse pores, cracks and fibre orientation in SEM image

The M-CNN algorithm operates on SEM images represented as datasets (Ds) containing
pairs of pores (P) and cracks (C). The algorithm shown in Fig. 4 is to detect and characterise
pores, cracks, and fibre orientation (Gv). The process involves iterating through each dataset,
identifying individual pores and cracks, computing their respective features, and applying
backpropagation. Notably, the algorithm transforms SEM images from BGR to RGB format,
optimises pixel values for grayscale, and utilises a convolutional neural network (CNN)
approach with a 3x3 filter.

W E TH TE[R(E]
1 0 1 2 6 8 5
* 1 0 -1 4 3 6 5
1 0 -1 4 5 6 7
Input Kernel (Weights) Results

Fig. 5 Convoluted 6x6 matrix with 3x3 filter to produce results

Fig. 5 shows the convoluted 6x6 matrix with a 3x3 filter to produce the results. The output
is represented as a 4x4 matrix derived from the three input channels, the filter, and the three-
channel input. Nine values are obtained from each channel in the input, and the sum of 27 filter
values produces the output of the corresponding element's first column. The kernel is usually
a matrix of numbers and is mainly applied as part of the input which undergoes the
mathematical operation called convolution. It highlights the operation of the input based on the
weight value to extract features. This configuration is guided by specific features within the
SEM image, with the improved characterisation algorithm aligning with user-defined
parameters. It incorporates elements such as edges, attributes, pixel values, and colours, all of
which contribute to defining the training dataset. The output is generated based on the input
parameters, offering highly accurate identification. In cases where the alignment of Equation 1
with the input parameters is not achieved, the output is deduced from the training dataset
boundaries, and the resultant difference appears as voids in the output.

P=1o— Do (1)
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where
P = pores estimation
Io= coordinating of input boundary
Do = dataset boundary

The accuracy of the model was assessed by comparing its predictions with real-world data.
By analysing how often the model lacks important information or fails to meet the desired output
(yield), we can identify areas for improvement. These weaknesses are then addressed by filling
in the missing information and smoothing out any rough edges in the data. This ensures that the
training data are consistent and are of high quality, which is crucial for training effective models.

This method relies on specific features identified in the SEM image. The goal is to
develop an improved characterisation process that meets the client's requirements. Importantly,
every location is segmented, and all data are provided to the client. This new approach
significantly improves the accuracy of characterisation compared to existing methods. It takes
into account edges, brightness values, and pixel intensities, all of which are crucial details used
to analyse the sample data. The yield is then calculated based on these information boundaries,
leading to highly precise identification. If there is no clear agreement, the input boundary can
be used to infer yield based on the defined dataset boundaries. Finally, any discrepancies are
identified as cracks in the yield in Equation 2:

C= [Cy— Dy * (O + pl + p2 + p3) )

where

C = Cracks estimation

Co= coordinating of input boundary.

Do = dataset boundary

410...u3 = angle calculation of four quadrants

The parameters Do, p0, pul, p2, and p3 were determined through a combination of
empirical calibration and optimisation processes. Specifically, we conducted a series of

experiments and iterative adjustments to fine-tune these parameters to achieve optimal
performance in our image processing methodology.

Two sets of results, 'real' and 'model predicted', were compared to see how accurate the
model was. By looking at where the model lacks information or does not meet the desired
outcome (yield), we can find areas where it needs improvement. These "gaps" are filled in and
smoothed out (like fixing rough edges on a picture) to make the data consistent and of high
quality. This is important because good training data help build better models.

3.5 Pores and Cracks Detection
In our analysis, we employ the following steps for the identification of pores, cracks, and
fibre orientation:

1. Conversion of primary SEM images to binary format, representing white as 1 and
black as 0.

2. Application of a bitwise AND operation between the binary image and the masked
SEM image.

3. Identification of voids and pores through white regions in the SEM images.
4. Calculation of the lengths of cracks and pores based on width and perimeter.
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The threshold for creating a binary image in the first step of detecting pores and cracks
was determined through an adaptive thresholding technique. Specifically, we used Otsu's
method, which calculates an optimal threshold based on the image histogram to maximise the
variance between the foreground and background. This adaptive thresholding technique allows
for effective segmentation of pores and cracks in SEM images by dynamically adjusting the
threshold based on the local characteristics of the image.

3.6 Fibre Length Calculation

The M-CNN automatically computes fibre lengths in micrometres (um) by analysing the
statistical distribution of fibre diameters. This creates an important factor in the material
strength and determines the number of pores and cracks present. The area of the fibre length:

z= [ by — by (3)

where

z=SEM image area

bo= lower bound of pores/cracks

b1 = upper bound of pores cracks

The lengths of the cracks/pores in the SEM images were calculated based on the width
and perimeter. 1 is the lower limit of whether the estimated fibre length is the minimum

acceptable. u is the upper limit of whether the estimated fibre length is the maximum acceptable
which is shown in Equation 4:

fi=(pi/2)-wi “4)

where
fi= length of fibre cracks/pores
pi1 = perimeter
wi = width
The cracks/voids are marked as circles, and the values a, b, and r are taken as the

maximum radius of 40 and the minimum radius of 1, based on which the circle is detected as
shown in Equation 5. First, we calculated the radius using the circumference

Ce = (x-a)’ + (v-b)? (5)
where C.= centre of the circle
a, b = coordinates of the centre

M-CNN was used to detect objects (pores, cracks, and fibre pullout) in the SEM images
for accurate results. In M-CNN, computer vision is used to easily and accurately detect objects.
It approaches the bounding objects based on the pore shape, crack shape, and fibre length. It
helps to solve object detection using a convolutional neural network independently on all the
regions of interest (ROI).

4. Results and Discussion

4.1 SEM images of Pineapple Leaf Fibre (PALF)

This study commenced with acquiring scanning electron microscope (SEM) images of
pineapple leaf fibre (PALF), sourced from pineapple leaves. These SEM images serve as the
foundational data for our automated analysis. PALF primarily consists of cellulose (70-80%),
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lignin (5-12%), and ash (1.1%). Our research aligns with recent findings that advocate the use
of surface-modified pineapple leaf fibres as reinforcement materials in polyester matrices.
These fibres are paramount in enhancing material properties and ensuring directed learning
outcomes.

4.2 Image Preprocessing and Data Collection

One of the key achievements in our methodology is the precise identification of voids
within the SEM images. This was accomplished by implementing an advanced masking
algorithm that employed pixel intensity thresholds, calibrated to range from 0 to 255. During
this process, white and black pixels were carefully segregated. Importantly, this masking
operation effectively eliminated spurious edges from the images. A total of 300 SEM image
samples were systematically analysed, forming a robust dataset. This dataset was instrumental
in our ability to derive meaningful insights into the SEM images and accurately predict the
presence of voids and other critical features. Fig. 6 shows the original SEM images of PALF
for analysis.

Fig. 6 Original SEM images of PALF

4.3 Voids Assessment and Evaluation

Through meticulous analysis, our algorithm facilitated the assessment of voids within
the SEM images. The approach considered both pixel values and their derivatives in the
image, offering a mathematical foundation for void evaluation. When pixel values were found
to be independent and their derivatives increased, voids within the SEM image were
accurately assessed. This quantitative output is of paramount significance as it provides
researchers and professionals with a clear and comprehensive representation of voids. This
knowledge, in turn, aids decision-makers in making optimal choices regarding material
composition and quality.

4.4 Dataset Integrity and Segmentation

The dataset we constructed played a pivotal role in developing robust predictive models.
By extracting rich, high-resolution pixel data from SEM images, we achieved remarkable
fidelity to the source images. Each pixel, precisely calibrated to a range of 0 to 255, was
integrated into our dataset. This dataset was subsequently employed to predict classes within
new data based on pixel intensity ranges. The beauty of this approach is its ability to transcend
the conventional grayscale images, providing enhanced representation through three RGB
attributes. This representation allowed us to structure the classifier based on this rich
information. The classifier, thus trained, facilitated precise predictions of the x and y
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coordinates, resulting in highly accurate outcomes. Fig. 7 displays the detection of fibre and
pore and void boundaries based on the intensity threshold.

A€E>I Q=M (167, 167, 167)

Fig. 7 Detection of fibre and pore and void boundaries using intensity threshold

4.5 Fibre Orientation, Length, and Area Analysis

The proposed methodology encompassed a comprehensive analysis of fibre properties,
including orientation, length, and area. Fibre orientation was meticulously determined through
mathematical concepts, dividing angles into four quadrants for precise characterisation. Such
an approach allowed us to categorise fibres as ductile or brittle based on their orientation.
Additionally, the statistical analysis enabled us to identify weak fibres within the composite
materials, further contributing to a holistic understanding of material strength.

QII . QI Qm QI
° . ° . o o °
o ¢ ee e o
QIII o QIV QIII QIV

Fig. 8 Left: Voids/pores equally distributed in all four quadrants. Right: Huge voids/pores present in quadrant I1

Fig. 8 shows the fibre orientation calculation. If all the fibres are equally distributed in all
four quadrants, the material strength remains good. If, in any one of the four quadrants, the
fibres are bulked, the material has huge voids/pores and cracks and therefore the material is
weak.
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Fig. 9 Measurement of fibre length in SEM images

Fig. 9 shows the histogram of the fibre length measurement from the SEM images.
Moreover, our automated software exhibited the capability to compute fibre length in
micrometres (um) with remarkable accuracy. This analysis involved evaluating the statistical
distribution of fibre diameters, enabling the software to distinguish genuine fibres from spurious
ones. The output, provided in pm, ensured reliable and reproducible measurements of fibre
length, surpassing the capabilities of manual analysis.

Fibre Area (%)

Fibre Area :85.54810379241518 plain areal4.451896207584824
Percentage

Fig. 10 Estimation of fibre area as a percentage

In terms of the fibre area estimation, our software dynamically calculated the total area
occupied by fibres within the SEM images as a percentage, as shown in Fig. 10. By considering
the presence of fibres, cracks, and voids, the software discerned plain areas where these features
were absent. The SEM image demonstrates that the fibre area comprises 85.54% of the total
area, while the plain area accounts for 14.45%. This quantitative analysis is critical for
determining the amount of fibre area present in the SEM images.
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200 300

Fig. 11 Prediction of fibre angle orientation in SEM Images

The orientation of the fibre determines the strength of the material. The orientation was
calculated based on the angle measurement where it is divided into four quadrants. The
proposed automated software employed with M-CNN fixed the 1% quadrant angle at 0 to
90 degrees. The 2™ quadrant angle is 90 to 180 degrees. The 3™ quadrant angle is 180 to
270 degrees. The 4™ quadrant is 270 to 360 degrees. Fig. 11 shows the prediction of angle
orientation for the fibres.

250 1
200 1

—-150 —100 -

Angle Histogram

T T T l
50 0 50 100 150

Degree

Fig. 12 Statistical analysis of fibre angle orientation

The proposed automated software M-CNN predicted the angle distribution of all fibres
present in the SEM images where it set 45° as ductile and 90° as brittle. Fig. 12 clearly represents
the fibre angle orientation. The position of individual fibres is measured accurately, and their
angle is measured statistically. Finding the orientation is a crucial factor in determining the
tensile strength. By using this technique, the fibre orientation and strength of the material can
be determined effectively.

4.6 Crack and Void Detection

The proposed software, driven by M-CNN, excelled in predicting cracks and voids, even
at a minute scale. Fig. 13 provides a visual representation of this achievement. The capability
to detect and quantify these features outperformed manual observation, reinforcing the
reliability of our approach.
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Fig. 13 Left: Analysis of pores/voids in SEM images. Right: Prediction of cracks encircled in SEM images

4.7 Diameter Calculation and 3D Visualisation

Using mathematical calculations, the software accurately calculated the diameter of both
pores and cracks, contributing to a quantitative assessment of these critical features.

~“gg~ me~npgw=a

v

(42,40) (458,56) (448.78) (234.64) 92,226) (100,30) (276.350) (346,58) (474.312) (310,124) (212..48] (340.178) (368,70) (384,186)

X, ¥ coordinates of centre point

Fig. 14 Calculation of the diameter of pores/voids and cracks using the proposed automated software

The M-CNN applied Equation (3) in the calculation of the diameter of the pores and the
cracks which is shown in Fig. 14. The diameter of the pores can be easily calculated using
statistical analysis. The midpoint of the x and y coordinates helps in finding the radius of the
circle. In the XY plane, two ordered pairs are used to find the distance of the pores and cracks.
The midpoint coordinates (x and y) facilitated a precise determination of the radius, thus
ensuring robust measurements.

Additionally, the proposed approach extended to 3D visualisation, enhancing the
understanding of fibre distribution and enabling a precise coordination of various elements
within the SEM images. Fig. 15 presents an overview of the fibre distribution in the 3D analysis.
The 3D result depicted offers an enriched perspective of fibre distribution within the original
SEM image. It enhances the interpretation by providing the spatial context, revealing patterns,
and allowing for a more intuitive understanding of fibre arrangements. This result contributes
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to improved understanding, aiding researchers in identifying trends and irregularities.
Additionally, the 3D analysis facilitates the precise coordination of various elements, such as
fibres, pores, and cracks, contributing to material integrity.

Distribution of grouped areas

Fig. 15 Distribution of fibres in a 3D view

4.8 Accuracy and Efficiency

The performance of the proposed software was benchmarked in terms of accuracy and
processing time. As demonstrated in Fig. 16, the software achieved an impressive accuracy rate
of 99% in predicting fibre orientation, cracks, and voids within SEM images, surpassing
conventional CNN methods by a significant margin. Furthermore, our software demonstrated
remarkable efficiency, completing the analysis in a significantly shorter timeframe (15,000 ms
compared to 21,000 ms), further emphasising its superiority.

Accuracy (%) Execution Time (ms)
100 25000
99
20000
o 98 _
> o7 £ 15000
— (8}
3 % £ 10000
& —

95
5000
94
93 0
CNN

Proposed M-CNN Proposed M-CNN CNN

Fig. 16 Determination of accuracy and time of the proposed software

This study has resulted in the development of advanced automated software, powered by
M-CNN, which significantly enhances our ability to assess material strength in fibre composite
SEM images. The software offers researchers and professionals a comprehensive toolkit to
analyse various parameters qualitatively and quantitatively. It empowers decision-makers to
make informed choices regarding material composition, quality, and performance, ultimately
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advancing the field of material science. Future developments in this work are expected to
integrate Artificial Neural Networks (ANN) and Recurrent Neural Networks (RNN) to further
enhance the capabilities and applications of our automated software.

The Results of lllustrative Examples

In our proposed work, some more examples are shown in Fig. 17 for calculating the voids,
cracks, and orientation of the SEM images. The proposed work is suitable for all the same
images and it predicts the length of fibre, cracks in the fibre, the measurement of cracks in
diameter, and estimates the fibre area and fibre angle statistically. Our automated software helps
in predicting the material strength of fibre in the SEM images.
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Fig. 17 Additional illustrative examples developed by the M-CNN algorithm

5. Conclusion

In this study, we have presented a comprehensive analysis of Pineapple Leaf Fiber
(PALF) SEM images, employing advanced image processing techniques and a Convolutional
Neural Network (CNN) architecture known as the Mask Convolutional Neural Network (M-
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CNN). Our research has contributed significant findings in the field of material science and
automated image analysis.

Our automated software, driven by M-CNN, has proven to be a powerful tool for
evaluating the material strength of fibre composite SEM images. We have achieved several
noteworthy outcomes and insights:

1. Precise voids assessment: through advanced masking techniques and pixel intensity
thresholds, we have successfully identified and quantified voids in SEM images.
This quantitative approach provides valuable data for material composition analysis
and quality control.

2. A rich and reliable dataset: our construction of a dataset, comprising 300 SEM
image samples, has played a pivotal role in developing accurate predictive models.
This dataset, characterised by high-resolution pixel data, ensures fidelity to the
source images and enables robust predictions.

3. Comprehensive fibre analysis: our methodology has enabled a comprehensive
analysis of fibre properties, including orientation, length, and area. The software's
ability to categorise fibres based on orientation and to accurately compute fibre
length in micrometres has advanced our understanding of material strength.

4. Effective crack and void detection: our software has excelled in detecting cracks and
voids, even at a minute scale, surpassing manual observation. This capability
enhances our ability to assess material quality and structural integrity.

5. Accurate diameter calculations: utilizing mathematical calculations, our software has
accurately determined the diameter of pores and cracks, providing quantitative
insights into these critical features.

6. Efficiency and accuracy: our proposed software has demonstrated remarkable
efficiency, completing analyses in significantly shorter timeframes compared to
conventional CNN methods while achieving an impressive accuracy rate of 99%.

This research has introduced a powerful and versatile tool for material scientists and
professionals. The automated software, based on M-CNN, empowers users to qualitatively
and quantitatively analyse fibre composite SEM images, facilitating informed decision-
making regarding material composition, quality, and performance. This work represents a
significant step forward in the field of material science and sets the stage for future
developments, including the integration of Artificial Neural Networks (ANN) and Recurrent
Neural Networks (RNN), which promise to further enhance the capabilities and applications
of our automated software. These findings underscore the potential of automated image
analysis in material science, offering new avenues for research and development in this vital
field. As technology continues to advance, we expect even more sophisticated tools and
methodologies, ultimately contributing to the continued evolution of material science and its
diverse applications.
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