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Abstract: Tbe deformation of tbe interna! deuteron wave function by tbe Coulomb 
field of tbe nucleus bas been considered. The relevant characteristic physical 
quantities bave been evaluated. The influence on the angular distribution of 
the outgoirig particles in deuteron stripping reactions bas been calculated. 
The results are given in tbe fonn which allows a rough estimation of this 
effect without performing numerical calculations in each particular case. 

1. lntroduction

The theoretical treatment of a collision process involving composite par­
licles leads to considerable mathematical difficulties. These are mainly asso­
ciated with the structure of a composite particle. As long as a composite 
particle represents a compact, strongly bound system which remains unaf­
fected by the collision process, the ordinary two-body collision theory can be 
applied with a high degree of accuracy. However, when the internat structure 
of a composite particle is strongly affected by thc collision process, this 
theoretical treatment allows only an approximate description of tbe reaction 
mechanism. In such a case the perturbation theory has been commonly used, 
and even then with various simplifications in which less important, small 
effects are discarded. Such an effect is the distortion of the deuteron by the 
Coulomb field of a charged particle cntcring into collision with the deuteron 
(usually the atomic nucleus). Thc deuteron is particularly liable to this effect 
since its constituents, the proton and the neutron, are relatively weakly bound 
in the deuteron ground state1-J>. The Coulomb force acting only on the pro­
ton causes the deformation of the deuteron. Somctimcs this cffect bas bcen 
termed the polarization of the deuteron in the Coulomb field. It has been 

* This work was reported at the Meeting of Yugoslav Nuclear Physicists, held 
in Opatija, from 24 to 26 November 1971. 
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regarded as a small effect because the Coulomb force is weak in comparison 
with the nuclcar force, although it can hardly be assumed negligible in the 
case of heavier nuclei (with higher charge). This effect has most frequently 
bcen studicd in nuclear stripping reactions•-1>. There the capture of one deu­
teron constituent by the nucleus was expected to be affected by the deuteron 
polarization, and the capture of the neutron was supposed to be prcferred 
to the capture of the proton. That qualitative effect was based on the purely 
classical picture of a stripping reaction with a few attempts to make it quan­
titative in the framework of quantum mechanics. The reason for that may be 
found in the fact that the total cross section of a stripping reaction is theo­
retically very badly reproduced, so that the analysis is concentrated only on 
the angular distribution. A refined description of the cross section, which 
takes into account the polarization of the deuteron, appeared immaterial 
under those circumstances, especially if the description required elaborate 
numerical calculations81. 

The theoretical approach in this paper is not concerned with any particu­
lar nuclear process. The wave function of the deformed deuteron is evaluated 
using the semiclassical theory9>. This theory, which is based on the quantum 
mechanical time-dependent perturbation theory and the concept of classical 
trajectory, provides an approximate internal wave function of the deuteron 
at the instant of nuclear collision. The shape and properties of the wave 
function thus obtained are discussed and the rclevant physical quantities are 
calculated. Applications to deuteron stripping reactions are included and the 
influence on the angular distribution evaluated. Two numerical tables are 
added to enable the reader to promptly evaluate thc effect over the periodic 
system of atomic nuclei entering numerical calculations. 

2. Theory

We consider the collision of the deuteron and the particle with charge Z. 

The relative coordinates of the particle Z with respect to the centre of mass 
- - 1 - -

of the deuteron are given by the vector p = rz - 2 (rp + r,.). The deuteron

. l · 1 
- - -+ 

mterna vanab es are represented by the vector r = r P - r ,..
interaction between the particle Z and the deuteron can be 
two parts 

-+ Z e2 Z e2 1 1 
Vc (rp) = -- = -- + Z e2 (-- --) .rp p rP p 

The Coulomb 
separated into 

(1) 

The first term leads to the Coulomb scattering of the deuteron, or it contri­
butes the Coulomb part to the distortion of the incoming wave in the en-
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trance channcl of a nuclear reaction induced by the deuteron6, 7J. This term is
not the object of our considerations. We concentrate our attention on thc 
second term 

(2) 

-
which in its r dependence represents an additional interaction to the nuclear 
proton-neutron interaction. The interaction (2) causes the distortion of the 
deuteron internat wave function describing the polarization of the deuteron 
in the Coulomb field. 

We apply the classical treatment to the motion described by the variables 

; and introduce the classical trajectory ;+'= p(t)9J. Then the interaction

V (:,-; (t) } will play the role of time-dependent perturbation in a quantum 
mechanical system of two particles, a proton and a neutron. This semiclas­
sical treatment of a quantum mechanical system has already found its appli­
cation in the Coulomb excitation of the atomic nucleus9, 10J, where the hyper· 
bolic trajectory was used. There are two points in which our problem dif­
fers from the Coulomb excitation. First, in a collision process in which the 
breakup of the deuteron occurs, only part of the trajectory is relevant, and 
secondly, there are no excited bound states of the proton - neutron system. 

We apply the time-dependent perturbation theory. The initial proton -
neutron state at time t = -oo (p = oo ), representing a free deuteron, deve­
lops in time under the influence of the time-dependent interaction 

V {1 't (t) } until t = t0, when strong ,interactions take place followed by the
disintegration of the deuteron. We are interested in the wave function of the 
proton-neutron system at time t0• 

The problem is mathematically too complicated to be treated exactly and 
therefore we simplify it. First of all, we write a multipole expansion of the 
interaction (2) taking into account that the part of the configuration space 
defined by 2 p � r is dominant. 

00 

-+ -+ Z e2 """ 
V (r, p) = 4 r. -P- L

1=1 
L (2 ). + 0- 1 c /p >

1 
y�� c;) y� (;) •

µ=-A. 

and consider only the first multipole (dipole) 

1 
-+ -+  2 ,t  r """ µ* " µ "  

V1 (r, p) = -3-z e2

p2 L Y1 (p) Y1 (r) =
µ=-1 

(3) 

(4)
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A complete set of functions of the proton-neutron system consists of a-
bound s-state wave function ,;0 (r) and scattering states ef, (r). The dipole 

interaction allows transitions from the initial s-state 4>0 to the p-wave com-
ponent of the state ,; , i. e., in the partial-wave decomposition of the scat­

,! 
tering state 

(5) 

only the function u1 (k, r) has to be specified; it can be chosen arbitrarily -
without violating the orthogonality condition < k I O > = O. We assume that
the function u1 (k, r) may be approximated by the partial-wave radial wave 
function of a free particle 

u1 (k, r) = i, (k r) . (6)

We dcscribe the deuteron bound state using the asymptotic wave function 

a. = 0.23 r1 • (7) 

Taking into account expressions (4), (5), (6) and (7) , we evaluate the follow­
ing transition matrix element 

- -
- �- p · k  
(k I V1 I O) = -i ys 7t a. Z e2 -

P
-J (-k

-2 _+_a.....,2-)2
- (8) 

The perturbed wave function in the first-order perturbation theory is given by 

where 

- - i r - - -
ti> (r) = t/>o (r) + (2 r.>3/2 J F (k) 4> 

7 
(r) d k,

'o 

(9) 

F (k) = i� (2 :)3/2 f /
w ( t - to

) 
(k I V. (t) I O) d t , (10) 

-oo



We readily find 

where 
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h w  = E  - E0 • -,. 
-+ -+ 

F (k) = - v a.  � -G-·_k_ 
1t m vi k2 + a.2 •

to _. 

G (k) = -- e - d -t ,
-+ v2J iw (t-to) p 

w pl 

-oo

h w = - (k2 + a2) • m 
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( 1 1) 

(12) 

(13) 

(14) 

We bave introduced the relative velocity v between the deuteron and the par·
ticle Z. The nucleon rnass bas been denoted by m. 

The wave function assurnes a simple form in the momentum representa­
tion. It can be found immediately from expression (9), which can be put in 
the form 

where 

-+ 1 
J 

-+ iki -+ 
<I> (r) = <I> (A:) e d k , 

(2 'lt)3/2 

-+ -
<I> (k) = r/Jo (k) + F (k) ,

Taking into account expression (12), one obtains 

� Z e2 -+ "'% 
<I> (A:) = rt,0 (k) [1 ---2 k · Ci (k)] ,m v  

( 15) 

( 16) 

( 17) 

( 18) 

-+ 
where h k is the relative momentum of the proton-neutron internal motion, 
i. e., 

( 19)
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-+ 
Wc procccd with the evaluation of the function G (k). We restrict ourselves to

the centra! (head-on) collision for which the direction of the vector p remains 
constant during the time 

- -
p (t) = p (t) . 1l • (20) 

-
Herc n represents the unit vector in the direction of the deuteron velocity. 
The function (20) now assumes the following form 

where 

-+ Z e2 -+ -+  
Cl> (k) = q,0 (k) ( l - --2 G (k) k · n] ,

m 11 

,. 
G (k) = - e - .v2 f i w (t - t.) d t  

to) p2 
-oo 

(21) 

(22) 

The trajcctory for the central Coulomb collision is represented by a straight 
line with the time dependence of an interparticle distance p expressed by the 
equations 

a 
p = 2 (1 + ch -r) ,

a 
V t = l (-r + sh -r) ,

Z e2 Z e2 
a =  2 --,- = --- . 

µ v· E (23) 

Herc 't is a paramctcr, v stands for the relativc asymptotic vclocity of thc 
two particles, and the parametcr a is the classical distance of closest ap· 
proach. The reduced mass µ = md 11lz/(m,1 + mz) = md = 2 m for mz » mJ,
so that thc parameter a is esscntially present in the second term of the deute· 
ron wavc function (21 ) .  In order to justify the application of the perturbation 
theory, this term should be small. Consequcntly, the classical distance of 
closcst approach should be small, i. e., small compared with the nuclear ra· 
dius R 

a «  R Z e2 
or E » If"" ' (24)
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The second inequality states that the relative energy should be highcr than 
the Coulomb barrier of the nucleus. Under the conditions (24) thc rclative 
motion of the two particles is practically a uniform motion with constant 
velocity v, i. e., 

p = - v I, t < 10 < O , 

where the collision time t0 is related to the nuclear radius by 

R = - v t0 • 

After substituting p from Equ. (25) into Equ. (22), one readily finds 

whcre 

G (k) = A (k) - i B (k) .

1 A (k) = -- I (X) '
X 

B (k) = g (x) , 

b. R 
X = -- (k2 + a2) •

111 V 

f (x) = 

g (x) = 

00 

--- u ,  f 
sin u d U +  X 

00 

\ 
cos u d --- u .  u + x  ., 

(25) 

(26) 

(27) 

The two transcendental function f (x) and g (x) are known as auxiliary 
functions in the theory of sine and cosine integral functions111. Both of them 
are positive and monotonically decreasing functions of t he argument. The 
combination 1 /x - f (x) has the same properties, and we have the incqualities

A (k) > O, B (k) > O . (28) 

The functions A (k) and B (k) determine the average projection of the rela­

tive momentum k and the relative coordinates -: along the direction ,;. We
find 
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00 

- - 8 Z e2 a.
J 

A (k) k4
(cl> I k . n I cl>) = - 3 1t m v2 (k2 + a.2)2 

d k '
o 

- - 16 Z e2 a. f B (k) k4 

(cl> I r · n I cl>) = - 3 1t m vi J (k2 + a.2)l 
d k ·

(29) 

(30) 

- - d' -
The components of k and r perpen 1cular to n bave the zero average values. 

The norm of the wave function (21) can be expressed as 

4 a. Z ei f A2 + B2 

<«1> I «1>> = 1 + 3 ':t <»i"'v2
>2 

J (kl + a.2>2 
k4 d k . (31) 

The second term should be ncgligible compared to unity in order to ensure 
the applicability of the perturbation theory. lt can be used to estimate the 
reliability of the results obtained for particular values of Z, v and R. 

The coordinate representation of the deuteron wave function is defined by 
lhe Fourier transform, Equ. (15). After some mathematical manipulations the 
wave function can be expressed in the following way 

where 

- -
Z e2 a. r · n  

cl> (r) = 'Po (r) [ 1 - --2 H (r a.) --] ,111 V r 

- - -
r = rp - r,, ,

H (y) = -1'._ i +  ( 1  + ..!_ - �) li (y) 2 y  y d y  ' 

00 

' 
.. - iyx  y ( l - v l +x) d x  

h (y) = e [ 1 - e ] - , X .. 

'Y = h a.2 R
m v  

(32) 

(33) 

(34) 

(35) 

(36} 
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Both the real and the imaginary part of the complex function H ()') are posi­
tive, monotonically increasing functions of )', 

Re H (y) ?; O, Im H (y) ?; O. (37) 

The sign of equality holds for y = O.

3. Interpretation and discussion of the results
We may give a clear physical interpretation of the theoretical results ob­

tained in Chapter 2. Let us first consider the unperturbed deuteron wave 
function of the S'-wave type, Equ. (7). This wave function, viewed from the 
coordinate system in which the deuteron centre of mass is at rest at the ori­
gin, represents two clouds: the proton cloud in the proton coordinates given- -
by the vector r /2 and the neutron cloud with the vector -r /2. Both clouds 
occupy the same part of the space around the origin with the same proba­
bility distribution. The cumulative effect of the extemal Coulomb field results 
in the deuteron wave function ci> (r), Equ. (32) at time t0 when the nuclear 
collision takes place. This wave function evidently exhibits the distortion-
along the direction n, i. e., along the direction of motion of the deuteron.

-
There is no distortion in the plane perpendicular to the direction n. The real 
part of the function H gives rise to the relative displacement of the two pro­
bability clouds, that of the proton and that of the neutron, along the direc-

-+ 
tion n. The mean value of this displacement is given by the value of 

-+ -
( I r · n I ), Equ. (30). The imaginary part of the function H implies the rela-
tive motion of the two clouds. The mean relative momentum is given by - -
< I k · n I ), Equ. (29). 

Because of the inequalities (28), according to which both functions A (k) 
• •  - - -+ -+  • and B (k) are pos1t1ve, the two values ( I r · n I ) and ( I k · n I ) are negative 

(for Z > O). Physically, the proton cloud is pushed back, in the direction 
opposite to the direction of the deuteron motion. The neutron cloud is con­
scquently shifted ahead with respect to the deuteron centre of mass. The two-
clouds possess a relative mean velocity in the direction n, defined by the- -
vnlue ( I k · n I ), i. e., they move in the opposite direction with respect to 
each other. 
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Table 1 

The average relative displacement of the proton and the neutron centre of mass 
in thc distorted deuteron is characterized by the quantity ( 17-;tl ). The a\'erage --
relative momentum is given by the quantity < I k n I ). The slight deviation from 
unity for the form ( I ) illustrates the apphcability of the perturbation theory. 

20 

10 
20 

20 
40 

30 
64 

40 
90 

50 
112 

60 
142 

70 
168 

80 
196 

90 
228 

I [fermi] 

I [fermi] 
-

l 

0,146 0.229 0,288 1 0.336 1 0.385 0.419 0.456 0.489 0.516 - < ,-;:i > 
1.006 1 .012 1.011 1.022 1 1.021 1.031 t.036 t.040 t .044 - < I k n I >
0.015 0.020 0.023 ·

1 

0.025 : 0.027 0.028 0.029 0.030 0.030 - -

1 ____ , __ __ __ __ l __________ , ___ <_I > __ 1 --
30 

0.119 0.189 0.240 0.283 0.326 0.357 0.390 0.419 0.443 - < I r n I > 
0.014 0.019 0.022 0.024 0.026 0.027 0.028 0.029 0.030 - -

1---1-
1.

-
004

_
1 1.009

1
1.013

. 
1 .017 1.022 1.025 1.029 1.032 _1_.0_3_6

, l
---<_�_1_;_1 _>_I 

0.102 0.164 0.210 I 0.248 0.281 0.315 o.345 o.312 o.395 
0.014 0.019 0.021 0.023 0.026 0.027 0.028 0.029 0.030 
1.004 1.008 1.011 1.014 1.018 1.021 1.024 1.028 1.030 

-+-+ 

40 - < l r n l >--
- < l k  n i >< I >1----1--- --- --- --- --- --- --- --- ---1------1 

50 
0.091 0.146 0.188 0.223 0.259 0.285 0.313 0.338 0.359 
0.013 0.018 0.021 0.023 0.025 0.026 0.027 0.029 0.029 
1.003 1 .006 1.010 1.012 1.016 1 .018 1.022 J.024 1.027 

--
- < l r n l >

-+ -+  
- < l k  n i >

< I > 1
-

---1--- -- -- -- -- -- -- -- --·1------1 

60 

-+ -+  0.082 0.133 0.172 0.204 0.237 0.262 0.288 0.311 0.331 _< I r n I > 0.013 0.017 0.020 0.022 0.024 0.026 0.027 0.028 0.029 - -+ 1.002 t .006 1 .008 1.011 1 .014 1.016 1.019 1.022 0.024 _ < I k n I >
< I >  

To gain an insight into the magnitude of the effect considered here, in 
-+ -+ -+ -+ 

Table 1 we gi\•e the values of ( I r · n I ) and ( I k · n I ) over the range of 
values of the deuteron energy and the set of nuclei covering the periodic 
system. In the calculations the motion of the heavy nucleus was neglected. 
For the nuclear radius we used the formula R = 1 .25 A1f3. The characteristic
energy dependence is evident. Thc slight deviation from the proportionality 
with the nuclear charge Z is due to the increase of the nuclear radius. The 
norm is added in the table to show that the applicability of the perturbation 
thcory cannot be questioned over the whole range in the table. This is par­
ticularly true for smaller Z values. Even for extremely large Z values and 
small energies where the approximation, Equ. (25), of the uniform motion 
fails, the correction of the norm is less than 5 O/o. The neglected second-0rder 
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perturbation term may be expected to he of  the same order of  magnitude. 
The uncertainty of the result is, however, much Jarger due to the plane wave 
approximation, Equ. (6), for the p-wave component or the scattering state (5). 
Because of that, the assumption (7) for the dcutcron bound-state wavc func­
tion, which was used instead of a more appropriate Hulthen wavc function 121,
is immaterial. 

The dipole type factors in Equs. (21) and (32), which modify thc bound 
state wave function, show diffcrcnt behaviours in momentum and coordinatc 
representations. This is associatcd with thc charactcr of thc functions G (X) 
and H (y). The first function is a rapidly dccrcasing function, whilc the 
sccond is an incrcasing function of its argument. Asymptotically wc ha\'c thc 
bc:haviours 

G (x) -+ ( 1  - i) -1-x -+ 00 x2 I 

y . y H (y) -+ ln -2- + t -2- .
)' -+ oo Y Y 

(38) 

Thc deformation of the deuteron strongly affccts smaller \'alucs of thc dcutc­
ron internal momentum, although this effcct disappcars for k = O (bccausc

-+ -+ 
of thc foctor k · u). 

4. Application to scattering processes

The results from the preceding Chapters find application in scattcring pro­
<.:esscs or reactions induced by deutcrons. A particularly suitablc proccss is 
the deuteron stripping reaction in which one of thc dcutcron constitucnts is 
captured by the nucleus. In the early studies of this rcaction•-31 a qualitati\'c 
argument was put forward to explain the influence of the polarization of the 
deuteron in the Coulomb field. The argument was that thc deformed dcutc­
ron favoured the nuclear (d, p) reaction over the (d, n) rcaction. The obvious 
intcrpretation is that the proton, being pushed away from thc nuclcus, has 
less chance to be captured by the nucleus than the neutron. As far as thc 
energies below the Coulomb barrier are conccrned, this picture may have 
significance. In the region of higher energi�s, i. c., above the Coulomb bar­
rier, the application of the same argument may bc qucstioncd. In this rcgion 
the proton easily penetrates the Coulomb barrier and thc distortion of thc 
dcuteron is rclatively small. We are not going to cliscuss herc to what cxtcnt 
the spatial distortion of the deuteron wave function may influence the strong 
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interaction of the proton and the neutron wii.h the nucleus. Rather we shall 
take into account the momentum distortion of the wave function. 

The proton gains an additional momentum in the direction opposite to the 
direction of its translatory motion which it possesses as part of the deuteron. 
This fact indicates that the forward scattering of the proton becomes less 
probable. However, if an analogous argument is applied, neutron forward 

� o 
o:: o 
zo 

o 

1.6.----....--.....----r---,--..----.---.----, 

1.2 

1.1 

1.0 

09 

0.8 

0.7 

0.60 

Z •40 
A •90 

NEUTRON 

PROTON 

10 20 JO 40 

SCATTERING ANGLE C DEGREES ) 

Fig. 1. A typical angular dependence of the modification factor D (8) for (d, n) and
( d, p) nuclear stripping reactions. 

scattering is favoured. On the othcr hand, forward scattering has the domi­
nant role in direct reactions, which makes it desirable to study the influence 
of the deuteron polarization effect on the cross section of the reaction. To 
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this purpose we shall use the simple plane-wave theory for the deutcron 
stripping reaction according to which the differcntial cross section of a (d, p)
reaclion is given by the formula'· s, 

(39) 

The second factor is an oscillating factor describing the capture of the 
neutron by the nucleus; it gives the characteristic oscillatory shape of the 
angular distribution. However, this factor is not the object of our considcra­
tions. The first factor contains the deuteron wave function in thc momcntum 
representation, where k was substituted by kP - � • This factor is affected 
by the Coulomb field. lntroducing the wave function givcn by Equ. (2 1 ), wc 
find the cross section modified by a factor denoted by DP 

where 

� = D  (k - _!sL_) � d n  p p 2 d n • 

-+ Z e2 -+ -+ D (k) = 1 1 - -- G (k) k · tt l2 P m v2 ' 

(40) 

(4 1) 

and : � is the differential cross section obtained from the undisturbcd 
dcuteron wave function ,t,0 (k). In the case of the (d, n) rcaction thc factor-+ 

-+ k D,. (k,. -+> should be introduced; it is defined by 

-+ -+ D,, (k) = DP (-k) . (42) 

A typical dependence of the factor D (8) on thc scattering angle is shown in 
Fig. 1 .  The deviation from unity is displayed for scattering angles 8 < 40°. 
The decrease of the effect with energy increase is clearly seen. These two 
characteristic features are present over the whole periodic system of nuclei. 
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Table 2 

The modification factor for tbe (d, n) and (d, p) stripping reaction cross section at 
zero scattering angle bas becn tabulated for variable incident deuteron energy 
and the set of atomic nuclei over the periodic system. The values + 2 MeV for 

the Q value of the reaction bave been assumed. -

� 

10 20 30 40 50 60 70 80 90 Ea, p 
20 40 64 90 1 12 142 168 196 228 [MeV] 

., 
J 

20 1397 1590 l .717 1.817 1.932 1 .997 2.079 2.159 2.201 18 
1290 1.412 1 .484 l .538 1.602 1 .633 1.675 1 .710 1 .732 22 

30 1285 1.415 1.496 1.559 1.632 1.670 1 .720 1 .761 1.791 
1 .214 1 .300 1.350 1.386 1 .430 1 .450 1.478 1500 1514 32 C: 

40 1.216 1.309 1 .364 1.407 1 .456 1.480 1.513 1540 1558 38 
1 .167 1 .232 1269 1 .295 1 .326 1.340 1 .360 1 .375 1.385 42 

so 1 .170 1.240 1.281 1 .311 1.346 1.363 1 .386 1.404 1 .416 48 
1 .136 1.187 1.215 1234 1258 1268 1 .283 1.294 1 .301 52 

60 1 .139 1 .194 1.225 1.247 1274 1286 1 .303 1.316 1.324 58 
1 .113 1 .155 1 .177 1 .192 1 .211 1.218 1.229 1.238 1 .243 62 

20 0.689 0.595 0.555 0.533 0.513 0.512 0.510 0.512 0520 18 
0.766 0.704 0.680 0.669 0.656 0.659 0.657 0.660 0.666 22 

30 0.764 0.689 0.654 0.634 0.613 0.609 0.601 0598 0.600 28 
0.818 0.766 0.744 0.732 0.718 0.717 0.713 0.712 0.714 32 

0.727 0.710 0.691 0.686 0.674 0.674 
C: 

40 0.814 0.755 0.678 38 
0.853 0.810 0.791 0.781 0.768 0.766 0.761 0.759 0.759 42 8 

0.744 
i:i. 

so 0.850 0.801 0.778 0.765 0.748 0.737 0.733 0.732 48 
0.878 0.842 0.826 0.817 0.806 0.804 0.799 0.796 0.796 52 

60 0.875 0.835 0.816 0.805 0.791 0.788 0.781 0.777 0.777 58 
0.897 0.866 0.853 0.845 0.835 0.833 0.829 0.826 0.826 62 

Therefore, only the values D (O) for the zero scattering angle bave to be cal­
culated for the evaluation of the effect. In Table 2 these values are listed for 
two values of the proton energy (two Q values, ± 2 MeV) so that a quick
rough estimation of the effect in a particular stripping reaction can be made 
without perfonning numerical calculations. 

S. Conclusion

The internat wave function of the deuteron, deformcd by the Coulomb 
field of the nucleus, is given in a simple close analytic form. The wave func­
tion shows the characteristic longitudinal polarization of the deuteron. 

Whatever nuclear collision process involving deuterons may be concer· 
ned, it is always the deformed dcuteron which encounters the nucleus. 1t is 



THE DISTORT!ON • • • 155 

appropriate, tberefore, to introduce tbe deformcd deuteron wave function 
to describe the initial stale of a collision process ratber tban use its spbe­
rically symmetric undeformed function. The whole problem can tbus be 
trcated in an approximate way wbicb bas tbe advantage of being simple and 
etlsy to handle. Many tbeories of nuclear processes show immediate applica­
tions of this method. We have obtained some results for the deuteron strip­
ping process. Wc bave also shown that tbe effect of the deuteron polariza­
tion in tbe Coulomb field is by no means a negligible effect. It has a remar­
kable influence on the value of the normalization constant in fitting tbe ex­
perimental results by means of formula (39). Not only is the overall 
normalization constant affected, but tbe relative amplitudes in the case of 
a mixture of angular momenta of tbe captured particle are also changed. 
This simply follows from tbe fact tbat this effect is concentrated on small 
angles, affecting strongly tbe l = O capture, for example, and practically
leaving tbe next l = 3 capture untoucbed. An effect wbich can influence tbe
ratio of the corresponding amplitudes by an amount of 30 O/o, cannot be 
overlooked in the investigations of nuclear structure. 

We mentioned in Chapter 4 that part of the effect of the deuteron pola­
rization on tbe cross section was taken into account in our considerations. 

k This part comes from tbe proton momentum transfer (kp -+) (for (d, p)

reactions) taken from tbe deuteron bound statc. 

The second effect connected with the spatial orientation of the deformed 
deuteron would require additional theoretical assumptions to describe the 
influence of tbe deuteron polarization on tbe nucleon capture. This effect 
cannot be introduced into formula (39) in a simple way. We may say that 
the expected enhancement of the (d, p) reaction over the (d, n) reaction can 
easily be comprehended classically but not quantum mechanically. We are 
therefore reluctant to make predictfons concerning the influence of this 
second effect on the cross section, particularly on its angular dependence. 
I t  is quite possible tbat this effect is also concentrated on small angles with 
tendencies opposite to those resulting in the angular independent overall 
effect described in this paper. More detailed investigations of stripping re­
action mechanisms would be required for the evaluation of the whole effect. 
That is, however, a separate theoretical problem, which is out of tbe scopc 
of tbis paper. 
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IZOBLICENJE DEUTERONA COULOMBOVIM POUEM 

E. COFFOU

Institut »Ruđer Bošković«, Zagreb 

S a d r ž a j  

Proučava se deformacija interne deuteronske valne funkcije pri gibanju 
deuterona u Coulomb-ovom polju atomske jezgre. Pripadno međudjelovanje 
daje izraz (2) i tretira se kao perturbacija u kvantnomehaničkom sistemu 
proton-neutron, dok se translatomo gibanje tog sistema tretira klasično. 
Deformiranu valnu funkciju daje izraz (21 )  u impulsnoj ili izraz (32) u ko­
ordinatnoj reprezentaciji. Pripadne dvije karakteristične funkcije G (k) i
TI (_v) definirane su integralnim reprezentacijama (27) i (35). 

Kao mjera deformacije deuterona služe srednje vrijednosti projekcije 
internog impulsa i koordinate - izrazi (29) i (30) - na smjer gibanja deutc­
rona. Očito je da dolazi do razvlačenja deuterona u smjeru njegovog gibanja, 
pri čemu proton zaostaje za neutronom. 

Za dobivanje uvida u veličinu efekta, tablica 1 daje numeričke vrijednosti 
odgovarajućih veličina preko cijelog periodičnog sistema atomskih jezgara 
u zavisnosti o upadnoj energiji deuterona. 

Izračunao se je uticaj na deuteronske stripping reakcije (d, p) i (d, n). 
Tipični korekcioni faktor kutne raspodjele izlaznih čestica prikazuje sl. 1 
Odgovarajuće vrijednosti za kut raspršenja jednak nuli daje tablica 2. 




