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Abstract: The paper describes the testing of five, most frequently used methods
for computing the radial distribution of emitters or refractive indeces in
cylindrical, optically thin plasma sources. These methods were tested for
four analytically soluble distributions, by comparing the results of the nu-
merical and analytical procedures. It is shown that for each distribution
shag , depending on the accuracy of the input data, the most appropriate
method can be selected.

1. Introduction

In plasma diagnostics a number of spectroscopic and interferometric mea-
surements are related to a side-on investigation of circularly symmetric pla-
sma sources such as arc columns, theta and z-pinches, jets from nozzles etc.
If the source is optically thin it is possible using the Abel integral equation
to obtain the radial distribution of emission coefficient or the refractive
index distribution. Therefore a great effort has been expended in developping
various methods for applying the Abel integral equation to the data gathcred
from rotationally symmetric source by side on observation.

The aim of this paper is to investigate the applicability and accuracy of
various most frequently used methods of Abel inversion. The intention of
this work is to facilitate best choice of the method for various radial distri-
bution shapes.

* This work was sponsored by the Federal Fund for Scientific Work.
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2. Abel integral equation

The Abel integral equation®, which is a speccial case of Volterra equation
of the first kind, may be written as

R .
1(x)=zf inrdr o

r— )7
*

where I (x) is for instance the radiance which is a function of the lateral
coordinate x; r is the radius and i (r) the radial distribution function, R is
the over-all radius of the column. Since i (r) is the unknown function it must
be removed from the integral by a suitable assumption or by inverting Equ.
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A number of different methods have been developed to solve either Equ.
(1) or (2), but all these methods? may be divided in two general categories:
numerical techniques and data approximation schemes utilizing curve fitting
or other mathematical approximations.

3. Numerical techniques

A number of methods are available using Equ. (1). All these methods assu-
me some sort of variation of i(r) over a small interval. The simplest and
earliest of these is given by Maecker?, where i (r) is assumed to be constant
over a small interval so that the resultant series of integrals may be inte-
grated. One elegant assumption is described in the paper by FrieV. It is
assumed that normalized emission coefficients may be replaced over a small
interval by a second degree interpolation formula

i(ry) gy 1) + i(rey) (P —1%)
Py 1y ’

i(r) =

3)

making again an integration possible.
Berge and Richter5 9 expanded the integral in Equ. (1) into a set of linear
equations given by
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N

I(x) = Z i (). @)

k=i
Now it was possible to obtain a recursive formula

N

i(r) = Z bi I (x2), )

i=k

convenient for numerical computations. The coefficients are given in Refs.5 .

The numerical method reported by Edels, Hearne and Young? uses the Equ.
(2). They devided the integration interval into equal subranges. Within these
intervals, after the transformation of variables, the function I (x) has been
replaced by the Taylor expansion of the second order, so the integration may
be performed.

4. Data approximation techniques

Two data approximation techniques are going to be considered, both using
Equ. (2) and the method of fitting polinomials through the data points.

Bockasten® fitted third degres polynomials exactly to the data points and
showed that the resultant errors were small. However this method requires
prior smoothing of row data.

To avoid this Barr? included smoothing in the process of integration by
changing the order of differentiation and integration in Equ. (2). He uses the
Equ. (2) in the form

i(r) = ZLr d gi')., 6)
where
R
F(r)=2j‘1(x)xdx . o)

L4

The integration interval was divided into equal increments A. Within each
interval I (x) was approximated by
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I(x)=a; + b, x2. (8)

It is now possible to obtain a solution of the integral in Equ. (7) in the
form )

F};= A Z akn'ln' (9)

n=k
At each point k, F, was represented by the polinomial

F (k) = (Ax + By I + ¢, k) A. (10)

A least-squares method was than used to determine the coefficients giving
best fit of F (k) to the F, at five points from k = —2 to k = +2. Finally the
function F (k) obtained in this way is introduced in Equ. (6) which is now
convenient for numerical computations.

5. Comparison of five methods

Five methods were tested with I (x) input data taken from analytically
integrable functions. These four test curves are of two types. First two are
for the usual bell shaped type distributions

L

8

2

i(r)=exp(—%1).

&
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and

() =@+ 7,
(12)
(6 = 2, R = 20).

The third one is for thc off-axis peak type of distribution typical for the
radiances from high temperature arc columns Equ. (13) and for the shape
of the radial distribution curves of refractive indices during temperature
decay in a cylindrical plasma column Equ. (14).

z(r)=%+ 12r2—32p,
0 < r < 0.25);
(13)

i(r)=-;—g(l +67—157 + 81,

0.25 < r < 1.0);

and
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r?
7))

(c =0.58, R=12).

(14)

The analytical functions i (r) are taken from the papers by Braccwcll'®
(Equs. 11, 12, 14) and Cremers and Birkcbak? (Equ. 13). Relevant figures arc
given on the right side of the equations.

Table 1

Bell-shape distribution given by Equ. (11).

Test curve Frie¥ gd‘:’]'f,’, 3‘;‘??) Barr?)
k Ix) | i | i—i i— i i— i i— i
0 1.028 1.000 —0069 | —0.406 —0.002 0.025
1 1.006 0.978 —0.071 —0.440 0.009 0.021
2 0.942 0.916 —0064 | - —04i0 | —0.013 0.014
3 0.345 0822 } . —0058 [ —o0.301 0.025 0.006
4 0.723 0.705 —0.050 —0427 —0003 | —0.017
5 0.595 0.579 —0038 | —0261 0000 | —0.027
6 0.468 0.456 —0.028 | —0204 0003 | —0019
7 0.353 0343 —0.023 —0.148 0000 | —0018
8 0254 0247 —0.016 | —0.107 0000 |{ —0.018
9 0.175 0.170 —0.010 | —0.074 0000 | —0.017
10 0.116 0.13 —0.007 —0.049 0000 | —0.013
1 0073 0.071 —0004 | '—0032 | —0003 | —0.011
12 0.044 0.043 —0002 [ —o0.018 +0.003 —0.009
13 0.026 0.025 —0.001 —0.014 | —0.019 |{ —0.007
14 0.014 0.014 —0010 | —0019 | —0009 | —0.004

Since the number of data points used is a parameter for this test compa-
risons are made for cleven fifteen and twenty onc data intervals (the only
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exception is the computations bascd on Bockasten’s method® where data
intervals are limited to ten and twenty). The approximate i (r) are calculated

Table 2
Bell-shape distribution given by Equ. (12).

Test curve Fried gdﬂ% ge?ﬁ?» Barr?
k I I(x) | i(r) i — i i — i i— i i— i
0 1.571 0.250 —0.013 0.130 —0.023 0.124
1 1.278 0.166 0.000 —0.058 —0.005 —0.039
2 0.901 0.082 —0.002 —0.035 0.001 —0.019
3 0.664 0.045 —0.002 —0.021 —0.000 —0.015
4 0.519 0.027 —0.002 —0.013 —0.001 —0.008
5 0.424 0.018 —0.002 —0.010 —0.001 —0.004
6 0.357 0.013 —0.002 —0.007 —0.001 —0.006
7 0.308 0.010 —0.001 —0.006 —0.001 —0.002
8 0.271 0.007 —0.002 —0.006 —0.002 —0.002
9 0.242 0.006 —0.002 —0.005 —0.002 —0.002
10 0.218 0.005 —0.002 —0.005 —0.002 —0.002
11 0.198 0.004 —0.002 —0.005 —0.004 —0.002
12 0.182 0.003 —0.004 —0.006 —0.002 —0.003
13 0.168 0.003 —0.001 —0.007 —0.014 —0.004
14 0.156 0.002 —0.014 —0.020 —0.012 —0.004

Tablc 3
Off-axis peak typc of distribution given by Equ. (13).

Test curve Frie¥ ‘l:.;d;:llg, ge;%f) Barr)
k| I(x) i(r) i— i i— i i— i i— i
0 1.188 0.750 —0.055 —0424 0.008 —0.078
1 1.192 0.798 —0.052 —0.420 0.012 —0.053
2 1.193 0.900 —0.066 .| —0.374 0.001 0.020
3 1.165 0.985 —0.056 —0.403 0.014 0.046
4 1.098 0.993 —0073 —0.442 —0.013 0.033
5 0.987 0.949 —0.062 —0.398 0.004 0.022
6 0.852 0.862 —0.057 —0.366 0.003 0.023
7 0.700 0.747 —0.039 —0.305 0.012 0.007
8 0.545 0.616 —0.044 —0.269 —0.001 0.002
9 0.388 0.475 —0.026 —0.193 0.016 —0.004
10 0.250 0.337 —0.009 —0.129 0.013 —0.010
11 0.140 0.210 —0.012 —0.085 0.002 —0.015
12 0.057 0.105 0.001 —0.036 0.007 —0.021
13 0.013 0.033 0.005 —0.012 0.007 —0.024
14 0.000 0.000 0.000 0.000 0.000 —0.018
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using the five methods and then at each point the difference between the
calculated and actual value is computed.

Off-axes peak type distribution given by Equ. (14).

Table 4

Test curve FrieY g‘d:llf,, 3‘:;%% Bar®

kK | I | i) i — i i— i i— i i— i
0 0.173 0.0 0.002 —0.020 0.005 —0.008
1 0.177 0.007 —0.005 —0.025 —0.003 —0.006
2 0.186 0.027 —0.001 —0.008 0.001 0.000
3 0.198 0.054 —0.004 —0.026 —0.002 0.003
4 0.207 0.083 —0.006 —0.033 0.000 0.006
5 0.210 0.106 —0.010 —0.048 —0.003 0.006
6 0.203 0.120 —0.012 —0.056 —0.004 —0.006
7 0.186 0.123 —0.010 —0.054 —0.002 0.005
8 0.162 0.116 —0.009 —0.051 —0.002 0.003
9 0.134 0.101 —0.008 —0.045 —0.002 0.000
10 0.105 0.083 —0.008 —0.039 —0.003 —0.001
i 0.077 0.063 —0.005 —0.029 —0.005 —0.004
12 0.036 0.046 —0.005 —0.022 0.003 —0.004
13 0.054 0.031 0.000 —0.018 —0.030 —0.006
14 0.023 0.020 —0.020 —0.034 —0.018 —0.004

Table 5

Standard deviations obtained by using threc place values of I (x) as input data

for diffcrent methods and various distribution shapes.

Test
. Edels Berge- Bocka-
Equs. Fried et al? | -Richter» | Barr” sten?)
11 0.058 0.566 0.006 0.022 0.063
(11) 15 0.036 0.219 0.009 0.016
21 0.017 0.010 0.009 0.006 0.031
11 0.005 0.079 0.009 0.019 0.009
(12) 15 0.005 0.036 0.008 0.034 ’
21 0.005 0.020 0.006 0.018 0.007
11 0.072 0.728 0.008 0.069 0.073
(13) 15 0.045 0.303 0.009 0.032
21 0.031 0.028 0.017 0.013 0.036
11 0.009 0.030 0.009 0.009 0.005
(14) 15 0.003 0.036 0.009 0.006
21 0.007 0.006 0.010 0.003 0.005
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Tablc 6
Standard deviations obtaincd by using onc place valucs of 7 (x) as input data
for differcnt methods and various distribution shapes.

Test
: Edels Berge- Bocka-
Eﬂ? N Frich et al? Richter% Barr) sten?)
11 0.138 0.413 0.138 0.073 0.114
(11) 15 0.108 0.337 0.126 0.020
21 0.242 0.528 0.136 0.025 0.100
11 0.008 0.087 0.015 0.061 0.013
(12) 15 0.008 0.037 0.005 0.032
21 0.017 0.026 0.011 0.019 0.011
11 0.111 0.717 0.319 0.058 0.319
(13) 15 0.115 0.234 0.090 0.021
21 0.137 0.094 0.090 0.021 0.137
1 0.046 0.109 0.045 0.017 0.040
(14) 15 0.039 0.064 0.039 0.013
21 0.054 0.071 0.054 0.016 0.041
The standard deviation of each sct of results is calculated from
N 1
T (Ai(ra)]?
5 = n=1 . (15)

N

~ The results of comparison of four mecthods using as input, [ifteen data
points good to three decimal places are given in Tables 1, 2, 3 and 4. These
tables are a good illustration of how wecll various mcthods agree.

In Tables 5 and 6 standard deviations are given for various numbers of
intervals and for data points good to three (Table 5) and respectively one
(Table 6) decimal place.

6. Conclusions

~Several conclusions may bc drawn from these tables. First if input data is
cxpected to be accurate and to conform to a bell shaped analytical functions,
the method of Berge-Richter® gives the best accuracy for Equ. (11) type,
whereas Frie’ s method® for Equ. (12) type. For off-axis peak type Equ. (13)
the method of Berge-Richter? is the best one while for Equ. (14) type Barr’s
mcthod? is most accurate. Although the method by Berge-Richter® is in ave-
rage the best one for all types, cspecially when working with the smaller
number of the input data.
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However if there is an appreciable scatter (input data good to one decimal
place — Table 6) Barr’s method? gives in averagc best final results.

The accuracy of the methods for each particular distribution type and for
different number of input data is weil illustrated by thc standard deviation
values given in Table 5 and 6.
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PRIMENA ABELOVE INTEGRALNE JEDNACINE
NA OPTICKI TANKE IZVORE PLAZME

M. STANISAVLIJEVIC i N. KONJEVIC

Institut za fiziku, Beograd

Sadrizaj

U radu jc dato kriticko poredenje pct najécSce korisécnih metoda za izra-
¢unavanje radijalne raspodele emitera ili indeksa prelamanja u cilindri¢nom,
optic¢ki tankom izvoru plazme.

Testiranjc metoda izvrSeno je za Cctiri analiticki rcSive raspodele, pore-
denjem rezultata numerickog i analitickog proracuna.

Pokazano je, da se za svaki oblik funkcije raspodele moze izabrati najpo-
godniji metod u zavisnosti od ta¢nosti ulaznih podataka.





