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Ab.strac(: The paper describes the testing of five, most frequently used methods 
for computing the radial distribution of emitters or refractive indeces in 
cylindrical, optically thin plasma sources. These methods were tested for 
four analytically soluble distributions, by comparing the results of the nu
merical and analytical procedures. lt is shown that for each distribution 
shape, depending on the accuracy of the input data, the most appropriate 
method can be selected. 

1. lntroduction ·
In plasma diag�ostics a number of spectroscopic and interferometric mea

surements are related _to a side-on investigation of circularly symmetric pla
sma sources such as are columns, theta and z-pinches, jets from nozzles etc. 
H the source is optically thin it is possible using the Abel integral equation 
to obtain the radial distribution of emission coefficient or the refractive 
index distr:ibution. Therefore a great effort has been expended in dcvelopping 
various methods for applying the Abel integral e9uation to the data gathcred 
from rotationally symmetric source by side on observation. 

The aim of this paper is to investigate the applicability and accuracy of 
various most frequently used methods of Abel inversion. The intention of 
this work is to facilitate best choice of the method for various radial distri
bution shapes. 

* This work was sponsored by the Federa! Fund for Scientific Work.
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2. Abel integral equation

The Abel integral equation1>, which is a spccial case of Volterra equationof the first kind, may be written as 
R 

I (x) = 2 J i (r) r d r 
(rl - xl)l/2 (1)

where I (x) is for instance the radiance which is a function of the lateralcoordinate x; r is the radius and i (r) the radial distribution function, R is
the over-all radius of the column. Since i (r) is the unknown function it mustbe removed from the integral by a suitable assumption or by inverting Equ.
(1)  

i (r) = -� J /' (X) d X 

1t (xl _ r2)1/2 
r 

(2) 

A number of different methods bave been developed to solve either Equ.(1) or (2), but all these methods21 may be divided in two general categories:numerical techniques and data approximation schemes utilizing curve fi ttingor other mathematical approximations. 

3. Numerical techniques

A number of methods are available using Equ. (1). All these methods assume some sort of variation of i (r) over a small interval. The simplest and earliest of these is given by Maecker3>, where i (r) is assumed to be constantover a small interval so that the resultant series of integrals may be integrated. One elegant assumption is described in the paper by Frie4>. lt isassumed that normalized emission coefficients may be replaced over a smallinterval by a second degree interpolation formula 

(3) 
making again an integration possible. 

Berge and Richter5, 6> expanded the integral in Equ. (1) into a set of linear 
equations given by 
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N 

I (xk) = .L a1c; i (r;). (4) 

k=i 

Now it was possible to obtain a recursive formula 

N 

i (r;) = .L b;k I (xk), (5) 
i=k 

convenient for numerical computations. The coefficients are given in Refs.5, 6>. 

The numerical method reported by Edels, Hearne and Young7> uses the Equ. 
(2). They devided the integration interval into equal subranges. Within these 
intervals, after the transformation of variables, the function I (x) has been 
replaced by the Taylor expansion of the second order, so the integration may 
be performed. 

4. Data approximation techniques

Two data approximation techniques are going to be considered, both using 
Equ. (2) and the method of fitting polinomials through the data points. 

Bockasten8> fitted third degres polynomials exactly to the data points and 
showed that the resultant errors were small. However this method requires 
prior smoothing of row data. 

To avoid this Barr91 included smoothing in the process of integration by 
changing the order of differentiation and integration in Equ. (2). He uses the 
Equ. (2) in the form 

where 

i (r) = _1_ d F (r) 
2 1t r  đ r  ' 

R J / (x) x d .xF (r) = 2 (.x2 - r2)1/2
r 

(6) 

(7) 

The integration interval was divided into equal increments b. .  Within each 
interval I (x) was approximated by 
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I (x) = a1c + b1c x2. (8) 

lt is now possible to obtain a solution of the integral in Equ. (7) in the 
form 

N 

F k = 6. L CXkn • I,,. (9) 

ll=A: 

At each point k, F1c was represented by the polinomial 

(10) 

A least-squares method was than used to determine the coefficients giving 
best fit of F (k) to the F1 at five points from k = -2 to k = +2. Finally the
function F (k) obtained in this way is introduced in Equ. (6) which is now 
convenient for numerical computations. 

S. Comparison o/ /ive methods

Five methods were tested with I (x) input data taken from analytically 
integrable functions. These four test curves are of two types. First two are 
for the usual bell shapcd type distributions 

TD 

� 
- /(,} 
--- i/r) 

as ' 
i (r) = exp (- ; )� 06 I 

I ( 1 1) I 
I 

(cr = 0.58, R = 1.2) ;
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(12) 

The third one is for thc off-axis peak type of distribution typical for the 
radiances from high temperature are columns Equ. (13) and for the shape 
of the radial distribution curves of refractive indices during temperature 
decay in a cylindrical plasma column Equ. (14). 

and 

3 t (r) = 4 +
12 r2 - 32 r3,

(O � r < 0.25); 

i (r) = �� (1 + 6 r - 15 r2 + 8 rl), 

(0.25 < r � 1 .0); 

- l(x} 

--- i/r} 

05 (13)
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i (r) = rz exp (-- ; ) ,

(cr = 0.58, R = 1 .2). 

[)}O 

on 

aos 

- /lx) 
--- ,/r/ 

(14) 

The analytical functions i (r) are taken from the papers by Braccwcll10> 
(Equs. 1 1, 12, 14) and Cremers and Birkcbak2> (Equ. 13). Relevant figures are 
given on the right side of the equations. 

Table 1 

Bell-shape distribution given by Equ. (1 1). 

Test curve I Frie'> I Edels 
I 

Bcrgc I Barr'l et al.7J ct al.5> 

k I I (X) I i (r) I i - i1 I i - i1 I i - i1 I i - i1 

o 1 .028 1.000 -0.069 -0.406 -0.002 0.025 
1 1 .006 0.978 -0.071 -0.440 0.009 0.021 
2 0.942 0.916 -0.064 -o.4iO -0.013 0.014 
3 0.845 0.822 · . ....;.().058 -0.301 0.025 0.006 
4 0.725 0.703 -o.oso -0.427 -0.003 -0.017
5 0.395 0.579 -0.038 -0261 0.000 -0.027
6 0.468 0.456 -0.028 -0204 0.003 -0.019
7 0.353 0.343 -0.023 -0.148 0.000 -0.018
8 0254 0241 -0.016 -0.107 0.000 -0.018
9 0.175 0.170 -0.010 -0.074 0.000 -0.017 

10 0.116 . 0.1 13 -0.007 -0.049 0.000 -0.013
1 1  0.073 0.071 -0.004 · -o.032 -0.003 -0.011
12 0.044 0.043 -0.002 -0.018 +0.003 -0.009 
13 

I 
0.026 0.025 -0.001 -0.014 -0.019 -0.007 

14 0.014 0.014 -0.olO -0.019 -0.009 -0.004 

Since the number of data points used is a parameter for this test compa
risons are made for cleven fifteen and twenty one ciata intervals (the only 
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exception is the computations bascd on Bockasten's method8J where data 
intervals are limited to ten and twcnty). The approximate i (r) are calculated 

Table 2 

Bell-shape distribution given by Equ. (12). 

Test curve I Frie4> I Edels I Berge I Ban4> et aJ.7l et al.5> 

k I I (x) I i ( r) I i - i, I i - i, I i - i, I i - il 

o 1.571 0.250 -0.013 0.130 -0.023 I 0.124 
1 1 .278 0.166 0.000 -0.058 -0.005 -0.039 
2 0.901 0.082 -0.002 -0.035 0.001 -0.019 
3 0.664 0.045 -0.002 -0.021 -0.000 -0.015 
4 0.519 0.027 -0.002 -0.013 -0.001 -0.008 
5 0.424 0.018 -0.002 -0.0JO -0.001 -0.004
6 0.357 0.013 -0.002 -0.007 -0.001 -0.006 
7 0.308 O.otO -0.001 -0.006 -0.001 -0.002 
8 0.271 0.007 -0.002 -0.006 -0.002 -0.002
9 0.242 0.006 -0.002 -0.005 -0.002 -0.002 

10 0.218 0.005 -0.002 -0.005 -0.002 -0.002 
1 1  0.198 0.004 -0.002 -0.005 -0.004 -0.002 
12 0.182 0.003 -0.004 -0.006 -0.002 -0.003 
13 0.168 0.003 -0.001 -0.007 -0.014 -0.004 
14 0.156 0.002 -0.014 -0.020 -0.012 -0.004 

Table 3 

Off-axis peak typc of distribution given by Equ. (13). 

Test curvc I Frie41 I Edels I Berge I Barr91 et al.71 et al.51 

k I I (x) I i (r) I i - i, l i - i, I i - i. I i - i, 

o 1 .188 0.750 -0.055 -0.424 0.008 --0.078 
1 1.192 0.798 -0.052 --0.420 0.012 --0.053 
2 1 .193 0.900 --0.066 -0.374 0.001 0.020 
3 1.165 0.985 --0.056 -0.403 0.014 0.046 
4 1.098 0.993 -0.073 --0.442 --0.013 0.033 
5 0.987 0.949 --0.062 --0.398 0.004 0.022 
6 0.852 0.862 -0.057 -0.366 0.003 0.023 
7 0.700 0.747 --0.039 -0.305 0.012 0.007 
8 0.545 0.616 --0.044 --0.269 -0.001 0.002 9 0.388 0.475 -0.026 -0.193 0.016 -0.004 

JO 0.250 0.337 -0.009 -0.129 0.013 -0.010 
1 1  0.140 0.210 -0.012 -0.085 0.002 --0.015 
12 0.057 0.105 0.001 -0.036 0.007 --0.021 
13 0.013 0.033 0.005 -0.012 0.007 --0.024 
14 0.000 0.000 0.000 0.000 0.000 -0.018
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using the five methods and then at each point the diffcrcncc between thc 
calculated and actual value is computed. 

Table 4 

Off-axes peak type distribution given by Equ. (14). 

Test curve I Frie4l I Edels I Berge I Barr9l et al.71 et al.5l 

k I l (X) I i (r) l i - i, I i - i. I i - i. I i - i, 

o 0.173 o.o 0.002 -0.020 0.005 -0.008 
1 0.177 0.007 -0.005 -0.025 -0.003 -0.006 
2 0.186 0.027 -0.001 -0.008 0.001 0.000 
3 0.198 0.054 -0.004 -0.026 -0.002 0.003 
4 0207 0.083 -0.006 -0.033 0.000 0.006
5 0.210 0.106 -0.010 -0.048 -0.003 0.006 
6 0.203 0.120 -0.012 -0.056 -0.004 -0.006 
7 0.186 0.123 -0.010 -0.054 -0.002 0.005 
s 0.162 0.1 16 -0.009 -O.OSI -0.002 0.003 9 0.134 0.101 -0.008 -0.045 -0.002 0.000 

10 0.105 0.083 -0.008 -0.039 -0.003 -0.001 
l 1  0.077 0.063 -0.005 -0.029 -0.005 -0.004
12 0.036 0.046 -0.005 -0.022 0.003 -0.004 
13 0.054 0.031 0.000 -0.018 -0.030 -0.006 
14 0.023 0.020 -0.020 -0.034 -0.018 -0.004 

Table S 

Standard deviations obtained by using threc place values of I (x) as input data 
for diffcrent methods and various distribution shapes. 

Test 

I I I Edels I Berge- I I Bocka-curve N Frie'l Barr9l 
Equs. et al.7> -RichterS> stcns> 

1 1  0.058 0.566 0.006 0.022 0.063 
( 1 1 )  15 0.036 0219 0.009 0.016 

21 0.017 0.010 0.009 0.006 0.031 
-

1 1  0.005 0.079 0.009 0.019 0.009 
( 12) 15 0.005 0.036 0.008 0.034 ; 

21 0.005 0.020 0.006 0.018 0.007 

1 1  0.072 0.728 0.008 0.069 0.073 
(13) 15 0.045 0303 0.009 0.032 

21 0.031 0.028 0.017 0.013 0.036 

1 1  I 0.009 o.oso 0.009 0.009 0.005 
( 14) 15

I
0.008 0.036 0.009 0.006 

21 0.007 0.006 0.010 0.003 0.005 
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Table 6 
Standard deviations obtaincd by using one place valucs of / (x) as input data 

for different methods and various distribution shapes. 
Test 

I I I 
Edels I Bcrgc-

I I Bocka-curve N Fric4l Barr91 
Equs. et al.71 -Richtcrs, stens) 

1 1  0.138 0.413 0.138 0.073 0.1 14 
( 1 1 ) 15 0.108 0.337 0.126 0.020 

2 1  0.242 0528 0.136 0.025 0.100 

1 1  0.008 0.087 0.015 0.061 0.013 
( 12) 15 0.008 0.037 0.005 0.032 

21 0.017 0.026 0.01 1 0.019 0.011 

1 1  0.1 1 1  0.717 0.319 0.058 0.319 
( 13) 15 0.1 15 0234 0.090 0.021 

21 0.137 0.094 0.090 0.021 0.137 

11 0.046 0.109 0.045 0.017 0.040 
( 14) 15 0.039 0.064 0.039 0.013 

2 1 0.054 0.071 0.054 0.016 0.041 

Thc standard deviation of each set of rcsults is calculatcd from 

(15) 

. The results of comparison of four mcthods using as input, fifteen data
points good to three decimal places are givcn in Tables l ,  2, 3 and 4. These 
tables are a good illustration of how well various mcthods agrec. 

In Tables 5 and 6 standard deviations are givcn for various numbers of 
inte1-vals and for data points good to thrcc (Table 5) and rcspectivcly one 
(Table 6) decimal place. 

6. Conclusions

. Several conclusions may be drawn from thesc tables. First if input dala is 
expected to be accurate and to conform to a bell shaped analytical functions, 
the method of Berge.Richter5l givcs the bcst accuracy for Equ. ( 1 1 )  type, 
whercas Frie' s method4J for Equ. ( 12) type. For off-axis pcak typc Equ. (13) 
thc method of Bcrge-Ric.:htcr5l is thc bcst one whilc for Equ. ( 14) type Barr's 
mcthod9l is most accurale. Although thc mcthod by Bcrge-Richter51 is in ave
rage the best one for ali types, cspecially when working with the smaller 
number of the input data. 
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However if there is an appreciablc scatter (input data good to one decimal 
place - Table 6) Barr's method9l gives in averagc best final results. 

Thc accuracy of the methods for each particular distribution type and for 
differcnt number of input data is well illustrated by thc standard deviation 
values given in Table S and 6. 
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S a d r ž a j

U radu je dato kritičko poređenje pet najčešće korišćenih metoda za izra
čunavanje radijalne raspodele emitera ili indeksa prelamanja u cilindričnom, 
optički tankom izvoru plazme. 

Testiranje metoda izvršeno je za četiri analitički rcšive raspodele, pore
dcnjem rezultata numeričkog i analitičkog proračuna. 

Pokazano je, da se za svaki oblik funkcije raspodele može izabrati najpo
godniji metod u zavisnosti od tačnosti ulaznih podataka. 




