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Abstract: A new approach towards an understandini; of the basic cxcitations in
the nematic liquid crystals is presented by exploring the pseudo-spin forma-
lism. The hamiltonian of the system is explicitly written for spin I in terms
of the boson crecation and annihilation operators.

Using a method as devcloped in relation to the hydrogen-bonded ferroclectrics
the spectrum of elementary excitations is calculated in two very important

. . . . . g
regions; one region being around the reciprocal lattice vector g = 0, the other

-—
region being around the value g, which coincides with the seccond maximum
in a Fourier transform of the intecrmolecular potential. The former region
corresponds to a linear part of the spectrum, whercas the latter region
corresgonds to a rotonic part of the spectrum.

In order to test the present results we have explicitly calculated the zero-
-sound velocity and the mass of the rotons.

1. Introduction

Liquid crystals discovcred almost a century ago!? and classifield by
Friedel® % 9 into three catcgories, namely, nematic, smectic and cholesteric,
have been the subject of an extensive research® 78, A liquid crystal physi-
cally is a fluid with a molecular structure giving risc to a preferred direction
at cach point of the material. In smectic liquid crystals the large clongated
molecules lie in layers with their long axes perpendicular to the plancs of
the layers and fluidity arises on account of thc layers sliding over cach
.other. On the other hand in nematic and cholesteric liquid crystals, the
molccules are not confined in layers but arc capable of random orientations
in such a way as to make the orientations more or less continuous throughout
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the liquid. Furthermore nematic liquid crystals possess certain invariance
properties under reflections, while this is not the case with the cholesteric
liquids.

Existing theories for liquid crystals are classical consisting of a swarm? or
a continuum model, so there should exist a nced for a quantum thcory.
In the present paper we concentrate our attention to nematic liquid crystals.
We suppose that a random orientation of large elongated rodlike molecules
have a definite pattern in liquid state. In other words, we assume a definite
ordering of molecules spccifying their random orientation with the compo-
nents of pseudospins which have been successfully explored to takec quantum
effects in ferroelectric hydrogen bonded crystals by De Gennes!V, Brout
et al.”® and Novakovi¢¥. At a nematic liquid — isotropic liquid transition
temperature this ordering vanishes. This is the main subject in the present
work. There is in literature a little diflercnt current concept of the ordering
process™ 15,19, Then wec propose a general hamiltonian for nematic liquid
crystals as discussed in Chapter 2. In Chapter 3 we consider the collective
clementary excitations in such a system, wherecas a possible effect of anhar-
monic terms is discussed in Chapter 4 togcther with the conclusion.

2. General model

In this Chapter we formulate a model hamiltonian for a nematic liquid
crystal. Assuming that each long elongatcd rod-like molecule has n different
orientations in such a way that thesc oricntations are described by the
components of a pseudo-spin S;, wherc j labels tihc molccular sites, we
propose the following hamiltonian of the system

28
- Z Z Q (s,x)-a__z 14875 ()
i

=1 ik

Here (); are quantum paramcters related to a transfer cnergy, whereas Jj;
are ordinary parameters rclated to the intermolecular potential. It should
be noted that this hamiltonian with Q, = 0 and ,(n = 2) = 0 is identical
with the hamiltonian of a KDP typc. However, J;; are completely different in
the two cases. At present J; is continuously varying function for a fluid,

Jp = f(|_; | ),_r>=_r;—_r)k, which is not the case for solids like KDP.

The above hamiltonian is thus very general, so we simplify it a bit further
by letting n = 1, 2. Physically, we imaginc a molecular structure of a nematic
liquid crystal in which all rod-like molecules are capable of 3 possible orien-
tations. This is only a mathematical simplification and there is no physical
restriction of the general model. Howcver, the treatment and results to be
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obtained would essentially be identical for general S. Thus the hamiltonian
simplifies to

H=—g, Z Sr—, Z (577 —Z 1387 S, @)
, i

i k
where S = 1. Now, we rotate the spin system through an angle ¢, i.e.,

SF=cospS + sinpS7,
3
Sz = —sing S + cos @ S;.

I

+ *
Further, we define a spin-raising (lowering) operator S;” as S;” = (§ %
+ iSp’)/2 by assuming a bosonic character for these operators as [ollows

8= Vv2IS(l—eb*b)b;+ ...
Si- = mb;’ (l—Ebi+ b,) + ... (43)

Siz' = S—b,'+ bi'

where the parameter ¢ depends on the rcpresentation used. Using a sct of
ideal bosons we obtain (sce Ref. 17)

28 —1
‘='—V et (40)

‘This leads for large S to the result ¢=1/4S just like in the Holstein-
-Primakoff'®) representation.

3. Elementary excitations

With the aid of transformations (3) and (4), the hamiltonian (2) takes the
following form:

H=}I|+H1+H3+H4, (5)
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where

vV2S .

H =— 2 cosg {( +2S Q,sing) T A —
i

6)

— S sin [} z J,'k (A,' + AV,

ik

Hy=(yysing -+ 28, sinfg) L 1; — 3291 coslg I Af +
¢)
S cos? (] ¥ J.,'k (ﬁ“' + ”k) —zi Sin2¢ EJ,';; A; Ak!

V28§
Hy=¢

5 cos [ +2Scosl T b; + b 1) +

+

3 S Q,singpcos @ Z (1; A; + A; u,.)—Ez—S V2Ssingcos g-

(8)
‘X (b + b g oy by + b ) —

V23§
2

singcosq ZJ, (1 A+ A,

S
H, = —F'—zmsz @ SLE[A;{(nb; + b np) +
+ 0 b+ b Y Al —(h sinfg TP —cost o Xm0 )]
eS oo b bt tu) A
+ o sin? @ By [A; (e b + bt ) + (i by + by ) 1

with
Ap=0b + b,
”i = b"‘ bl'

Now the condition for the sysiem to achicve a ground state is given by
M, = 0 leading to
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Q, =2SJ—Q)sing. (10)
where J = £ J. Thus if Q, = 0 then

Qi = 2S7sin g. (§3))

The hamiltonian H, would yield elementary excitations for the system while
the effect of anharmonic terms are discussed in the last Chapter. We take
the Fourier transform for H,, by letting

i i
b = — e b,
TTVR Y
(12)
+ 1 v e o
b= = T e q b,
¢ VN 7

so H, becomes,

+ 4+
Hy = E [QWn? + W@ (2n7 + b=, by + by b:')], (13)
9

where

W= %’—sinq; + S Qysin? g + S7(0) cos? o, (14)

w(q) = -zﬁ (Qcostg + 7 () sin? g). (15)
Writing

Ho=3 [ W (g +n2)+ W@ (03 +rg +013 07+ b3 b3 |, (16)
q

and letting
by =u(?)Ba+v(7) BT

’

b2 =u(3) B2 +v(B_3
(17)
() =u(F)=u(-7)
v () =r(?)=v (7).

ur(P)—v2(P) =1,
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H, is transformed into

Hy =3 w(7) By By,
q

- -
w'(g)=X2(q)—W2(q),
where
- -

X(g)=W+W(q).

. -
Furthermore, we assume an expansion for J(q) as
J(@)=JO 1 —ag) g~0,

I =@ [0 @—q), 4~ g
and inserting these cxpansions along with
cos’gp = M(T—T)),
sitgpg=1—3%(T—T)),

the frequency takes the following form:

W (q)=P(T—T)+ Qg q~0,

Ly
wi{g)— Q2+ P(T—T) + Q, (g—g¥, g~ g,

where

P, =5270)[F(0)—Q]1),

Q =S 10 as

@ = $10) [0 -7 @),
P, = ST O [ (@) — Q]

Q, = §27(0)J (g0 2

(18)

(19)

(20)

@n

(22)

(23)

(24)

(25

(26)
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A remark should be made regarding the relation (23) which we have
assumed in analogy with ferroelectric case. Here T, indicates the transition
temperature at which a nemaltic-isotropic liquid phase occurs; ), is a constant
with the dimension T°!. A rough plot of above frequencies indicates that
there exists for large g a rotonic contribution analogous to that in liquid
helium (see Fig. 1).

|
!
i
L)

- —_—

% q

- -
Fig. 1. A dispersion law for a nematic liquid crystal. The region g = g, indicates a
rotonic part of the spectrum.

Further we observe that for small values of g, w?(q) ~ g% Thus, this gives
rise to the cxistence of a zero-sound". Therefore, thc zero-sound velocity ¢
and the rotonic mass M* are given by

vQ, hQ,
= , M* = —222 2
c 5 N (27)

To estimate these quantities we have to cvaluate Q,, Q, and Q occuring in
Equ. (26). To do this we specify,

M (28)

where N is a normalization factor obtained by normalizing J (;) to the con-
dition (sce Ref.?)

S$ti(g,)=—kT,

where k is the Boltzmann constant and g,, is the first minimum in V (_f;) as a
-
function of g (see Fig. 2). Necdless to say, it is not reasonably known as to

- -
what intermolecular potential function V;;(|r;—r;|) should be assumed. A
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hard core of the Lennard-Jones type potential for fluids is gencrally assu-
med. Also, other potential functions might well be used. Then we take a
Fouricr transform for such a potential to obtain

o0

V(q)=—i“ smqrdr—(%3.7-10‘°cm)° j's':‘”dr]. (29)

2 2 qr Al

o Yo

where the parameters A and r, are due to Ref.™
A=13-10"% erg cmS,
ro=06¢g = 3.427-0.164 A = 0.6 A.

The above numcrical values are chosen for para-azoxyanisole as a typical
nematic crystal. Since 7, should not be taken too seriously, we estimated

V(@)

Fig. 2. A Fourier transform for the two-particle potential energy for a nematic

- -
liquid crystal; the region 'c?_= g. indicatcs a thermal motion such that $2J (q.) =
=—kTc, Tc being a liquid crystal — isotropic liquid transition temperature.

V(-;)’) for ro=0.5 A using a CDC computer at Vin¢a. The obtained curve is
given in Fig. 2. The results for S = 1 are as follows

G = 860 A1, V(q,) = 8.98- 10" erg cm?,
90 = 14.1 A7), V (q) = 4.71-10" erg cm’, (30)

V (0) =4.8 -10% erg cm?.
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These yield,
N =2-10%
o, =21-10""7 cm? @31
oy = 321077 cm?

With the help of these numerical values the velocity of sound ¢ and the roto-
nic mass M* are estimated as ¢ = 10° cm/sec and M* = 1.2-10"% g, It is safe
to remark that these estimations may not be unique as they depend on our
choice of the potential function.

4. Conclusion

We have presented a new approach to liquid crystals especially of nematic
type by exploring the pscudo-spins in order to describe the spontaneous
oricntations of rod-like molecules. Then the hamiltonian of such a system
has been conveniently expressed in terms of pscudo-spins in analogy with
the hamiltonian of hydrogen-bonded ferroelectrics. Assuming that the inter-
molecular potential has a Lennard-Joncs form, we obtain an expression for
the collective excitation frequency. Such a frequency was analyzed in two

—> -
important regions, one being around the first maximum in V (9), i.e. g, and

the other around the origin ?~ 0. The latter yields an expression for a zero-
-sound velocity while the former gives an estimation for the rotonic mass.
The existence of a zcro-sound is undersandable as such a property is pos-
sible even in classical liquids'- 2). However, the rotonic part of the spectrum
is rather striking in so much as a phcnomenon typical for a quantum liquid
like a liquid helium. We have estimatcd the values of sound velocity and
rotonic mass which open a possibility of an cxpcrimental verification of the
present model. Furthermore, the anharmonic terms in the hamiltonian may
give a contribution to the frequency width and shift to the unperturbed
collective frequency. Such a study is possible by following the work of Mara-
dudin and Fein® concerning the scattering of neutrons by an anharmonic
crystal lattice. Also, the change in specific heat at a nematic-isotropic liquid
transition has been reported by Kreutzer et al.?). It is interesting to test our
model by obtaining a comparable estimation for the same quantity. This
work is in progress.
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KVANTNA TEORIJA TECNIH KRISTALA
L. NOVAKOVIC i G. C. SHULKA
Institut za nuklearne nauke »Boris Kidri¢«, Beograd

Sadrzaj

Tecni kristal je fluid sa takvom molekularnom strukturom koja prouzro-
kuje jedan istaknuti smer u svakoj ta¢ki materijala. Prema Friedelu te¢ni
kristali mogu biti nematski, smekti¢ki i kolesteri¢ni. U smektic¢kim te¢nim



A QUANTUM THEORY... 39

kristalima velike izduZzene molekule lcZze u paralelnim slojevima tako da duze
osc stoje okomito na ravan slojeva dok fluidnost nastaje tako Sto slojevi
klize jedan povrh drugog. Medutim, u nematskim i kolesteri¢nim te¢nim
kristalima molekulc nisu ograni¢ene pomocu slojeva ve¢ mogu proizvoljno
da sc orijentiSu na taj nacin da dozvole orijentacije manje-viSe kontinualno
u prostoru teénog kristala. OpSte osobine ovih kristala prou¢ene su u Ref.!™®,

U ovom radu paZnja je koncentrisana na ncmatske kristale da bismo pro-
ucili onovna pobudenja u blizini temperature prelaza iz faze nematkog kri-
stala u fazu izotropne te¢nosti.

Uredenje molekula opisano je pomo¢u z-komponente pseudo-spina odnosno
fiktivnog spina, dok je hamiltonijan sistema napisan pomocu skupa opera-
tora komponcnata pseudo-spina. Zatim je prelaskom na bozonske opcratore
krciranja i anihiliranja razdvojen harmonijski komad hamiltonijana od ne-
harmonijskog. Sopstvene vibracije sistema dobijene su metodom dijagona-
lizacije harmonijskog komada hamiltonijana.

Ukazano je na postojanje dveju interesantnih oblasti spektra pobudenja.

Jedna oblast je oko vrednosti ?= 0, gde ?oznaéava vektor recipro¢ne resetke

dok jc druga oblast oko vrednosti ;= Ez, gde 3; oznacava drugi maksimum
u Fouricr-ovoj transformaciji .intermolekularnog potencijala. Prva oblast
predstavlja tzv. linearni deo spektra dok druga oblast predstavlja tzv. roton-
ski deo spektra.

Da bi se dobijeni rezultati proverili merenjem eksplicitno su izracunate
dve znacajne veli¢ine a to su brzina nultog zvuka koja karakteriSe linearni
deo spektra kao i masu rotona koja karakteriSe rotonski deo spektra. Taj
drugi deo spektra predstavlja vrlo zna¢ajno otkri¢e jer ukazuje na sli¢nost
izmedu dinamike te¢nih kristala i dinamike kvantnih te¢nosti kao $to je te¢ni
helijum iako sa glediSta kinematike ova dva sistema prividno nemaju sli¢-
nosti.





