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Abstract: The temperature de;,endence of the high-frequency polarizability in a
degenerate electron gas is investigated. The calculation is performed by 
extending the RPA to the diagonal exchange terms. Contrary to the imagi­
nary part of the polarizability which is cxpressed through a general formula 
valid in the whole temperature region, the real part i� calculatcd retaining 
only quadratic ,terms in the temperature. Thc correction terms are of interest 
in semimetals and semiconductors with small carrier conccntration. 

1. Introduction

The behaviour of the polarizability of an electron gas has bccn extensively 
investigated both in the classical and in the quantum limiti>. Whercas in low­
density systems, such as gas discharge plasmas, the electron polarizability 
can be evaluated by assuming that particles are distributed in the momen­
tum space according to the Maxwell-Boltzmann law, for high-density gases 
the quantum treatment must be applied. Quantum effects play a predomi­
nant role if thc temperature is lowered below the degeneracy temperature 
1 F· This situation is realized in a gas of metallic electrons, where its degc­
neracy temperature is about hundred times higher than room temperature. 
Thus the collective motion of conduction electrons can bc detcrmined by 
lhe zero temperature approximation for ali temperatures of interest. 

The aim of the prcsent paper is to calculate the high-frequency clectronic 
polarizability in the intermediate region of weakly degenerate systems. We 
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consider the case whcn an electron gas is hcated to the temperature T, which 
is lower but not ncgligible in comparison with T F· 1n order to make the cal­
culation simpler, only the lowest ordcr terms in the ratio T/TF will be re­
tained. Although for normal metals temperature effects are of no impor­
tance, this calculation is not ol pure acadcmic interest. The picture of a frec 
clectron gas, devclopcd for metals, can also be applied to semimetals and 
scmiconductors having a substantially lower electron concentration. By ad· 
ding thc impuritics to scmiconductors it is possible to change the electronic 
density in the conduction band and hcncc continuously vary the degeneracy 
temperature. 

The properties of a high-density electron gas can be calculated on the basis 
ot the random phase approximation1, 2> .  The inclusion of higher-order effects
can be achieved along the lines proposed by Suhi and Wertham<.·r3> . The first 
corrections to thc RPA expressions are represented by thl' diagonal exchange 
terms. This approximation is  applied in the present paper. Wc assumc thc 
validity of the RPA and estimate the influence of the non-RPA processes by 
taking into account Lhe electron exchange. 

2. Constitutive equations

We study the diclcctric propertics of clectrons in a neutral electron-ion 
system. For thc sake o[ simplicity we shall suppose that ions form a uni­
form sea of positive charge. The system Hamiltonian up to constant terms is 

(1)  

In (I)  s refcrs to thc spin and p to the clectron wave numbcr, EP is thc frec
particle energy 

h2 p2 E = -- · 
P 2 m  ' 

Nsp is the occupation number operator

V .1c is the Fourier transform of the Coulomb potential 
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f)J: is the k-th density fluctuation

sp 

while c*,p and c,p are the electron creation and annihilation operators, rc­
spectivcly. 

Now suppose that our system is in interaction with test charges, whosc 
. l 

time behaviour is described by e 
-

i w . Denoting the corresponding dcnsity-
fluctuation by R1c, for the effective Coulomb energy of the probe on r wc have 

.- .-+-+ 
-

""' 
I k r ""' I k r Pk U (r) = 

� 
VdRk + p1,) e  = 

� Vi, R„ e ( 1  + 
R,, > ·

k k 

(2) 

From (2) we define the frequency and wave number depcndcnt electronic 
dielectric function1 , 4>

__ 1 __ = 1 + P
R

k
" .

E (k, W) 
(3) 

Thc ratio p,/RJ: will be determincd by considering the cquation of motion 
for thc clcctron-hole pair p,pk = c_*,p c,pH• Starting from the Hamiltonian
H = H0 + Hini , where Hiot describcs the interaction of the probe with the
clectron gas 

H;n, = 2 Vk R1, p*k • 
k 

one can calculate the time derivative of ()spk

On the other hand 

d 
dt ()spk = - l W ()spk ,

giving 
h w ()spk + [H, p,,.1<] = O ·

(4)
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Applying the anticommutation rules for the creation and annihilation opc· 
rators, it follows 

[H, p,p1c] = Psplc (Ep - Ep+k) + ! .L V1c {(p1c• + 2 R1c1) (c\p+k' c,p+1c -
1c, 

- c*,p c,p+k-lc' ) + (Csp+k' c,p+k - c* sp Csp+k-k' ) Plc' }. (S) 

The sum over k' contains the terms of the form c1* c2 c/ c4, representing two­
·pair electron-hole excitations. Writing the equation of motion for these exci­
tations and procecding in the same way, we arrive at an infinite chain of
cquations. This approach is known as the generalizcd RPA3> .  Confining our,
selves to the first step, we linearize equation (5), obtaining

- .L V,;-/ {(N,p+1c - N,p) p,/1< - (N,/+1c - N.r,') p,i,1c} = 0.

p' 

Now we introduce the function F P satisfying the integral equation

whcrc 

F = _1 __ { 1 - "'P hw - AEp L 
p' 

Vp-/ AN/ (Fp - Fp')},

(6) 

(7) 

Then by multiplying (6) by FP and summing it over ali electron states, one
obtains 

Pt + (p1e + R1c) Vi .L ANP FP = O.

sp 

(8) 

The first term on the right-hand side of (7) represents the RPA contribu­
tion, while the second one gives the exchange correction. To include correla-

-+ 
tion effects into the latter, we shall restrict the sum over p' in (7) only to 

terms for which Ip' -PI > kc. This restriction may be understood on the 
basis of the work by Bohm and Pines21, who have shown that the long-range
part of the Coulomb interaction is described by plasmons. Hence dectrons 
effectively interact via short range forces expressed by the term 
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Heii = � Lv,.. Pk* Pk·

k>k.

125 

Here kc is the wavc number above which it is meaninglcss to introduce vari­
ables representing the collective behaviour of elcctrons. The same procedure 
was also applied by Bailyn5>, Hone61 and Bross and Holz7> in their study of the 
dectron-phonon matrix element. 

Combining (3) and (8), for the dielectric constant it follows 

dk, w) = 1 + 4 "lta. (k, w)

where a. (k, w) is the electronic polarizability 

4 1ta. (k. w) = vk L Fp !J,.Np­

sp 

3. Calculation

We shall perform the calculation under the following assumptions: 
- the wave number k is much less than thc Fermi momentum k.,,

(9) 

(10) 

- the frequency w is much higher than the individual frequency kvF, where
vF is the Fermi velocity, and

- the temperature T is low in comparison with the degeneracy tempe­
rature

h2 k 2 
T F. 

F 
= 2 mK '

where K is Boltzmann's constant. 
For small k we bave -

h2 k paE = --P m ,
-

N _ k p  d NP l:i p - p dp '

N P being the Fermi-Dirac distribution function. The influence ot cxchangc
and correlation will be taken into account by itcrating equation (7). As the 
zero-order approximation we take the RPA value 

F = 1
po hw - AEp 
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Then the polarizability calculatcd to the first-ordcr becomcs 

4 r.a (k , fJ) = vk {L F„o aN,, -
sp 

L V p-/ aNp aN,,' Fpo (F.,, .. - Fp'o) } •

spp' 

( ) I )  

where the prime in  the second sum denotes that I i/- .,;f > k.,. ll can bc
casily seen that for small k the second term on the right-hand side of ( 1 1 )  is 
ol the order k2 comparcd with thc first term. This is a general rule. Every 
,new i teration of equation (7) lcads to a contribution which is smaller by a 
factor (kikF)2 than the preceding one. In other words, in the long-wavelength
limit the high-frequency electronic polarizability is given by the first-order 
approximation. 

By adopting the adiabatic boundary condition, we add a small positive ima­
ginary part to the frcquency 

Then with the help of the rclations 

lim 
1 

. = P x
l - i 1t 6 (x),

�0 x + i TJ

lim 
( 

1 
. )2 

= p _!_ 
+ 

i 
7t 

d6 (x) 

�O x + t 1} X dX ' 

where thc symbol P denotes that the principal value has to be takcn, for thc 
real and the imaginary part of ( 1 1) it follows 

Rc 4 1ta (k, w) = V,, { P ""  aNP 
E -L h ,., - a  p 

sp 

( 12)
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and 

Im 4 1ta (k, w) = -r:V, {L t::..Np 6 (hw - t::..Ep) + (13) 

sp 

+ PL Vp-/ t::..Np 1::,.N/ (- d:EP 
+ hw � t::..Ep

.) 6 (hw - 1::,,.Ep) } .

spp' 

Expanding (12) in powers of k and retaining only terms up to k2, one
obtains 

. 2 l\ � 
[ 

1::,.E
] Re 4 1ta (k, w) = - h2 w2 � 

NP 1::,.EP 1 + ( ht.,t
)2 -

sp - -
V L' k p k p' dN dN , - -

_ k 

V 
, __ __ __ P __ P k - k , 2

2 mz <,i p-p p p' dp dp'( p p > ·
spp' 

Transforming the sum over the wave vector to thc integral over cncrgy, after
applying Sommerfeld's formula8> 

I , dN

C1t KT)2 d2G 
- G (E) dE

dE = G (µ) + 6 dµ2 + . . .  T« TF, (14) 

- µ being thi chemical potential - the integration gives (scc Appcndix)

S'lt" T 2 [ 82 4 2 ] } 
+ 1 2  ( TF ) 1 + 0.0166 r, ( 1  + 6 + y In rr> 

ln ( 15) wp is the classical plasma frequency

2 _ 4 1t Ne2 

Wp - m ,

(15) 

( 1 6) 

N being thc electron concentration, � is the cut-off wave numbl:!r cxprcssed 
in units of kF 

( 17) 



128 PIRIC • SIPS 

and r, is the radius of the unit sphere cxpressed in Bohr radii 

\1t (r. ao)l N = 1. (18) 

Writing (14), we have supposed that T « TF, and consequenlly we have kept 
only terms of the lowest order in T/Tp. If the temperature is close to TF, then 
higher-order terms must also be taken into account. 

The RPA contribution to the imaginary part is 

Ep- µ  -
2 h� Jn h2 k p e K T 

lm 4 1ta.o (k, w) = 1t V� (2 1t)3 m K T 
p 6 (h w -�) --E-,

---µ-- d3p.

(e K T + 1)2

Taking k in the direction of the .z-axis, after applying the 6-tunction, we
obtain 

m w m w 
n2 = p 2.. j. V 2 + (--)2 > (--)2
t' ,: • '!  h k - h k 

leading to the incquality EP » K T. Hencc it approximately follows

-oo 

1 m w• 
Vk m2 w - (µ - --)= 2 'lt k hl c K T 2 k! 

( 1 9) 

In the limit of small momentum transfers the exchange effcct does not 
influence the imaginary part of the polarizability. This bccomes obvious on 
noticing that in the exchange contribution there appeal's the factor Vp-/,
which is small because according to (19) p is large for the long wavelength 
limit. Thus, exprcssing the phase velocity by v = w!k and the most probablc 
thermal velocity by c = Yl KT/m, we may write 

2 e2 m2 v � - (�)' Im 4 1ta. (k, w) = k2 hl e K T c • (20) 

The imaginary part of the high-frequency polarizability is due to the Maxwel­
lian tail in the non-zero Fermi-Dirac distribution function. 



TEMPERATURE DEPENDENCE . . . 1 20 

4. Discusion

In our model the imaginary pari of the polarizability is given by the Landau 
term (20). Wc wish to point out that expression (20) is also valid for high­
·temperaturc systems. If elcctrons behave like classical particlcs, then the
normalizing condition yields

�l 

e K. T = 4 N hl ( TC p12
2 m K T  

which inserted in (20) gives the well known expression 

(21) 

On the contrary, if the temperature is low enough, then with the help of
N = ki/3 7t2 we obtain

T, V 
3 1e w 2 v -- (-)2 

lm 4 TCtx (k, w) = 2 k2 ;i e T c , T « T F· (22) 

By virtue of the inequality (v/c)2 » T F/T, which follows from the smallness 
of the wave numbcr, expression (22) goes to zero for T = O. At zero tempera­
ture electronic energies are too small, real processes do not occur, the ima­
ginary part of the polari:zability vanishes and oscillations are undamped. 

Let us consider the change in the real part of the polarizability caused by 
varying thc temperature ol" thc clcctron gas. Generally, we may write 

W2 kZ Re 4 TCtl (k, w) = ---2 (1 + -2- A}, w » k VF, 
Wp W 

Now, choosing f3 to be given by1> 

f3 = 0.470 vr. 

at the zero temperature one finds 

(23) 

3 
A =

5
v; [ 1 - 0.0553 r, (1 + 0.0553 r, - 0.00306 r,2)] ,  1' = O.  (24)

If the system is heated, then in the region of low temperatures the additional 
contribution increases quadratically with T 
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3 
A = 5 

v; {1 - 0.0553 r, ( 1  + 0.0553 r, - 0.00306 r,2) +

(25' 

For higher temperatures this increase is not so fast and, finally, high above 
the degencracy temperature the term corrcsponding to thc cxpression in thc 
curly brackct of (25) behaves like T/TF, giving 

A _ 3 K T
T T - , )) F• m 

In applying the results derived to semimetals and scmiconductors, thc 
etfect'i ol crystal periodicity and polarization must be taken into account. l f  
we considcr, for instance, III-IV semiconductor compounds, then cxprcss:on 
( 1 8) for thc mean interclcctronic spacing has to be rcplaced by 

r = m�• �� 13(_3_' 
1'12 Eo V 4 'lt N ,

where the typical values for the effective clectronic mass and the static die­
lectric constant are m* = 0.05 and Eo = 15, respectively. Hence by lowcring
the concentration from 1018 cm-J to 1016 cm-3, Tf decreases from 840 K to 40 K,
\Vhile r, inci·cases from 0.4 to 1 .8. Of coursc, in the latter case the non-RPA 
contributions to the polarizability are not negligible. It must be emphasized 
that in thesc materials thc dispersion relation for an electron µlasma is not 
given by E (k, w) = O. Under thc above conditions plasmons are strongly
l:oupled to phonons, and thc assumption that ions are motionless particles 
becomes inadcquate. Thus the dispersion rclation can be dcrived by calcula­
ting the total clectron-phonon dielectric function and equating it to zero9, 101 . 

Appendix 

With thc help of ( 14), thc RPA term Rc 4 mi (k, w) can bc calculated in a 
!>traightforward manner 

t,l { 3 k2 vi Re 4 'ltCXP.PA (k, w) = - ( : )2 1 + s w2 (Al ) 

where wc have taken into account that 

(A2) 
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"fhe corrcsponding exchange contribution is  ---
V L' k p  k p' dN dN I -- -Re 4 'ltCXcx (k, w) = - -2 2k T V p-/ -- --, -d 

P -
d 

P' (k p - k p')2• m r..1 p p p p 

With 

we have 

Hence 

spp' 

kp -- = cos 8 = t 
k p-

-
p p' -- = cos 8' = t' p p' 

, 

k
k 

p' 
= sin 8 sin 8' cos (m - <0') + cos 8 cos 8' = -.. 

p' y . 

vk 2 
rRe 4 7tCX., (k, w) = - -2-4 (l -)6 1n w „ 

4 'lt e2 k'1 t -. đNp đNp' .
p2 + p'2 - 2 pp' t' dp đp'

· (p2 t2 - pp' I -:) p2 p'2 dp đp' di dt' dcp dcp'.

....i, ....i, 

(A3) 

Here it must be born in mind that by virtue or the restriction I p' - p I > k,., 
the maximal value for t' is not unity but 

P'2 + n2 _  k 2 
t' - I' ' 

max - 2 pp' 

Thus, after pcrforming the angular integration wc arrive at 

E (E - E ') I VEP + -VE/ ] dN p dN / dE đE I + P P P n 
dE dE ' P P ' l'Ec I' p 

where Ec = h2 kc2f2 m. Then, applying expression ( 14) up to quadratic tcrms
in the temperature it follows 

4 V k e2 µ2 k4 [ E E 2 -n:2 K T 
4 '1tCX.x (k, w) = l + -� - -

8 
c2 + 

24 (-)2 ( 1 -
15 -:tJ h4 wi 4 p. µ µ 

(A4) 
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With the help of (A2), this transforms into 

3 k ,., [ W (34 1t2 T (32 4 2 ] 
4 1tl'Lex (k, w) = 20 (-k, )2 (-wP )4 1 + - - -- - (-)2 ( 1  + - + - ln -)

4 8 8 TF 6 3 (3 • 

(AS) 
which together with (Al )  yields (15). 
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S a d r ž a j

Izračunata je temperaturna zavisnost polarizabilnosti degenerirane elek­
tronske plazme u području visokih frekvencija i malih valnih vektora za 
sisteme s niskom temperaturom. Račun je proveden za plazmu dovoljno vi­
soke koncentracije, za koju korekcije aproksimaciji slučajnih faza ne igraju 
značajniju ulogu. 

Pretpostavljajući da je omjer temperature i temperature degeneracije ma­
len, realni dio polarizabilnosti izračunat je do uključivo kvadratičnih članova 
u temperaturi. 




