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Abstract. The tcmperature dependence of the high-frequency polarizability in a
degenerate electron gas is investigated. The calculation is performed by
extending the RPA to the diagonal exchange terms. Contrary to the imagi-
nary part of the polarizability which is expressed through a general formuia
valid in the whole temperaturc region, the real part is calculated retaining
only quadratic terms in the temperature. The correction terms are of interest
in semimetals and semiconductors with small carrier concentration.

1. Introduction

The behaviour of the polarizability of an electron gas has been extensively
investigated both in the classical and in the quantum limith. Whercas in low-
density systems, such as gas discharge plasmas, the electron polarizability
can be evaluated by assuming that particles are distributed in the momen-
tum space according to the Maxwell-Boltzmann law, for high-density gases
the quantum treatment must be applied. Quantum effects play a predomi-
nant role if the temperature is lowered below the degeneracy temperature
I,. This situation is rcalized in a gas of metallic electrons, where its dege-
neracy temperature is about hundred times higher than room temperature.
Thus the collective motion of conduction electrons can be determined by
the zero temperaturc approximation for all temperatures of interest.

The aim of the present paper is to calculate the high-frequency clectronic
polarizability in the intermediate region of weakly degenerate systems. We
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consider the casc when an electron gas is heated to the temperature T, which
is lower but not ncgligible in comparison with T,. In order to make the cal-
culation simpler, only the lowest order terms in the ratio T/T; will be re-
tained. Although for normal melals temperature cffects are of no impor-
tance, this calculation is not of pure acadcmic interest. The picture of a frec
clectron gas, developed for metals, can also be applied to scmimetals and
semiconductors having a substantially lower electron conceantration. By ad-
ding thc impuritics to semiconductors it is possible to change the electronic
density in the conduction band and hcnce continuously vary the degeneracy
temperature.

The properties of a high-density electron gas can bc calculated on the basis
ot the random phase approximation' 3. The inclusion of highcr-order effects
can be achieved along the lines proposed by Suhl and Werthamcr?. The first
corrections to thec RPA cxpressions are represented by the diagonal exchange
terms. This approximation is applied in the present paper. We assume the
validity of the RPA and estimate the influence of the non-RPA processes by
taking into account the electron exchange.

2. Constitutive equations

We study the dielectric properties of clectrons in a ncutral electron-ion
system. For thc sakc of simplicity we shall suppose that ions form a uni-
form sea of positive charge. The system Hamiltonian up to constant terms is

1
Hn:zEpNsp+72Vkpk*Pk- ¢))

W A

In (1) s refers to the spin and p to the clectron wave number, E,, is the frec
particle energy

2
-

2m

H
N,, is the occupation number operator

¥
Nsp = CspCsp ;

V, is the Fourier transform of the Coulomb potential

41:82 .

Vk = 2 ’
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or is the k-th density fluctuation

2
px = E CspCspat s

sp

while ¢*,, and c,, are the electron creation and annihilation operators, re-
spectively.

Now suppose that our system is in interaction with test charges, whosc
—iwt . . .
time behaviour is described by e . Denoting the corresponding density

fluctuation by R,, for the effective Coulomb energy of the probe on7 we have

ikr ikr

-

Ur) = z ViR + pe = zkake 1+, @
k

k

From (2) we define the frequency and wave number depcndent electronic
dielectric function'*

_ 1 e
e (k, w) =1+ R’ ®

The ratio p,/R; will be determined by considering the cquation of motion
for thc clectron-hole pair p,, = ¢*,, Cp4x. Starting from the Hamiltonian
H = Hy + H,,,, where H;, describcs the interaction of the probe with the

clectron gas
H;, = Z ViR p*i,

k

one can calculate the time derivative of p,,

d i
d_t Pspk = -ﬂ [H, pspk]'

On the other hand

d .
WP’P" = =10 Pspk »
giving
h @ Pspk + [H, P:;k] =0.
4)
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Applying the anticommutation rules for the creation and annihilation ope:
rators, it follows

1
[H,pspt] = pspr (Ep— Epsr) + 5 Vi {(pr + 2 Ry) (C*spixs Coprr—
ke
- C*sp cspok—k') T (csp+k' Cspek — C*Sp Ca‘p+k—k') Pk’}- (5)

The sum over k’ contains the terms of the form ¢,* ¢, c;* ¢;, representing two-
-pair electron-hole excitations. Writing the equation of motion for these exci-
tations and proceeding in the same way, we arrive at an infinite chain of
cquations. This approach is known as the generalized RPAY. Confining our-
selves to the first step, we linearize equation (5), obtaining

Pspk (hm + Ey_ Ep'rk) + Vk (Pk + Rk) (th-i-k"_ Nsp) — (6)

— Z Vs {Nsper — Nuy) pup’s = (Noy? oz — Nip?) gt = 0.
pl

Now we introduce the function F, satisfying the integral equation
Fp=——— (1 v, AN, (F,—F,’ 7
p_E)TEP{ — Vo-p’ AN, (Fp,—F ')}, 7)
pl

where
ANpﬁNapivk"""Nw AEPM ?"’kuE"

Then by multiplying (6) by F, and summing it over all electron states, one
obtains

pr + (px + Ri) V&Z AN, F, =0. (8)
sp

The first term on the right-hand side of (7) represents the RPA contribu-
tion, while the second one gives the exchange correction. To include correla-

-
tion effects into the latter, we shall restrict the sum over p’ in (7) only to

terms for which |?’—;;| > k.. This restriction may be understood on the
basis of the work by Bohm and Pines?, who have shown that the long-range
part of the Coulomb interaction is described by plasmons. Hence clectrons
effectively interact via short range forces expressed by the term
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1

H; = 7 E Vie® pr
k>k.

Here k. is the wave number above which it is meaningless to introduce vari-

ables representing the collective behaviour of elcctrons. The same procedure

was also applied by Bailyn®, Hone® and Bross and Holz? in their study of the
clectron-phonon matrix element.

Combining (3) and (8), for the dielectric constant it follows
ek, w) =1+ 470k w €

where ¢ (k, w) is the electronic polarizability

4 o (K w) = Vi Z F, AN, (10)
sp

3. Calculation

We shall perform the calculation under the following assumptions:
— the wave number k is much less than the Fermi momentum k-,

— the frequency w is much higher than the individual frequency kv, where
ve is the Fermi velocity, and

— the temperaturec T is low in comparison with the degeneracy tempe-

rature
T _ hZ kEZ
F = 2 E: »
where K is Boltzmann's constant.
For small k¥ we have
— > -

h2k p _ kpdN,
AEp - m » ANp - T dp f)

N, being the Fermi-Dirac distribution function. The influence of cxchange
and correlation will be taken into account by itcrating equation (7). As the
zero-order approximation we take the RPA value

1
Fro = hw—AE,
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Then the polarizability calculated to the first-order becomes

4 7o (i, 00) = V, {Z F,, AN, —
sp
- Z VP'I'l ANP ANP’ F;w (Fpo—Fp'o) ; ’

spp’

(an

where the prime in the second sum denotes that |;? _PT > k.. It can be
casily seen that for small k the second term on the right-hand side of (11) is
ot the order k? compared with the first term. This is a general rule. Every
new iteration of equation (7) lcads to a contribution which is smaller by a
factor (k/k)? than the preceding one. In other words, in the long-wavelength
limit the high-frequency electronic polarizability is given by the first-order
approximation.

By adopting the adiabatic boundary condition, we add a small positive ima-
ginary part to the [requency

wW—w + i'r‘.
Then with the help of the rclations

1 1

lim———=P——izx8(x),
n—»0x+ln x

1 1 d§ (x)
l = [] ’
lmo(x'*'i'f])’ P-t +ix ax

where the symbol P denotes that the principal value has to be takcn, for the
real and the imaginary part of (11) it follows

Re 4 k V. 12
¢ dma (k,w) = { Z"w E— (12)

AE, ~ AE,’
— P E V. _. AN ‘
??A pA L4 (h """"AE?):(hm‘“"AE .r) }
spp'



TEMPERATURE DEPENDENCE... 127

and

Im 4 7 (k, w) = —5V; {Z AN, § (hw — AE,) + (13)
sp

, ,,d 2
+ pz Vims! ANy 8Ny (— o=+ po—gp) 8(hw—AE,,)} .

spp’

Expanding (12) in powers of k and retaining only terms up to k%, oune
obtains

Re 4 o (k, w) = — 2V, N_AE ]+( 2
TC YW = Wz P p[ )]

sp
Vv, - kp kp dN, dN,,'(k P
2 n? o? Z p-p p p dp p).
spp’

Transforming the sum over the wave vector to the integral over cnergy, after
applying Sommerfeld’s formula®

b PR
_J'G(E)%d5=c(u)+@—dd—$+... T«Ts, 14

0
— . being the chemical potential — the integration gives (scc Appendix)

24 2 2 1 4
Re 4 ma (ko) = — (-Leyp — SKVEW [ o053+ BBy
0 5wt 4 8
5, T @ 4. 2 .
+ ) [l+0.0166r,(l+6 +3—ln8)] . (15)

In (15) w, is the classical plasma frequency

4 Ne?
wyt = - ’:n - (16)

N being the electron concentration, §§ is the cut-off wave number expressed
in units of k;

g = < a7
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and r, is the radius of the unit sphere cxpressed in Bohr radii

4_"(r aP N = 1. (18)

Writing (14), we have supposed that T « Tf, and consequently we have kept
only terms of the lowest order in T/Tf. If the temperature is closc to T, then
higher-order terms must also be taken into account.

The RPA contribution to the imaginary part is

—>— EP—IJ._
2 h2 hzkp e KT
— d’p.
Im 4 7o (k) = = Ve r @2 =) titKTjna(hw ) E,—p P
KT
(e + 1)

Taking _k) in the direction of the .z-axis, after applying the §-function, ive
obtain

maw

p=pdtpit+Gpr= = w

(19)

leading to the incquality E, » K T. Hencc it approximately follows

—E
v "
Im 4 may (k, )} = a. ),;I*fﬂ'p,smz—-—“’)e KT dp,dp,dp, =
1, — (Y
- e KT T TR,
T

In the limit of small momentum transfers the exchange effcct does not
influence the imaginary part of the polarizability. This becomes obvious on
noticing that in the exchange contribution there appears the factor V..,
which is small because according to (19) p is large for the long wavelength
limit. Thus, expressing the phase velocity by v = y/k and the most probablc

thermal velocity by ¢ = v2 KT/m, we may write

2,002, 2 __ Yy
Im 4 ma (k) = 25V BT~ G, (20)

The imaginary part of the high-frequency polarizability is due to the Maxwel-
lian tail in the non-zero Fermi-Dirac distribution function.
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4. Discusion

In our model the imaginary part of the polarizability is given by the Landau
term (20). W¢ wish to point out that expression (20) is also valid for high-
-temperaturc systems. If electrons behave like classical particles, then the
normalizing condition yields

K ‘
KT = 3 (—T )2
e KT 4Nh (ZmKT) ,

which inserted in (20) gives the well known expression

2Vruwtv — (%)’

Im 41':0.(";0))'—‘-7,-5,—'—6 .

Ty T, (21)

On the contrary, if the temperature is low enough, then with the help of
N = k/3 2 we obtain

3 2y i-(i)l
Imdng k) =222 e T ‘¢, T«Tr 22

By virtue of the inequality (v/c)? » T;/T, which follows from the smallness
of the wave number, expression (22) goes to zero for T = 0. At zero tempera-
ture electronic energies are too small, real processes do not occur, the ima-
ginary part of the polarizability vanishes and oscillations are undamped.

Let us consider the change in the real part of the polarizability caused by
varying the temperature of the clectron gas. Generally, we may write

2 k2
Re dmg (ko) =——=— (1 +—A4), w> kv (23)
Wy w?

Now, choosing 8 to be given by"
g = 0.470 Vr,
at the zcro temperature one finds

A= % v [1—0.0553 r, (I + 0.0553 r,—0.00306 r2)], T =0. (24

If the system is heated, then in the region of low temperatures the additional
contribution increases quadratically with T
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A= %v;’ {1 —0.0553 r, (1 + 0.0553 r,— 0.00306 r,2) +
25®

+ =

7V 11 + 0.0166 7, (2.930 + 0.0369 r,—%ln Ol T&Te
F

For higher temperatures this increase is not so fast and, finally, high above
the degenceracy temperature the term corrcsponding to the cxpression in the
curly bracket of (25) behaves like T/T¢, giving

A—-imT-, T>» T,

In applying the results derived to semimetals and semiconductors, thc
etfects ol crystal periodicity and polarization must be taken into account. If
we consider, for instance, III—]V semiconductor compounds, then cxpression
(18) for the mean interclectronic spacing has to be rcplaced by

o meer 3 3
YT hZg 4axN’

where the typical values for the effective clectronic mass and the static die-
lectric constant are m* = 0.05 and g = 15, respectively. Hence by lowcring
the concentration from 108 cm™3 to 10" cm™3, T, decreases from 340K to 40 K,
while r, incrcases from 0.4 to 1.8. Of course, in the latter case the non-RPA
contributions ta the polarizability are not negligible. It must be emphasized
that in thesc materials the dispersion relation for an electron plasma is not
given by g (k, w) = 0. Under thc above conditions plasmons are strongly
coupled to phonons, and thc assumption that ions are motionless particles
becomes inadcquate. Thus the dispersion rclation can be dcrived by calcula-
ting the total clectron-phonon dielectric function and equating it to zero® 1),

Appendix

With the help of (14), the¢ RPA term Rec 4 e (k, w) can be calculated in a
straightforward manner

3 kv, 2
Re 4 mopps (ko) = — (222 1+ 2K¥E [ 522 T
w Sw? 12 T

where wc have taken into account that

o T
u=1<TF[1—E(TF)2]. (A2)
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The corresponding exchange contribution is

o> >
|4 ’ N ’
Re draa b = =g 50, EEET A s

2m gt p p dp dp’ P
. spp’
With
Pr
——=cos@=1!, —=cosf’'=¢,
k pp 8
we have
-
kp . .
T sin @ sin 0’ cos (9 — ') + cos § cos ' = <.
Hence

2 2 LA ’
Re 4 mo (k, w) = — Vi j dmelklts dN, dN,"

mig' 20 Y pr4+ p?—2pp't dp dp’
(A3)
-(pPe—pp't=)pPpidpdp dtdt’dedy’.

. . . - -
Here it must be born in mind that by virtue of the restriction |p’—p| > k.,
the maximal value for ¢ is not unity but

p'2.|.pz_k‘z

’I
2 pp’

max =

Thus, after performing the angular integration we arrive at

o

2V, et kY E2_4E [ L \;'"—,
Re 4qe. (k) = — T3 1-‘; ;‘ = sf[ 5 DEP zpr‘ 4Er, EsEp +
~. VE,+ VES 1dN, dN, )
+Ep(E,—E/)In— ] aE—az—9Er 9Ey.

where E. = h?k2/2 m. Then, applying expression (14) up to quadratic terms
in the temperature it follows

4 TeOlex (kr w) =

4V, 2yt ket E,. E? =
1 — —_
Bx e [ Hir TR TR T

—4ln2V bl‘ ) ]

KT)Z(I_
11
(A4)
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With the help of (A2), this transforms into
3 k w Bz Bd 72 T Bz 4 2
= ()2 (—y |1+ (—)2 4+ =+ —=—In—
42t (k) = 35 k,uw)[ + G+t ghg |

(AS)
which together with (Al) yields (15).
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Sadrzaj

Izracunata je tempcraturna zavisnost polarizabilnosti degenerirane elek-
tronske plazme u podruéju visokih frekvencija i malih valnih vcktora za
sistemc s niskom tempcraturom. Raéun je proveden za plazmu dovoljno vi-
soke koncentracije, za koju korckcije aproksimaciji sluc¢ajnih faza ne igraju
znacajniju ulogu.

Pretpostavljajuéi da je omjer tempcraturc i tcmperature degencracije ma-
len, realni dio polarizabilnosti izra¢unat je do ukljucivo kvadrati¢nih ¢lanova
u temperaturi.





