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Abstract: In order to find a simple shell model Hamiltonian, which at the same
time gave the experimental binding energy of the ground state of light nuclei,
and their correct excitation energies, various assumptions were made con­
cerning the effective kinetic energy of a nucleon in the nucleus. The poten­
tials possessed large repulsive matrix elements in p-states, which together
with the reduction in kinetic energy resulted in the lowering of the deformed
excited states to the experimental region. The binding energies of the sphe­
rical nuclei were also given correctly. 

1. Introduction 

Now that forms for the internucleon interaction have been derived from 
free nucleon scattering data it is customary to perform calculations in 
nuclear structure with these potentials. Such calculations are usually carried 
out with harmonic oscillator wavefunctions adapted to allow for the hard 
nucleon core. Considerable evidence has been collected that certain linear 
combinations of these states oorresponding to the normal vibrations of a 
many-body oscillator configuration, and given by its SU3 symmetry, appro­
ximate well to the correct eigenstates. However if these wavefunctions are 
used in shell model calculations two connected discrepancies with experi­
ment are found. Firstly, insufficient binding energy is obtained in the ground 
states of light nuclei, and secondly, the excitation energies of states of both 
even and odd parity, with the one exception of the dipole state, are predicted 
to occur at a much higher energy than is experimentally found. 

In what follows we are led to adapting the usual concept of the effective 
kinetic energy of a nucleon in the nucleus by two considerations. Usually in 
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the independent particle model the nucleons have been considered to move 
freely within the nuclear radius, independently of one another. We now in­
vestigate the consequences of supposing that a viscous drag is experienced 
by a nucleon due to the pion sea it moves in. This viscous drag we shall see 
later is connected with many-body forces. 

Secondly, we have a piece of evidence that we should modify the usual Ha­
miltonian, directly derived from the experimental data. In 1, 2l certain for­
mulae were derived for the binding energy of the ground state, and for the 
single particle energies, that is the energies required to remove a single 1 s
or 1 p particle, from the ground state of Oxygen 16. These quantities obey 
the equation 

(1) 

where E is the ground state energy, E15 and E1P are the single particle ener­
gies, and T15 and T1P are the kinetic energies of a particle in the ls and lp 
shells, respectively. A similar equation holds for Helium 4 which is 

(2) 

These equations hold for any two-body force in the p-shell and are not de­
pendent on additional assumptions. Recalling the experimental values for 
the binding energies and single particle values we obtain for the kinetic ener­
gies of the nucleons in the two nuclei, the following relations. For Oxygen 16 
we find 

and for Helium 4 
T1s + 61'1p = 74 MeV, 

T1s = 12 MeV. 

(3) 

(4) 

Now it is usual ro derive the oscillator constant h w, for the nucleus concer­
ned, from the experimental root mean square radius. Experimental values 
for these quantities. are given by Hofstadter3l derived from high-em-rgy elec­
tron scattering. Fro�n these data we may derive that the oscillator constants 
for Helium 4 and Oxygen 16 are 24.7 and 13 . 8  MeV, respectively. We see im­
mediately that if these values were used to calculate the kinetic energies in 

the usual way, that is T1s = ! h w and T1P = ! h w, equations (3 ) and (4) are 

overestimated. 
There are several ways out of this dilemma. Firstly, the r. m. s. estimates 

for the oscillator constants may be too large, and we must reduce them for 
shell model calculations. This, however, seems unlikely. Secondly, some phe­
nomenological factor has reduced the size of T15 and T1P. Calculation shows 

that reduction by the factor f would satisfy equations (3 ) and (4) for the 

r. m. s. values of the oscillator constants.
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2. A form for the effective kinetic energy operator

A reduced mass is by no means new in nuclear matter calculations; here, 
however, we need an enhanced mass and one moreover which may be shown 
to vary from nucleus to nucleus. A straightforward enhanced mass was tried 
but failed to lower the excited states sufficiently. Abandoning this, we try 
the following form, chosen because of its simplicity. 

r/ r/ 
a.2 a.2 

J 

+ e p/ (5) 

The expectation value of this operator in oscillator states is readily ob­
tainable. We find 

(1 + 2)
T, = 5 h w x 

p 4 (1 + ..!_)7/2' 
xz 

(6) 

where x = b
a. and b is given by b 2 = __ h __ If the expressions for the kinetic

mw

energy are to be reduced as already stated, it appears that a. varies from nu­
cleus to nucleus in such a way as to reduce the kinetic energy by the obser­
ved amount. We also consider the case where a. is a constant, 2. 6 fm, for all 
nuclei equal to, or heavier than, Helium 4. This would seem reasonable when 
considered in conjunction with the »constant density« properties of such 
nuclei. The triton and the deuteron being more diffuse possess larger values 
of r,.. We find that the value for the deuteron is in the order of 14 fm. As a 
nucleon leaves the nucleus the value of a. will become infinite and the kinetic 
energy will reduce to its usual form. 

Objections may be raised that expression (5) for the effective kinetic ener­
gy is not translationally invariant. We should, however, remember that only 
states in which the centre of mass of the nucleus is stationary are made use 
of in calculations, the spurious ones being omitted. 

We take as our two-body interaction the sum of two Gaussian potentials 
with Majorana exchange. More complicated exchange mixtures are unneces­
sary if we only consider wavefunctions of [44 . . . .  4] multiplet symmetry. Our 
total Hamiltonian then takes the form 
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� lr-�: -�:1 H = 
� 4 m 

e p/ + p/ e + 

- r\
-

r2;;
(7)

+ L S1 e µ/ (1 - m1 + m1 P;;) + L S2 e µ/ (1 - m2 + m2 P;;),

i<f l<f 

We fix µ1 at 1.4 fm, the one-pion exchange radius, and vary µ2 at distances
less than this. In addition to a, we are left with S1 S2 m1 m2 to determine. We
choose to fit the binding energy of Helium 4 and the binding energy per par­
ticle of nuclear matter, together with their stability equations, following a
procedure used by Brink and Boeker4l. We do this for the following cases

- a equals infinity, that is the unadapted expression for the kinetic ener­
gy, and

- a = 2.6 fm for all nuclei heavier than Helium 4.

Table 1.

The parameters of the potentials A,

I µ,fm I S,MeV I 1-2m1 I S,MeV I 1-2m, I K·MeV

Ao 1.0 -158 0.1111 191 0.9541 73.5
A, 0.9 -140 0.1209 197 1.408 95
A, 0.8 -127 0.5601 221 4.385 316
A, 0.7 -119 0.328 270 5.060 216
A4 0.6 -112 -0.0101 362 2.864 18
As 0.48 -108 0.4384 599 13.56 252
A. 0.38 -104 0.789 1251 32.15 361
A, 0.28 -102 1.120 2486 87.80 595
A, 0.14 -101 1.000 18630 346.7 704
A, 0.07 -100 0.1811 144700 513.0 266

Table 2.

The parameters of the potentials B,

I µ,fm S1MeV I 1-2m1 S,MeV I 1-2m,, K·MeV

Bo 1.0 -124.1 -0.9061 134 -1.387 -323
B, 0.9 -109.9 -0.5878 135.4 -0.1483 149
B, 0.8 -102.9 -1.068 144.5 -2.987 -51
B, 0.7 -97.5 -1.24 192.7 -5.7 10
B, 0.6 -92.55 -0.7543 254 -1.57 157
Bs 0.48 -88.6 -0.900 428.6 -4.331 150
B. 0.4 -87.2 -0.9253 698.7 -7.718 100
B, 0.28 -84.8 -1.474 1732 -59.61 7
B, 0.14 -84.49 -1.623 13140 -295 -225
B, 0.07 -83.75 -1.053 102200 -377 71
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Varying µ2 we obtain a set of potentials in each case. We shall call these 
-4; and B;, respectively. Other values for a were tried but proved less pro­
fitable.

Before going further, let us examine the effect of a constant value for a 
on the kinetic energy as we go to heavy nuclei. The kinetic energy for He­
lium 4, Oxygen 16, Calcium 40 and a hypothetical nucleus with 164 protons 
and 164 neutrons (Appendix 1) , are reduced respectively by 140/o, 450/o, 750/o 
and 920/o. Nuclear matter under these conditions will be left with very little 
free kinetic energy. This somewhat drastic conclusion may however be not 
so surprising when one considers the low temperature aspects of medium 
and heavy nuclei5>. 

A quantity which is of great importance in assessing the physical signifi­
cance of each potential is the compressibility of nuclear matter defined by 

a2 <_£_) 
12 A 

Brueckner as K = - ,, F 
a k\ 

He quotes experimental values of 100 to

150 MeV. In Table 1 and Table 2 we list the parameters of potentials A 
and B;. 

We see from the tables that for potentials B; the compressibility K osc]. 
lates becoming negative at minima. At maxima, however, K is at its experi­
mental value. The potentials with negative K are of course unphysical. Look­
ing for the most realistic potential we would expect the exchange properties 
of the longer range Gaussian to resemble the one pion exchange potential, 

Vlrl ,o 
MeV 

D 

-30 

THE POTENTIAL 81 

ODO STATES 

EVEN STATES 

10 r fm 

which has exchanges parameters (1 -· 2 m1) equal to - 0.6 in states of 
[44 . . . .  4] symmetry. We see that Bi has this behaviour, as well as the ex­
perimental value for K. Having obtained the parameters of the potentials, 
their expectation value between the oscillator wave functions of nuclei may 
be found. Thus V0 and V1 are the matrix elements between 1 s and 1 p states 
etc. Calculation shows that the matrix element Vi for potential B1 is large 
and repulsive. 
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3. The binding and excitation energy of light nuclei
with 111.aximum symmetry 

In 1, 2l formulae were derived for the binding energies and excitation ener­
gies of light nuclei. For Oxygen 16 we have 

Q16 g. s. 

Triplet (21)

2p 2h (42)

4p 4h (84)

+ E = 3 T1s + 12 T1p + 42 Vo + 60 Vi + 18 V2,

3 5 3 
.6. E = Tsa-Tip -2 Vo -2 V1 + 2 V2 ,

21 9 
.6. E = 2 Tsa - 2 Tip ,- 8 Vo - 5 V1 + 4 V z,

15 3 
.6. E = 4 Tsa - 4 T1p - 4 Vo - 10 Vi + 2 V2 .

(8 ) 

Examination of the above expressions reveals that a reduction in the value 
of the kinetic energy together with an increase in the repulsion in p-states 
would not alter the binding energy in the ground state overmuch, and would 
also lower the excitation energies. 

A, 

B, 

Exp 

A, 
B, 

Exp 

Table 3. 

The binding energies of light nvclei for potentials A, and B,

I 'Be I "C I "0

24 

I 
60 125 

34 67 140 
60 I 100 142 

Table 4. 

The energies of excited states in Oxygen 16 

(21) lp lh

16.2 
6.2 
7.2 

( 42) 2p 211

30.3 
10.3 
·- 9

I '°Ca 

417 MeV 
411 
420 

(84)4p4h

52.2 
15.9 
"' 9 

MeV 

The SU3 designation (21) corresponds to the odd parity triplet 2- 1- 3- at 
8 .8 7, 7.12 and 6.14 averaged to 7.2. The 2p 2h and 4p 4h states are more dif­
ficult to locate, and the composition of the low-lying O+ and 2+ states is the 
subject of much discussion. The lowest occurring O+ state is at 6.06 MeV. 
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Looking at the above tables we see that the energies predicted for a con­
ventional force A2 are all much too large, but excellent agreement is found 
for force B1 • 

4. The dipole states in Oxygen 16

The dipole resonance states in Oxygen 16 have been perhaps more widely 
studied than any other configurations. Experimentally, Tanner, Thomas .and 
Earle6l have obtained a spectrum over a wide energy range using the reaction 
N15 (p, y) 016• They obtained peaks at 24.5, 22, 19.5  and 17.2 MeV with other 
minor resonances. Let us now see how the potentials under study match up 
to this data. To do this, we must adapt our theory· as so far presented. This 
is because the dipole states have [44431] symmetry. We consider a Hamil­
tonian with a full exchange mixture and also a spin orbit term. The latter 
will have zero matrix elements in states of [ 44 . . .  4] symmetry and therefore 
will not affect our discussions of 4He or nuclear matter. Rather than .working 
with the parameters WMB and H we choose linear combination which are 
the scattering amplitudes. For instance 

i = 1, 2. 

In our previous work AP = 31A; = 1 and 11A; = 33 A; = (1 - 2 m;) . For confi­
gurations of higher symmetry we shall now adopt the following values for 
our scattering amplitudes. For both Gaussians we retain 31A; at unity but 
reduce 13A; to 0.6. This is usual to account for deuteron data. We keep 11A; 
equal to 33A; and both equal to 0.8 (1 - 2 m;) .  Thus for potential B1 

11A1 = 
= 33A1 = -0.4662 and 11A2 = 33A2 == -0.1186, and for potential B5 

11A1 = 33A1 = 
= -0.7200 and llA2 = 33A2 = -0.3465. We now discuss the possible singly ex­
cited 1- states. There are five such states with T = 1 all with [ 44431] sym­
metry. These are 11> 12> 13> 14> j5>, (10) L = 1 s = 0, (10) L = 1 s � 1, 
(21) L = 1 s = 0, (21) L = 1 s = 1, (21) L = 2 s = 1. Expressions for the inter­
action energy of a particle with full exchange mixture have been derived7) 

for all the above states. For instance 11 > the interaction energy is given. by 

(9) 

These expressions are listed in Appendix 5. The diagonal matrix elements of 
the spin orbit coupling vanish for these configurations. 

Using these techniques the diagonal matrix elements of the five 1- states 
may be derived. 
Of our five states only 11 > should contain dipole strength. This is because 
the dipole operator transforms as (10) and cannot alter the spin from that 
of the ground state. If a matrix of the interaction Hamiltonian was diago­
nalised then the dipole strength would be shared between these five states. 
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Table 5. 

Diagonal matrix elements for the singly excited T = 1 1- states in Oxygen 16 

I 1 1> ' /  12> I [ 3> I [4> I IS> 

B1 23 20 16.2 15.2 15.2 MeV 
Bs 19  17 15 .3 14.8 14.8 
Exp. 24.5 22 19. 5 17.2 13 

Experimentally, the strength occurs almost equally divided between the 
highest two, indicating strong mixing between the states 11 > and 12 > due 
to the spin orbit coupling. 

5. A simulated hard core

The potential B1 though it gave good agreement with the calculation of 
binding energies and excited energy levels, possessed a soft core some 30 
MeV in height. For realistic calculations a hard core should be introduced. 
This may be achieved in this framework where oscillator wavefunctions are 
employed, by the inclusion of a correlation effect by means of a delta funct­
ion at the origin, in the effective Hamiltonian. 

The additive term to equation (7) is  

� A o  (r; - ri) .
i < j  

(10) 

The constants of this modified expression are fitted as before with the help 
of the additional experimental equation comprising the p particle separation 
,energies of Oxygen 16. Thus for each pair of values for a16 and a4 a set of 
potentials may be generated. The input parameters for various potentials 
are given in Table 6. Table 6. 

hw1• MeV I hw, MeV I 0:1• fermi I o;, fermi I Potential 

13.8 24.7 00 00 A,* 

2.6 2.6 B,* 

2.6 2 C,*
---

2.6 2 .3 D,* 

2.8 2.6 E,* 

3.2 f.3 F,* 
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The calculated values of the force parameters are listed in Appendix 3 .  Ty­
pical values are those of As*, B5* and C5* (see Table 7) . 

Table 7. 

I S1 MeV I S, MeV I 1 - 2 m1 I 1 - 2 m, I A MeV fm3 

A,* - 235 1 04000 0.006 0.698 -1.37 10-35

B,* - 231 113000 -0.046 0.696 -1.56 10-35

C,* - 369 223000 0.096 0.698 -2.98 10-35

We notice there is a large repulsion of the order of 1 00,000 MeV near the 
origin. This is to be expected from experiment. However, there is also a large 
attraction counterbalancing it at the origin, resulting in a finite matrix ele­
ment when the potential is integrated over an s-state. The long range part 
of the potentials are either weakly attractive or weakly repulsive in states 
of odd angular momentum, where we would expect a ,,(1 - 2 m1) value" of 
- 0.6 if the long range gaussian is to simulate the one pion exchange poten­
tial. In this sense therefore they are not so realistic as those previously
,reated with a soft core.
. The contribution to the binding of nuclear matter by the various parts of 
fhe potentials may be evaluated. In general we find that in even states the 

V lrl 

MeV 
200 

100 

EVEN STATES 

THE POTENllAL s: 

large repulsion by the inner gaussian keeps nuclear matter from collapsing. 
A measure of this is the compressibility. This may be found for any poten­
tial and is found not to oscillate as it did for the potentials A; and B;. Typical 
values are 21 5 for Bi* and 214 for B/. The experimental value should be 
about 150 MeV. The combination of the reduced kinetic energy and the cor­
relation effects of the delta function consequently give rise to stable con­
ditions in nuclear matter. The values of the compressibilities are listed in 
Appendix 4. 
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6. The binding energy of Oxygen 16 for the hard core potentials

The potential energy of Oxygen 16 may easily be written down in terms of 
the two-body matrix elements of the potentials in relative ls, lp and (2s l d)
states, V0, Vi and V2 

(11) 

Adding the kinetic energies1l the bindingi energy may be deduced for any 
potential once the matrix elements have been calculated. These . matrix ele­
ments have been called strength functions because they measure the strength 
of the interaction in a given state. Tables of the strength functions V0, V1 and . 
the binding energies are presented in Appendix 4. 

There are essentially two parameters to each set of potentials, the mean 
free path for Oxygen 16 a16 and for Helium 4 a4• We may discuss how the 
variation of these parameters effect the experimentally determinable quan° 

tities, the binding energy of Oxygen 16 and the compressibility of nuclear 
matter, -142 MeV and 150 MeV, respectively. Consulting Appendix 4 we see 
that perhaps the most satisfactory potential is Es* which yields -138 MeV 
binding and 216 MeV for the compressibility. For the soft core potential 
where no delta function was included at the origin, considerable instabilit: 
occurred in both the binding energy of Oxygen 16 and K, so it was possiblt 
to pick out a best value of µ2• With the inclusion of the delta function tfo 
oscillations in K disappeared and any of the values of µ2 appeared equall' 
satisfactory; however, a general . improvement appeared as µ2 became ver} 
small. 

The matrix elements may be compared with those deduced by Elliott et 
al.9l from the free internucleon scattering phase shifts. These are given in 
singlet and triplet states. 

Table 8. 

Matrix elements from phase shifts 

(hw" = 13 .8 MeV) I I 
I singlet I triplet 

Vo I -6.63 I -7.92 MeV 

V, I 1.75 I -0.22 

These must be averaged over spins if they are to be compared with the ma­
trix elements deduced here and in Ref.1l . We notice the p-state interaction 
is large and repulsive in singlet states and small and attractive in triplet 
states. For potential Bi* V0 = - 8 .30  and Vi = 1. 745. The equivalent expres-
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sions for potential Bs* are V0 
= -8.55, V1 = 2.3 7  MeV. We see that in rela­

tive s-states Bi* and Bs* are slightly more attractive than Elliott's. In p-states 
they approximate well to the singlet p-state free nucleon value. It would 
appear that inside nuclei the scattering is confined to singlet singlet inter­
action strength when the relative angular momentum is in a p-state. 

7. Conclusions

The actual significance of lowering the kinetic energy is the building in 
of an interaction into the Hamiltonian in a convenient manner. We have 
seen how the concept of collision damping has been introduced into the 
framework of the shell model. These collisions will cause certain redistri­
butions of the nucleons in a given configuration as manifested by the much 
larger exchange forces present in potentials B than in pote�tials A. This re­
sults in larger p-state interactions which contribute towards the lowering of 
the excited configurations . 

. Variation of the mean free path parameter u. from nucleus to nucleus has 
been examined and the potentials where this mean free path parameter is 
constant at 2.6 fm were found to be the most realistic ones. However, for 
potentials B; with a soft core, only certain ranges of the inner gaussian gave 
realistic values for the compressibility of nuclear matter, B 1 being the most 
satisfactory. For the hard core potentials rio negative values for K were 
found, the presence of the delta function resulting in stable conditions in 
nuclear matter. However, the exchange parameters in a lp-state are more 
nearly the same as a one pion exchange potential for force B1 than for ai1y 
of the hard core potentials. Both B1 and most of the hard core poJentials 
gave a good value for the binding energy of Oxygen 16. 

Comparison with the matrix elements of Elliott et al.9l shows in general 
good agreement in even states, but the potentials discussed here are far more 
repulsive in odd states than theirs. Comparison with the size of the matrix 
element in singlet p-states leads us to suspect that the interaction inside 
nuclei in p-states is confined to this singlet singlet coupling strength. 

We have investigated the consequences of reducing the effective kinetic 
energy in the shell model. Greatly improved results were obtained from the 
assumption that the kinetic energy of the nucleons is progressively reduced 
as we go to heavier nuclei. The binding of the ground states of spherical 
nuclei were shown to agree with experiment, however, the binding in the 
unfilled shells was understimated showing the necessity for deformation 
effects. The excitation energies of even parity states in the spherical nucleus 
Oxygen 16 were shown to be brought down to the region where they are ex­
perimentally found. The dipole spectrum was also reproduced correctly. 

This lowering of the excited even parity states without having to perform 
a Hartree-Fock calculation, was in fact the greatest contribution of this 
paper. 
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Appendix 1. Matrix elements of the effective kinetic energy. 

We consider two cases, wavefunctions of a harmonic oscillator and of nu· 
clear matter enclosed in a box of side L.

T = 2 -l ( __ !.l_ __!_]_ ) ,4 m r:,.,2 
r,.2 

e Pl + p/ e 

20 33 3 
7 (l + 7 x2 + 14 x4 + x6 ) 

T 2s = - h  w -------=------
4 

(1 + !_)9/2 
x2 

(1. h 
where x = - and b 2 = --.

b m w 

(1 + �)7 X 
Tld = 4

h w l , 
(1 + -)9/2 

x2 

(1) 

3 h2 K2 l 3 h2 -x2 1 T1 = _ __ F x3 { Erf (-) }3 + --- x2 e { E rf (-x
) }2, (2) · 10 m x 2 m r:,.2 

f 
2 a where E rf (y) = e-zz d z and x = L'



Ai* 
A2* 

A,* 

A,* 

A,* 

A,* 

A,* 

B,* 
B2* 

B,* 

B,* 

B;* 

B,* 

B,* 

C,*

D,* 

E,* 

F,* 
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Appendix 2 .  Strength functions for Oxygen 16 for states of 
[4444] sy111111etry 

I Vo I Vi I V2 I K I E 

Ao -8.83 0.793 -1.754 73.5 I -116.9
A, -8.78 0.764 -1.726 95 -113
A2 -8.74 0.546 -1.708 316 -125.6
A, -8.71 0.863 -1.626 216 -104.3
A, -8.70 1.034 -1.433 18 -90.5
A, -8.55 0.888 -1.667 251 -97.8
A, -8.67 0.744 -1.594 704 -110.

Bo -7.744 1.870 -1.543 -323 -107.5
B, -8.30 1.745 -1.519 149 -139.8

B2 -8.03 1.975 -1.582 -51 -114.8
B, -7.70 1.847 -1.43 10 -106
B, -7.61 1.822 -1.487 150 -99.3
B, -7.66 1.721 -'--l .435 -225 -112.3

Exp 150 -142

Appendix 3. The Para111eters of the Potentials 

I µ2 f I S, MeV I S2 MeV I m, I m2 I A MeV

0.7 -362 3800 0.444 0.232 -0.362 10-35

0.6 -304 5890 0.461 0.219 -0.423 10-35

0.5 -269 11300 0.476 0.210 -0.549 10-35

0.4 -248 28400 0.488 0.204 -0.803 10-35

0.3 -235 104000 0.497 0.201 -0.137 10-34

0.2 -227 720000 0.503 0.200 -0.302 10-34

0.1 -223 2.18 107 0.507 0.200 -0.119 10-33 

0.7 -385 4.35 103 0.458 0.240 -4.25 10-36

0.6 -313 6.60 103 0.478 0.225 -4.85 10-36

0.5 -271 1.25 104 0.497 . 0.214 -6.16 10-36

0.4 -246 3.11 104 0.511 0.206 -8.88 10-36

0.3 -231 1.13 105 0.523 0.202 -1.56 10-35

0.2 -222 7.81 105 0.531 0.200 -3.29 10-35

0.1 -218 2.36 107 0.536 0.200 -1.29 10-34

0.3 -369 2.23 105 0.452 0.201 -2.98 10-35

0.3 -290 1.59 105 0.485 0.201 -2.12 10-35

0.3 -285 1.53 104 0.492 0.201 -2.04 10-35

0.3 -816 5.69 105 0.392 0.201 -7.63 10-35
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Appendix 4. Matrix elements, and binding energies of Oxygen 16 

I v. I V, I v, I E I K MeV

A,* -9.38 1.61 -2.32 -101 150
B-* -8.55 2.24 -2.37 -138 216
C,* -8.62 2.48 -2.87 -136 267
D,* -8.52 2.27 -2.50 -137 236

-

E,* -8.74 2.30 -2.50 -134 238
Fs* -9.78 3.74 -5.01 -118 449

Exp. -142 150

Appendix 5. Matrix elements of potentials with full exchange mixtures 
· in some singly excited configurations in Oxygen 16

(4 j V j 4) = (51 V 1 5) = :  { - (31A + 13A) 8 V0 -2 11A V1 -6 33A Vi }·
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EFEKTIVNA KINETICKA ENERGIJA 

I. Kineticka energija, metl.unukleonska interakcija, vezanje i energije
eksitacije laganih jezgara 

G. F. NASH 
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S a d r z a j

Da bi se nasao Hamiltonian jednostavnog modela ljuske, pretpostavljene 
su razlicite efektivne kineticke energije nukleona u jezgri. Iz Hamiltoniana 
slijede istodobno energije vezanja osnovnog stanja laganih jezgara, koje se 
podudaraju s eksperimentalnim vrijednostima, kao i njihove energije eksi­
tacija. 

Potencijali ukljucuju matricne elemente p-stanja s jakom repulzijom, sto 
zajedno sa smanjenjem kineticke energije vodi snizenju deformiranih eksi­
tacijskih stanja u suglasnosti s eksperimentom. 

Energije vezanja sfernih jezgara takoder se podudaraju. 




