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SUMMARY 

A dynamic modelling of a workplace in an area with high temperature and low humidity in the 

summer is described. The aim is to subsequently use the model to apply multi-objective predictive 

supervision of the environment climate. Two main variables are modelled: thermal comfort and 

energy consumption. First, a model of the different temperatures, humidity levels and the behaviour 

of the air-conditioning system is created. These variables respond to two control actions: the 

setpoint of the air-conditioning system and the speed of an airflow that may come from outside, 

and to a disturbance, the external temperature. The overall model is disintegrated into sub-models 

that precisely describe the internal influences between the variables. 

This model provides new insights on the subject in that it correctly describes the dynamic behaviour 

of the system by using simple Linear Parameter Varying descriptions to model the non-linear 

relationships, incorporates humidity into the thermal comfort model, includes forced ventilation of 

outside air as a strategy to reduce electricity consumption, defines a relative power unit that 

simplifies the measurement of electrical consumption, and its methodology is easy to apply to other 

environments. Different experiments demonstrate that the model obtained accurately depicts the 

actual variables. 

KEY WORDS: Dynamic model; air-conditioning; thermal comfort; energy consumption; multi-

objective predictive supervision. 

1. INTRODUCTION 

The total energy consumed in heating, ventilation and air-conditioning (HVAC) systems in 
commercial and residential buildings nowadays accounts for 40% of global energy consumption 
(37% in Argentina) and causes more than 36% of CO2 eq. emissions [1]. Optimizing energy 

consumption while maintaining thermal comfort conditions for users has then become a 
priority. This paper deals with the development of a dynamic model that describes the variations 



O.D. Chuk, G.R. Medina, B.D. Arballo, E. Kuchen: Multi-Objective Optimisation-Oriented Model of an Air-Conditioned Environment 

58 ENGINEERING MODELLING 35 (2024) 2, 57-79 

in thermal and humidity factors within a workspace located in the Faculty of Engineering at the 
National University of San Juan (UNSJ), an arid zone of Argentina, during the summer season. 
The climate in this city is continental, with high temperatures and low humidity in summer, as 
described in the national standard IRAM 11603 [2]. The main variables to be modelled are the 

user´s thermal comfort and the energy consumption of the HVAC system. 

The final goal is to implement a Multi-objective Predictive Optimizing Control of the air 
conditioning system [3]. This type of supervisory control performs multi-objective optimisation 
[4] since it considers factors that normally compete with each other, such as user comfort and 
energy consumption. It performs this optimization with a Model Predictive Control (MPC) 
strategy [5], that is, running the model forward in time in order to calculate the optimal control 
actions. A well-suited model is the main challenge when implementing predictive control, 
especially when applying it to comfort and energy efficiency [6]. 

Different  models describing how buildings react to external variables and climate control are 
discussed in reviews such as those by Afram and Janabi-Sharifi [7] and Homod [8]. 

The models are frequently classified as white, grey, and black box models based on their level of 
transparency. Arendt et al. [9] have carried out an appropriate comparative analysis of these 
modelling criteria for the simulation of the thermal behaviour of educational buildings. Similar 
classifications using different terminology have also been established. Hensen [10], for example, 
defines four levels of models, from a Conceptual one, in which an ideal plant is considered, to an 
Explicit one, which has precise knowledge of the different subcomponents of the system in terms 
of energy balance. The traditional black and white box models can be identified with these 
extremes. 

In a white box model, the internal details and underlying mechanisms of the system being 
modelled are known and taken into account. It requires a comprehensive knowledge of the 
physics involved, the components used and the boundary conditions of the modelled object. 
Normally, the changes over time are determined by solving the differential equations that 
explain the process using numerical methods. 

White box models have been widely used in environment modelling. For example, Muñoz et al. 
[11] used the admittance method to thermally characterize multilayer wall materials. Tashtoush 
et al. [12] present a dynamic model of an air-conditioned space that includes the physical details 
of the space, heating, cooling and dehumidifying coils, humidifier, ductwork, fan and mixing box. 
Commercial software packages like ESP-r and TRNSYS [13] are commonly used to predict the 
thermal performance of buildings. These programs have been developed with a deep 
understanding of the physics and materials used. Assessing alternatives for retrofitting 
environments and HVAC systems is another valuable application for these programs [14]. On 
the other hand, white box models have the disadvantage that they require a precise knowledge 
of the physical parameters of the different elements involved. The incorrect parameters can lead 
to significant differences between the actual behaviour of the system and the behaviour 
described by the model. This has been emphasized by authors like Akkurt et al [15]. Some 
researchers also argue that the calibration of these models in the case of complex buildings is 
cumbersome so the application of predictive control is only possible for simple environments 
[16]. For these reasons, some authors such as Trcka and Hendsen [17] place this type of model 

in the category of models used for Building Energy Performance Simulation (BEPS), rather than 
in the category of models used for control and optimization. 

At the other end of the spectrum, there is the black box model, which is named for its complete 
opacity. It is assumed that there is no knowledge of its internal structure, but it is based solely 
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on observations of input and output data (data-driven). The techniques used to construct these 
models usually stem from the field of artificial intelligence and are often based on genetic 
algorithms [18] and, in particular, neural networks [19]. 

One of the main advantages of black box models is that they do not require detailed knowledge 
of the system. These tools are also useful when dealing with variables that have complex 
interconnections. However, its drawbacks arise from a high dependence on the quality of the 
input data. When the data used to calibrate the model are not reliable or do not cover all possible 
situations, the results obtained may deviate significantly from reality. For the same reason, they 
are difficult to correct or modify. 

Grey box models lie between the two types of models mentioned above. Some structural features 
of the model are assumed, such as the orders of the transfer functions and the internal influences 
between the different variables involved, and the parameters of these models are determined 
by analysing the input and output data. 

The approach to a grey box model can follow two basic ideas: 

1. Models can be based on physics equations, but instead of deriving their parameters from 
knowledge of the individual components, they are calibrated on the basis of recorded 
measurements. 

2. Generic models with a certain structure, e.g., in state space or using linear or non-linear 
input/output transfer functions, can be adopted, and records of measurements over time can 
also be used to estimate model parameters. 

In the latter alternative, different approaches can be considered. Among the most common are: 

1. Linear state space models. These models are useful when the environment is modelled under 
relatively limited variations in the variables affecting the system (e.g., outdoor temperature), 
which allows the assumption of a linear relationship between inputs and outputs. State 
models represent the system intuitively when each state variable is identified with some 
determinant value of the system's behaviour. With this idea, Drgona [20] uses a fourth-order 
state model, where the state variables are the external facade temperature, the internal 
facade temperature, the floor temperature and the internal room temperature. 

2. Fuzzy logic. Prior knowledge about the system is expressed in terms of labels and linguistic 
rules and the parameters of these rules are then identified [21]. 

3. Linear transfer functions, either in the continuous or discrete domain. 

4. Non-linear descriptions. When the behaviour of variables is complex and cannot be properly 
described by linear models, it can be verified that non-linear relationships exist between 
them. A non-linear description can also take different forms, such as states or non-linear 
differential equations. In this work, a Linear Parameter Varying description (LPV) is used 
[22] because it is very effective and easy to understand for those who know the behaviour of 
the system, which facilitates the identification of the parameters. 

Once the model structure is defined, the usual techniques for determining the model parameters 
include, among others, the frequency domain method, the maximum likelihood method, and, 
above all, the Prediction Errors Minimisation PEM method, which is performed using least 
squares. This criterion must be supplemented by other model quality metrics in non-linear 
cases. This applies to certain sub-models described under the LPV criterion, which are discussed 
in more detail below. 
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Grey box models tend to have slightly larger prediction errors than black and white box models. 
However, they are very suitable for implementing an MPC because at each sampling interval, the 
controlled variable is measured again and the model is re-run from that point, so it is not the 
exact value of the prediction that is important but its trend. 

It is generally agreed that a simple grey box model is sufficient for implementing an MPC [6]. 
They are also more robust (less sensitive to parameter errors) and perform better when the 
operating conditions differ from those under which the parameters were calibrated. 

Given these considerations, the following model was chosen for this work: 

• Grey box dynamics. 

• Of an ambient and its HVAC system in the post-occupancy phase. 

• Aimed at multi-objective optimisation of user´s comfort and energy efficiency, in summer. 

• Characterized by low-order transfer functions, albeit with significant pure delays. 

• Most transfer functions are linear and, in some cases, LPV descriptions are used. 

2. THE ENVIRONMENT, ITS HVAC AND RELATED VARIABLES 

The set under investigation is shown schematically in Figure 1. The dimensions of the workspace 
are 7.2m long, 4.9m wide and 3.25m high and it is used for research and development tasks. The 
average occupancy rate is between 2 and 3 people for 6 hours on working days. As a boundary 
condition, it has a single wall -1- that is in contact with the outside world and lets in air and natural 
light through a window. As it faces south, it never receives direct sunlight. The other walls are 
connected to other workspaces and an indoor corridor, the ceiling to a room upstairs and the floor 
to the natural ground. All these conditions explain the good insulation and consequently the high 
time constants, in the order of hours, for the influence of the outside temperature on the internal 
variables. While the characteristics of the space primarily favour thermal comfort, the harsh 
summer conditions in this area require air conditioning, which consumes significant amounts of 
energy. It should also be noted that the system presents a challenge for automatic control as it has 
high pure delays with respect to the time constants involved. 

 

 

Fig. 1  Ground plan and view to the south of the room under study and its air-conditioning devices 
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The entrance to the workspace is located on Wall 2, opposite to Wall 1. A blower 'Fan A' located 
in the window on Wall 1, in conjunction with an exhaust fan over the entrance door on Wall 2, 
'Fan A1', forms a variable-speed forced ventilation system (with speed denoted as va), which 
draws in outside air and circulates it through the room along its longest axis. If outside air is not 
supplied, an additional ceiling fan, 'Fan C', also operating at variable speed va, can generate an 
indoor airflow. This ventilation system serves a dual purpose: it equalizes the temperatures in 
the room and improves the occupants' sense of comfort by promoting convective heat transfer 
from the body to the surrounding environment. 

The HVAC unit B operates at 220V, 50Hz and has a split configuration and ON/OFF operation, 
like most HVACs in Argentina. It blows the air at 1000 m3/h. The cooling power consumption is 
1915W and has a cooling capacity of 6150W [23]; with these data, the Seasonal Energy Efficiency 

Ratio SEER [24,25] is 6150W / 1915W = 3.2, indicating that it is a mid-efficiency device. This 
underlines the idea of the need for optimisation, the ultimate goal of the project in which this 
study is embedded. 

Three temperatures, the ambient humidity and the power consumption of the HVAC systems 
are measured and then modelled. The measured temperatures are the outdoor temperature Te 
[°C], using a sensor located outside the Wall 1, the ambient temperature Ta [°C], measured at 
1.1m above the floor [26] in the middle of the room (under the ‘Fan C’), the mean radiant 
temperature Trm [°C] [27], measured at the same location with a balloon temperature sensor, 
and the temperature associated with the HVAC unit Taa [°C], measured with a sensor at the top 
air inlet of the HVAC unit, also near Wall 1, see Figure 2. The linear distance between the 
measurement points of Taa and Ta is approximately 4m. 

 

Fig. 2  Relative position of the measurement points, not to scale 

The Taa temperature measurement has a dual purpose: On the one hand, when the HVAC is in 
operation mode, it is equivalent to the temperature measured by the HVAC's inside sensor and 
is then used to predict when the compressor unit device will be in the ON or OFF state. On the 
other hand, this point indicates the internal temperature of Wall A when the HVAC is not 
operating. Other sensors could have been placed on each of the other walls, but as they behave 
adiabatically, this was sufficient to get a proper model. 

Humidity H [%] is measured relatively, as the amount of water vapour in the air, expressed as a 
percentage of the maximum amount the air can hold. It is measured at the same point as Taa and 
Trm. The measurement of the current consumed I [A] by the HVAC is used for energy calculations. 
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3. MODEL DEVELOPMENT 

The inputs of the entire model are the reference temperature (or setpoint) SP [°C] at which the 
HVAC operates, the air speed va [m/s] and the outdoor temperature Te [°C] as a perturbation. 
See Figure 3. 

The primary variables to be modelled, mentioned above in Section 2, allow the calculation of the 
variables relevant for the optimisation: the thermal comfort, expressed as the percentage of 
dissatisfied users Disc, and the energy consumption, expressed as a relative power Pr. Both will 
be formally defined later. 

 

Fig. 3  Block diagram of the whole room-HVAC system 

To obtain the sub-models presented below, various datasets obtained from different 
experiences of measuring signals over time were used. These covered the typical outdoor 
temperature ranges of the city in the summer season, between 15°C and 45°C, and different time 
evolutions of the outdoor temperature Te, with increasing and decreasing daily averages. As is 
usual for dynamic models, identification was made with the dataset of one experience, using the 
data of another experience to validate the obtained model. The final model, achieved by iteration 
of this methodology, properly reproduces the behaviour of the variables for all the experiences 
included in the identification. 

3.1 INFLUENCE OF THE OUTSIDE TEMPERATURE THROUGH THE ENVELOPE 

The energy transfer through the envelope, without the operation of the HVAC, primarily affects 
the temperature associated with the inside of the wall Taa and, thus, the other variables. The 
more detailed version of the block diagram of the model is outlined in Figure 4. 

 

Fig. 4  Block diagram with internal influences 

The change in wall temperature due to outside temperature, denoted as Taae, was adequately 
described by a linear transfer function in the discrete domain with parameters obtained by PEM. 
With a sampling interval of 0.0667 min, it has the following form: 
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Gaae = 
Taae

'

Te
'  = 

0.0000272 z-150

1 - 0.7991 z-1 - 0.2008 z-2 (1) 

In the identification process, an attempt was made to choose the lowest order of the model that 
maintains a bounded error, as in the following cases. Figure 5 shows the comparison between 
the measured variable and its model in an experiment of just over 3 days with typical variations 
in total outdoor temperature Te between 10°C and 25°C. 

 

 

Fig. 5  Influence of the outside temperature on the wall temperature; The filled line is the actual output and 

the dashed line is the model output 

 

The discrete transfer function Gaae acts on the differences between the two values Taa and Te with 
their mean values, denoted as Taae

'  and Te
' . The average value of Te is extracted using a high pass 

filter HPF, see Figure 6. To obtain the absolute value of the output, a constant value Taa
���� must 

then be added. 

 

Fig. 6  Block diagram of the model of the dependence of wall temperature on outdoor temperature 

through the envelope 

The combined effect of the pure delay and the time constants involved results in a total delay 
between input and output temperature peaks of about 4.5 hours for a daily sinusoidal input. See 
Figure 7. 



O.D. Chuk, G.R. Medina, B.D. Arballo, E. Kuchen: Multi-Objective Optimisation-Oriented Model of an Air-Conditioned Environment 

64 ENGINEERING MODELLING 35 (2024) 2, 57-79 

 

Fig. 7  Response of the wall temperature model Taae to a daily sine wave variation in Te 

Similarly, the influence of the outside temperature on the ambient relative humidity He can also 
be determined. 

Ghe = 
He

'

Te
'  = 

0.000035 z-150

1 - 1.338 z-1+0.1624 z-2+0.1759z-3 (2) 

The block diagram has the same structure as the temperature diagram in Figure 6. The 
comparison between the actual output and the model is depicted in Figure 8. 
 

 

Fig. 8  Response of the Humidity model (dashed line) in relation to the outdoor temperature 

3.2 INFLUENCE OF OUTSIDE TEMPERATURE THROUGH FORCED CROSS VENTILATION 

This ventilation occurs when the outside air enters through Fan A in Figure 1 and exits through 
its counterpart exhaust fan located on the opposite wall. Modelling this influence is important 
because as long as the outdoor temperature is lower than the indoor temperature (mainly at 
night), significant temperature reductions can be achieved to reduce energy consumption 
during the day. 
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The following identifications of the influence of the outside air flow on temperatures and 
humidity are presented in the same experience, in order to be able to make an appropriate 
comparison. 

3.2.1 INFLUENCE ON WALL TEMPERATURE Taa 

The following observations can be made when testing with different air velocities (Figure 9). 

 

Fig. 9  Influence of the outside temperature (grey line) on the wall temperature due to forced ventilation 

 

1. Looking at the behaviour of the wall temperature due to the combination of the external 
temperature and the air velocity Taaev, compared to that which depends only on the external 
temperature Taae through the envelope (identified in the previous point and plotted here in 
dashed line), it follows that it increases when Te > Taae (state 2 in the graph) and decreases 
the other way round (states 1 and 3). This makes sense. When warmer outside air is brought 
into the room through the ventilation, the internal temperature tends to rise, and vice versa. 
This suggests that the influence of the outside temperature by the air supplied from outside 
Gaaev should be modelled as a function of the T’Δeaa difference between Te and Taae and then 
added to the latter. See Figure 10. This considers the effect of external ventilation. 

 

Fig. 10  Block diagram showing the influence of the outside temperature on the wall temperature, both 

through the envelope and the forced cross-ventilation 
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2. The experiment in Figure 9 also shows a predictable effect of air speed va in which the outside 
temperature affects the other variables. Not only does the effect of Te on Taa increase with air 
speed, suggesting a dependence of the static Gaaev gain on this variable. In addition, the time 
constants involved also vary with different va rates. Taking this into account, Gaaev was 
modelled as a first-order system with pure linear delay with linear variant parameters LPV, 
where the three parameters of the model, Kav, tgav and tuav, are dependent on va. 

Gaaev(s) = 
Taaev

' (s)

 TΔeaa
' (s)

 = 
  Kav(va)  e-tuav(va) s

1+ tgav(va) s
 (3) 

In this case, the model is expressed in continuous time. This makes it easier to determine the 
parameters as a function of va. 

Among all possible representations of the model parameters (3) as a function of the scheduling 
variable va (fuzzy, point interpolation, neural networks, etc.), a second-order polynomial form 
was chosen due to its simplicity. 

Since this is a non-linear system, the PEM error minimisation criterion [28] must be 
supplemented by tests of independence and whiteness validity and other indicators of model 
quality to identify the parameters of these parabolas [29,30]. These are combined using a multi-
objective strategy [31,32]. Using this technique, the variation of the first-order model 
parameters with va was determined as shown in Figure 11. 

 

 

Fig. 11  First-order LPV parameters of the outdoor temperature under the influence of forced cross-

ventilation 

It can be observed that, as expected, there is no external thermal contribution at null air speed 
va, and the pure delay in sensing a change also decreases with speed. The fact that the time 
constant of the system is almost invariant is not so easy to predict. With these parameters, the 
model shown in Figure 10 behaves as shown in Figure 12. 
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Fig. 12  Model behaviour of the outdoor temperature under the influence of cross ventilation (dashed line) 

The influence of the outside temperature through cross-ventilation va on the ambient 
temperature Ta and the mean radiant temperature Trm is obtained similarly. 

3.2.2 INFLUENCE ON THE AMBIENT RELATIVE HUMIDITY H 

When analysing the behaviour of the humidity with the external airflow, it can be seen that it 
also depends on the difference T’Δeaa between Te and Taae, but in the opposite direction: if this 
signal is positive, the humidity level will decrease and vice versa. This leads to the conclusion 
that it can also be described by a first-order LPV system Ghev similar to the one previously 
described, having a transfer function with the same structure as (2). The corresponding block 
diagram is drawn in Figure 13, and the temporal behaviour of the model in Figure 14. The 
evolution of the Ghev parameters with air velocity exhibits similar parabolas to those of the 
temperature shown previously in Figure 11 but with negative gains. 

 

Fig. 13  Block diagram illustrating the influence of the outdoor temperature on humidity, both through the 

envelope and through forced cross-ventilation 
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Fig. 14  Behaviour of the humidity model (dashed line) with the outdoor temperature, through forced cross-

ventilation 

3.3 OPERATION OF THE AIR-CONDITIONING SYSTEM 

Looking at a typical test of the variables against reference changes in the HVAC, as shown in 
Figure 15, the following observations can be made. 

1. The speeds at which the different variables move seem to depend on the operating range 
defined by the reference or setpoint SP set in the HVAC. 

2. The ON/OFF behaviour of the HVAC causes the associated temperature Taa to move around 
the SP and the others (Ta, Trm) depending on the former. 

3. The hysteresis ht with which the HVAC operates also depends on the reference SP. 

4. The humidity also varies with the operation of HVAC. When the HVAC is in ON mode, it 
removes humidity from the environment by condensing it on the expansion coil, thus 
reducing the relative humidity H of the environment. 

5. When the HVAC is in ON mode and the compressor draws power, the current consumption I 
is almost constant. Thus, a binary signal ua can be defined as 1 when the HVAC is ON and 0 
otherwise, and a relative power Pr as: 

Pr = 
1

tp
� ua

tp

0
dt, with ua ∈ {0, 1} (4) 

where tp is a specific evaluation time of at least one ON/OFF switching cycle of the HVAC. As a 
result, Pr ranges between 0 and 1 and is equal to one if the HVAC compressor is always ON (ua = 
1 always). This method of measuring the consumed power makes it possible to be independent 
of the absolute value of the consumed power [W]. 
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Fig. 15  Typical behaviour of variables under HVAC action 

3.3.1 INFLUENCE ON TEMPERATURE ASSOCIATED WITH THE HVAC AND THE WALL Taa 

This temperature tends to follow the wall temperature due to the outside temperature Taaev, 
already modelled in 3.2.1, when the HVAC is inactive (OFF mode, ua = 0). On the other hand, if ua 
= 1 permanently, the wall temperature tends towards the minimum Taamin that the HVAC can 
reach without switching off the compressor. This value can be obtained by means of a test by 
setting the SP reference to the lowest value it accepts. It depends on the average outdoor 
temperature. However, it can be considered constant for the summer period under 
consideration. This is illustrated in the block diagram in Figure 16. 

 

 

Fig. 16  Block diagram of the behaviour of the wall temperature associated with the HVAC 

Similar to 3.2, the transfer function Gaaa is a first-order LPV system with pure delay similar to 
(3) but here the parameters vary with the SP of the HVAC. A multi-objective identification 
procedure similar to the one described above was also used to obtain this variation. It is depicted 
in Figure 17. 
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Fig. 17  Variation of the first-order parameters of Gaaa with the SP reference of the HVAC 

3.3.2 INFLUENCE ON THE ROOM TEMPERATURE Ta AND MEAN RADIANT TEMPERATURE Trm 

Following the same considerations as in the previous case, the experiments show that when the 
HVAC is inactive (OFF mode, ua = 0), the ambient temperature tends asymptotically to the wall 
temperature, which depends only on the outdoor temperature Taaev (see 3.2.1). In the opposite 
case, when ua = 1, it is determined by the total wall temperature Taa obtained in section 3.3.1 
above. This can be represented graphically, as shown in Figure 18. 

 
Fig. 18  Block diagram showing how the ambient temperature Ta depends on the operation of the HVAC 

Again, the corresponding transfer function Ga is a first-order LPV model with pure delay. Its 
parameters change as a function of the SP reference, similarly to those shown for Taa in Figure 
17. The behaviour of the mean radiant temperature Trm is similar, although with its parameters. 

3.3.3 INFLUENCE ON THE RELATIVE AMBIENT HUMIDITY H 

The variations produced by the operation of the HVAC must be added to the Haev humidity 
produced by the outdoor temperature Te and the air velocity va previously modelled in 3.2.2. 
This influence was described using a linear system so that: 

H = Haev + Hvc
'

 , with (5) 
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Gh = 
Hvc

'

va
'  = 

0.0081 z-75

1 - 1.914 z-1+0.9154 z-2 

The complete comparison between the measured signals and their models is depicted in Figure 
19. 

 

Fig. 19  Comparison between measured signals and their models, in dashed lines 

3.4. THERMAL COMFORT MODEL 

From the modelling of the physical variables described above, a measure of thermal comfort can 
be derived. The ISO 7730:2005 standard [33] defines it as "that mental condition which 
expresses satisfaction with the thermal environment" and postulates that up to 10% 
dissatisfaction with the thermal environment is acceptable. The standard does not provide a 
way to determine its measure. For this purpose, this study uses the equation proposed by 
Kuchen et al. [34], which estimates the percentage of dissatisfied users in the environment as 
follows: 

Disc = 100 - 93 exp
�-0,0009 �-Tn+Top�4

- 0,034�-Tn+Top�2� [%] (6) 

This equation determines users' ability to thermally adapt to the evolution of the indoor climate 
by incorporating the operative temperature Top and the neutrality temperature Tn, defined 
below. This model was created based on the correlation of objective and subjective data 
obtained from 1300 measurements (Spot-Monitoring) in 30 office buildings in central Europe 
[34,35]. In this model, the minimum possible percentage of dissatisfied users is 7%. 

According to the ASHRAE 55 standard [36], the operative temperature Top is an integrated 
temperature that fully influences the occupant's thermal perception of the thermal 
environment. The operative temperature is composed of the ambient temperature Ta and the 
mean radiant temperature Trm, according to the following equation: 

Top = A Ta + (1 – A) Trm, (7) 

where A is a factor that depends on the va air velocity in the environment, as shown in Table 1: 
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Table 1  Relationship between the air velocity va and the A factor 

va [m/s] va < 0.2 0.2 < va < 0.6 0.6 < va < 1 

A 0.5 0.6 0.7 

The neutrality temperature Tn is the value at which the individual perceives both physically and 
psychologically a pleasant environment that is neither cold nor hot. This condition corresponds 
to a comfort vote CV = 0 (neutral) on the 7 points of the ASHRAE 55 scale, as shown in Table 2. 

Table 2  ASHRAE 55 scale 

Thermal 

sensation 
cold cool 

slightly 

cool 

comfortable 

or neutral 

slightly 

warm 
warm hot 

CV -3 -2 -1 0 1 2 3 

There is a linear relationship between the comfort vote and the operative temperature: 

CV = a Top + b (8) 

Where the parameters a and b can be established determined statistically through user surveys. 
The Tn neutrality temperature, the Top operative temperature and the CV comfort vote are 
related by the linear expression: 

Tn = Top – c CV (9) 

This expression shows that when the operative temperature is neutral, the user should emit a 
null CV. Constant c was obtained from the survey of the users' comfort votes. For the 
environment under study, described in section 3.2, these values are a = 0.3555, b = -8.8424 and 
c = 1/b = - 0,8869. 

From the last equation, it is clear that: 

-Tn + Top = c CV (10) 

This last value is finally inserted into Eq. (6) to determine the Disc percentage of dissatisfied 
users. 

3.4.1 EFFECT OF HUMIDITY ON COMFORT 

It is well known that when humidity is high, the air cannot absorb the evaporation on the skin, 
making it difficult for the body to release heat. This increases the user's sensation of warmth. 
Another factor that plays a role in this sensation is the speed of air. This has already been taken 
into account in Eq. (7). To consider the influence of humidity, the concept of thermal sensation 
or heat index Tts [37] is used. It was first proposed by Steadman [38] in his comfort model and 
expressed by Rothfusz [39] using the following polynomial form: 

Tts = -8.784695 + 1.61139411 Ta + 2.33854883889 H - 0.14611605 H Ta - 
0.012308094 Ta

2 -  0.0164248277778 H2 + 0.002211732 HTa
2 + 0.00072546 Ta H2 - 

0.000003582 H2Ta
2   [°C] 

(11) 

Alternative expressions for the heat index are given in the literature. Stull [40] even cites a third-
order polynomial index. 

The US National Weather Service [41] warns that this expression is not valid for combinations 
of high temperatures and humidities and that in certain areas it should be corrected using the 
following criteria: 

If H < 13% and 26.67°C < Ta < 43°C the following adjusting value must be subtracted from (11): 
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Adj = 
(13-H)

4
�17 - 	9 5
 Ta - 63	

17
 (12) 

If H > 85% and 26.67°C < Ta < 30.55°C the following adjustment value must be added to (11): 

Adj = 
(H-85)

10

(54- 9 5
 Ta)

5
 (13) 

Finally, this simpler expression should be used when the ambient temperature is below 25°C: 

Tts = [0.15 (93 + 9 5
  Ta + 1.2(9
5
  Ta – 36) + 0.094H) + Ta] / 2 (14) 

Based on these criteria, the graph of the heat index as a function of ambient temperature and 
humidity is shaped as shown in Figure 20. 

 

Fig. 20  Variation of the heat index with ambient temperature and humidity 

It can be seen that the dependence on humidity is minimal as long as Ta < 25°C, but above this 
temperature, the contribution to the heat sensation is large. 

To include the heat index in the measurement of the percentage of dissatisfied users Disc, it is 
used instead of the ambient temperature in (7). The result is shown in Figure 21. 

 

Fig. 21  Disc variation with ambient temperature and various humidity conditions: Grey line: H = 25%; 

Dashed line: H = 50%; Dotted line: H = 75%; Full black line: without considering humidity 
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In accordance with Fig. 20, the effect of humidity on the percentage of dissatisfied users is 
minimal at Ta < 25°C but very noticeable above this temperature. 

Figure 22 shows the evolution of the percentage of dissatisfied users Disc, the ambient 
temperature Ta and the mean radiant temperature Trm, which are responsible for the behaviour 
of the former, with a variation in the outside temperature Te between 20°C and 35°C, typical of 
the summer season in the area. The va air speed was 0.2 m/s and the humidity H was around 
40%. The HVAC system was not in operation. 

 

Fig. 22  Evolution of the Disc percentage of dissatisfied users in a 48hs trial 

4. RESULTS 

The model developed enables tests to be carried out to simulate the process under different 
conditions. Particularly noteworthy are the variables subject to further optimisation, especially 
the relative power consumption Pr and the percentage of dissatisfied users Disc. 

Figure 23 shows the behaviour of the wall temperature Taa, which follows the setpoint SP over 
a wide range of temperature references between 15°C and 24°C. 

 

Fig. 23  SP reference variation test over a wide range 
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In this simulated experiment, the outdoor temperature Te is kept constant to show the almost 
linear behaviour of the relative power Pr with the setpoint SP. 

Two relative powers have been plotted: in the thick grey solid line, the power measured during 
the period tp, which considers a single ON/OFF cycle of the HVAC compressor. The dashed line 
shows the relative power calculated over the period when SP was constant. The bottom graph 
shows the variation of the ratio between the ON and OFF times of the control signal ua (thin line) 
and the progressive increase of the relative power consumption when SP decreases, as expected. 
As this test is designed to analyse the behaviour of the relative power consumption, the 
percentage of dissatisfied users, which increases as the temperature drops below the neutral 
temperature of 25°C, was not plotted. 

Figure 24 illustrates a reverse scenario, where the SP reference of the HVAC remains constant 
at 23°C, and the response to a conventional outdoor temperature variation Te is observed over 
48 hours. The relative power Pr follows a quasi-sinusoidal pattern corresponding to changes in 
both the ambient temperature Ta and the mean radiant temperature Trm. The same applies to 
the percentage of dissatisfied users Disc, which remains below 10% and is therefore considered 
acceptable according to current standards. 

 

 

Fig. 24  System evolution with constant SP reference 

5. CONCLUSIONS 

A dynamic grey box model was developed to predict the temporal evolution of temperatures and 
humidity in a workspace of the UNSJ Faculty of Engineering. The simulated variables follow the 
measured variables with sufficient accuracy, which makes this model suitable for MPC control. It 
does not require detailed knowledge of the physical parameters of the various system 
components, as is common in a theoretical white box model, nor does it require large data 
packages that completely cover all operating states of the system, as is the case with data-driven 
black box models. The internal variables involved allow the prediction of the necessary measures 
for a subsequent MPC multi-objective supervision of the environment climate: the power 
consumption of the HVAC and the percentage of dissatisfied users with the thermal environment. 
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Although previous studies have developed grey box models, this study is original and provides 
new insights because 

• It takes into account the internal dependencies between variables. 

• It includes relative humidity in the model. 

• It uses LPV versions of some sub-models to allow a better description of the non-linear 
relationships. 

• It also considers the effect of forced cross-ventilation from outside, which can help to reduce 
the power requirements of air-conditioning. 

• It defines the relative power of an HVAC in the post-occupancy phase and makes it possible 
to be independent of the absolute power [W] consumed by the equipment. This facilitates 
the subsequent optimisation process. 

• The methodology for determining the model parameters is straightforward and easily 
replicable and can therefore be adapted to determine other environments. 

Reducing energy costs without compromising the quality of life in the operation of buildings is 
a public objective, as it contributes to the cost-effective energy transition. Conserving energy 
resources and reducing environmental impact is a condition to be achieved through sustainable 
buildings and cities. Applying this dynamic model to optimise the air conditioning of a building 
with current equipment would not only extend its lifespan but also avoid the tendency to replace 
it with more efficient equipment. 

6. FORTHCOMING DEVELOPMENTS 

Using the developed model, the multi-objective predictive supervision technique will be applied 
to obtain the air speed profile and HVAC setpoint that will be applied to the system. 

A strategy will be designed for online updating of the described model is designed. In this way, 
seasonal variations will be captured better. 
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