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Abstract: Perturbation theory is used to determine the change in transition
temperature of a two-band superconductor due to the presence of magnetic
impurity. Localized exchange interaction between the impurity spin and
electron is considered. This interaction can lead to both inter-band and
intra-band scattering. We find that the d-band transition temperature
decreases more than the s-band transition temperature due to the addition
of impurity. This distinction arises because the d-band gap is larger than
the s-band gap.

1. Introduction

Suhl, Matthias and Walker? proposed the two-band model of superconductor
for transition metals like vanadium and niobium. In this model they allowed the
formation of a Cooper pair not only within the same band (intra-band) but also
between two different bands (inter-band). This model has received considerable
attention within the last few years. By the use of Green'’s function, Chow?’ studied
the effect of non-magnetic impurity on transition temperature. In the intra-band
BCS coupling limit he found that the inter-band impurity scattering plays an im-
portant role in determining the change in transition temperature. In this paper
we will study the effect of magnetic impurity in a two-band superconductor in the
intra-band coupling limit.

We will use perturbation theory to determine the change in free energy in the
normal and superconducting state. The method of calculating this change in free
energy is the same as is used by Suhl and Matthias®. This method is based on a
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unitary transformation which eliminates the perturbation up to the first order from
the total Hamiltonian. From this transformed Hamiltonian we then calculate the
free energy and transition temperature by using Herring's differential equation
method®’.

In Section 2 we will discuss the unpetturbed Hamiltonian and the perturbation
Hamiltonian. In Section 3 we will find the unitary transformation which will
diagonalize the Hamiltonian up to the first order in perturbation. In Section 4
we will calculate the change in free energy and the change in transition temperature.
Section 5 is the conclusion.

2. Hamiltoman of the system

The Hamiltonian of a two-band superconductor in the intra-band coupling
limit looks like the following:
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where the symbols have their usual meaning (see Ref. 1). We have assumed in
writing this Hamiltonian that the inter-band coupling constant is zero. This means
that we are not allowing for the inter-band Cooper pair formation. As a result of
this assumption we will get two energy gaps one corresponding to each band, when
the superconductor contains no impurity. This approximation’’®’ not only sim-
plifies the calculation considerably but also in agreement with the experiment?®’.

We diagonalize this Hamiltonian by Bogoliubov-Valatin transformation. This
consists in replacing the operators ¢ and d by new operators e and f related as fcllows:
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and

sin®@,=——2 — for |ef| < ko,

=0 for |ef| > hi.

4, and A, are the energy gaps of s-band and d-bands respectively. Under this
transformation we obtain the Hamiltonian (1) as

Ho = Ej [ ext + eif en] + > Bifie fuo ©)
k ko

where

B=V+4 e

The effect of magnetic impurity scattering is equivalent to an exchange scattering
of the conduction electron by the impurity spin. An electron in the s-band not
only can get scattered to a state within s-band (intra-band scattering) but also
can get scatteied to a state in d-band (inter-band scattering). Such is true for the
d-band elections also.

If we assume the perturbation as perfectly localized around the impurity of
spin § at the site R,, then the perturbation Hamiltonian can be written as

H=J0Y [6G—R)S-s®)dr,
i
where 6 (; - ﬁ,) is Dirac delta function and sG) is the spin density of the con-

duction electron at the space point r.

Taking the Fourier transform in momentum space we can write the total pertur-
bation for both intra-band and inter-band scattering as:
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where J, and J, are exchange integrals from intra-band scattering and J, is the
exchange integral for inter-band scattering.
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If we introduce the transformation equation (2) we obtain
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The total Hamiltonian of the system in quasi-particle representation is

HT=H0+H1-

3. Diagonalizig the Hamiltonian

To calculate the free energy we need to know the trace of the Hamiltonian H,.
We diagonalize this Hamiltonian by a unitary transformation. We find a hermitian
operator 4 such that

Hyew =744 H; ef4 (6)
is diagonal.

It is not possible to find a general form for operator A4 for the Hamiltonian H..
From the study of Kondo effect it appears that the most important contribution
to the scattering by an impurity spin comes from the term quadratic in the exchange
integral. This term corresponds to the excitation and de-excitation by the same spin.
So we keep in the new Hamiltonian the unperturbed Hamiltonian and a perturbation
which is quadratic in exchange integral. Thus we write

1.
Hyew = Hg + 7’ (H,, 4],
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where A is obtained from

Hy, = —i[H,, A]-.

It can be checked that the tollowing operator A satisfies the condition
3 J, B
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With the knowledge of A we can calculate the new Hamiltonian. We find:

HRSS = Hy —S(s+ 1)
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where we have multiplied by the number of impurity N,.
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4. The change in free energy

We define the free energy of the system as:

F= —-I?InTr exp[—ﬁHg’::]—Fo—maF

where F, is the free energy of the unperturbed system and N, is the concentration
of impurity (N,/N). F is the change in free energy due to the addition of impurity.
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where F etc. are the Fermi functions.

It has been shown by Suhl and Matthias®’ that the terms containing the Fermi
function contributes negligibly to the change in free energy. So we will calculate
terms in the last bracket only.
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We obtain the change in free energy in the superconducting and normal states as
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The first two terms of each 0F, and 6F, have been calculated by Suhl and
Matthias®. The third term of 8F, can be calculated directly. The third term of
8F, can be calculated by using the substitution

g, = A, Cosh O,
and

& = 4,Cosh @,

and approximating
e®
Cosh O =~ 5

we obtain

8F,— OF, + %L) N2 (0) T2 724, + N3(0) J> 22 Ay +

+ 4N,(0) N4(0) 4,7,

where we have neglected the quadratic terms of the order-parameter and have
assumed 4, > A, near the transition temperature’’®’.

If we write Herring’s differential equation for two-band model as

d4, _ O0F,—@8F, dA, _ 8F,— dF,

dn,  ~ N, @4, dn, = N,04d,°

we obtain the change in the transition temperature of s- and d-band as

S(s+ 1) J, 2% Ns(0)
4N " 115 °

S(s+ 1) " {J: 7 N, (0) + 47 N (0)]'

kTa = kT:: -

KT g = kTes —

4N 1.75

Due to the inter-band scattering the d-band transition temperature decreases
more than the s-band tiansition.

Experimentally available information for niobium that N, (0) > N (0) implies
that the change in transition temperature of s-band is negligible in comparison
to the change in d-band transition temperature, unless J, is too large in comparison
to J, and Js.
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5. Conclusion

The change in transition temperature due to inter-band scattering is asymmetric
with respect to density of states. This asymmetry arises because near the transition
temperature 4, > 4. Validity of the use of perturbation theory needs to be chec-
ked against the experimental result. No experimental result so far is available to
check this validity.

References

1) H. Suhl, B. T. Matthias and L. R. Walker, Phys. Rev. Letters 3 (1959) 552;

2) W. S. Chow, Phys. Rev. 172 (1968) 467;

3) H. Suhl and B. T. Matthias, Phys. Rev. 114 (1959) 977;

4) ((129 g—lse)rring, K. Onnes Memorial Conference on Low Temperature Physics, Leiden, Holland
3

5) M. L. A. MacVicar, Phys. Rev. B2 (1970) 97;

6) J. W. Hafstrom and M. L. A. MacVicar, Phys. Rev. B2 (1970) 4511;

7) I. M. Tang, Phys. Letters, 31 A (1970) 480;

8) J. W. Garland, Jr., Phys. Rev. Letters, 11 (1963) 111;

-9) W. S. Chow, Phys. Rev. 4B (1971) 111;

10) W. S. Chow, Phys. Rev. 180 (1969) 631.



	Vol.5 no.3_pp117-124

