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Abstract: Perturbation theory is used to determine the change in transition
temperature of a two-band superconductor due to the presence of magnetic
impurity. Localized exchange interaction between the impurity spin and
electron is considered. This interaction can lead to both inter-band and
intra-band scattering. We find that the d-band transition temperature
decreases more than the s-band transition temperature due to the addition
of impurity. This distinction arises because the d-band gap is larger than
the s-band gap. 

1. Introduction

Suh1, Matthias and Walker1> proposed the two-band model of superconductor
for transition metals like vanadium and niobium. In this JJlOdcl they allowed the
formation of a Cooper pair not only within the same band (intra-band) but also
between two different bands (inter-band). This model has received considerable
attention within the last few years. By the use of Green's function, Chow2> studied
the effect of non-magnetic impurity on transition temperature. In the intra-band
BCS coupling limir he found that the inter-band impurity scattering plays an im
portant role in determining the change in transition temperature. In this paper
we will study the effect of magnl!tic impurity in a two-band superconductor in the
intra-band coupling limit. 

We will use perturbation theory to determine the change in free energy in the
normal and superconducting state. The method of calculating this change in free 
energy is the same as is used by Suh1 and Matthias3>. This method is based on a 
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unitary transformation which eliminates the perturbation up to the first order from 
the total Hamiltonian. From this transformed Hamiltonian we then calculate the 
free energy and transition temperature by using Herring's differential equation 
method41• 

In Section 2 we will discuss the unpe1 turbed Hamiltonian and the perturbation 
Hamiltonian. In Section 3 we will find the unitary transformation which will 
diagonalize the Hamiltonian up to the first order in perturbation. In Section 4 
we will calculate the change in free energy and the change in transition temperature. 
Section 5 is the conclusion. 

2. Hamiltonian of the system

The Hamiltonian of a two-band superconductor in the intra-band coupling 
limit looks like the following: 

- V4L dtr d�kl d-k"I dk't, (1)
k, k' 

where the symbols have their usual meaning (sec Ref. 1). We have asswned in 
writing this Hamiltonian that the inter-band coupling constant is zero. This means 
that we are not allowing for the inter-band Cooper pair formation. As a result of 
this assumption we will get two energy gaps one corresponding to each band, when 
the superconductor conta.ins no impurity. This approximation 7'81 not only sim
plifies the calculation considerably but also in agreement with the experiment91• 

We diagonalize this Hamiltonian by Bogoliubov-Valatin transformation. This 
consists in replacing the operators c and d by new operators e and/ related as follows: 

where 

(elf.) . (e") + C1r.t = cos 
2 

e,.1 + sm 
2 

e-kl

d (<P")! . (81r.)1+ kl = cos 
2 

tf + sm 2 -kl

(<Pk.) . (<Pk) + d,.1 = cos 2 J,.1 - sm 2 f-kp

sine,. = JI- Lt._ for I e;. I < liw, 
,2 + ,42 

ek Lis 

= 0 for I e;, I > Ii w, 

(2)
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. "" A" r. sin .,,,..1: = ---- ,or 
YJ2 +LI� 

I et I < /iro,

= 0 for I et I > Ii w.
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A, and A., are the energy gaps of s-band and d-bands respectively. Under this
transformation we obtain the Hamiltonian (1) m, 

Ho = _L Ek [e1i ekt + et, eki] + _L E'/Jt,fka, (3) 
k k,a 

where 

The effect of magnetic impurity scattering is equivalent to an exchange scattering
of the conduction electron by the impurity spin. An electron in the s-band not
only can get scattered to a state within s-band (intra-band scattering) but also
can get scatte1 ed to a state in d-band (inter-band scattering). Such is true for the
d-band elections also. 

If we assume the perturbation as perfectly localized around the impurity of
spin S at the site R,, then the perturbation Hamiltonian can be written as 

H' = J D0 L f C, c;: - R1) S1 • s (rj d3 r,

where C, (; - ii,) is Dirac delta function and s 6:) is the spin density of the con
duction electron at the space point ;:: 

Taking the Fourier transform in momentum space we can write the total pertur
bation for both intra-band and inter-band scattering as: 

"·" 
,., q 

(4) 

I>, q 

+ ]3 Lest at, Cqt + s-;., ctr dPI + s� (dt, Cqt - at. Cqt)1,
P, q 

where J I and J 2 are exchange integrals from intra-band scattering and J 3 is the 
exchange integral for inter-band scattering. 
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If we introduce the transformation equation (2) we obtain 

P, q 

+ S'f,., [aN (e;1 e"1 - e;, e91) + /Jpq (41 e::::91 - e_Pl e91 )] +
12 "' 

{ 
+ , + I 

p
' + + 

+ ZN � Spq[apqfp1fq t + 2 pq(/pif-PI +f-ptf91)] + Herm. ConJ. +
p, q 

+ Spq[aN lfptfqt -fpifq1) + PN (JP:f-q l -/ ptfqt)1 += .  + + • ++ } 

+ ::v L { Sj;q c,,N UJi ept + /qt e;I) + �N ce;:1::::ql - e-pf fqt)l +

+ Herm. Conj. + S'f,., [ypq (41 /91 + f� ept - Jt1 ep1 - e;1 /qi ) + 

+ �"" (e;t /"!:. qi -t- eti f"!:. qt + e-PI /qi + ept fqt)l },
where 

(e -e) apq = cos �-" ,

{J' 
. 

(</J" - <P,,) pq=sm 2 , 

(e -e) /Jpq = sin " 2 P , 

(e + <P) ,'pq = cos P 2 " , 

The total Hamiltonian of the system in quasi-particle representation is 

3. Diagonalizig the Hamiltonian

(5) 

To calculate the free energy we need to know the trace of the Hamiltonian H,. 
We diagonalize this Hamiltonian by a unitary transformation. We find a hermitian 
operator A such that 

(6) 
is diagonal. 

It is not possible to find a general form for operator A for the Hamiltonian H,.
From the study of Kondo effect it appears that the most important contribution 
to the scattering by an impurity spin comes from the term quadratic in the exchange 
integral. This term corresponds to the excitation and de-excitation by the same spin. 
So we keep in the new Hamiltonian the unperturbed Hamiltonian and a perturbation 
which is quadratic in exchange integral. Thus we write 
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where A is obtained from 

H1 = - i [H0, A]_.

It can be checked that the following operator A satisfies the condition 

+ l2 A�Fhfqt + 
12--B�q Ut1 /!q1 - I-Pt /qt)+ l3 Gp" (e;1 /qt -Jq1 e.,,r) +2 

+ /3 Dp4 (e;, f!ql - ept fqt)} + Henn. Conj. +

+ S11pq ( /1 AP11 <4t e11t - e;Ji e111) + J1 Bp11 (e;t e!41 + e_.,,1 e4 1) +
, + + , + + 

+ l2 Apq U.,,: fqt -Jpj 1111) + l2 Bpq (/ptf-q1 + f-pifqt) +

+ /3 Gp,, (e;, /41 - e.,,t ft + e.,,, r:i - e;, fq1) + 

+ /3 DP,, Ce;t /!qi + et1 /!qt - e_.,,, f,,1 - e_.,,, /qi ))], 

where 

A - ap" 
pq - Es - Es'

p q

• {J' B = ---,--.
pq Ed+ Ed' 

p q 

B - /JP11 

pq - Es+ E''
p q 

C - 'YP11 
p11 - Es - Ed'

p q 

A' - �"""a�c...:.-._,_ 
pq - Ed - Ed' p q 

D - �PI/ 
pq - Es+ Ed. 

p q 

With the knowledge of A we can calculate the new Hamiltonian. We find: 

HDiag. - H S( + I) N,New - o - S 4 N2 ' 

2 2  2 2 2 2 2 2

L 
[{ J1 aN J,{Jpq 13'YP4 - JJ�Pq } (e+ e +e+ e )+ 

E' - E'
-

E'+ E' - E' - E! E' + E! P: PI PI PI 
p q p q p q p q p, q 

where we have multiplied by the number of impurity N1• 
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4. The change in free energy

We define the free energy of the system as: 

1 Oi.:ag, F = - 7f ln Tr. exp [- P HNew] = Fo - n, 15 F,

where F0 is the free energy of the unperturbed system and N1 is the concentration 
of impurity (N,/ N). �F is the change in free energy due to the addition of impurity.

�F = 
2 s(s +I)) { [J2 (- a;q _ p;q )-

4 N � 1 E' - E' E1 
+ E' 

�q p q p q 

where F etc. are the Fermi functions. 
It has been shown by Suhl and Matthias3> that the terms containing the Fermi 

function contributes negligibly to the change in free energy. So we will calculate 
terms in the last bracket only. 

We obtain the change in free energy in the superconducting and normal states as 

�F = s(s+D "" [2 f __ E;�;-LI: s 4 N L 1 
(E' + E') E' E' + 

Cp, Cq>O p q p q 
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The first two terms of each lJFs and lJFn have been calculated by Suhl and 
Matthias3>. The third term of tJF11 can be calculated directly. The third term of
lJF" can be calculated by using the substitution 

E� = L1s Cosh e,,,

and 

and approximating 

we obtain 

s (s + 1) 2 
) 

2 2 2 2 2 IJF,, - lJF.+ 4N [N,(O J 1 n L1.+Nd(O)J2 n L111 +

+ 4 N, (0) N.i (0) L1.i 1;J, 

where we have neglected the quadratic terms of the order-parameter and have
assumed L111 > Ll. near the transition temperature5 '6>. 

If we write Herring's differential equation for two-band model as 

dL1, lJF11 - lJFs --= -----, d n1 N. (O) L1. 

we obtain the change in the transition temperature of s- and d-band as 

kT = kTo _ S(s + 1) ,: n2 N5 (0) 
" cs 4 N n, l. 7 5 ' 

Due to the inter-band scattering the d-band transition temperature decreases
more than the s-band nansition. 

Experimentally available information for niobium that Nd (0) > N5 (0) implies
that the change in transition temperature of s-band is negligible in comparison
to the change in d-band transition temperature, unless J 1 is too large in comparison
to 12 and J3 . 
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5. Conclusion

The change in transition temperature due to inter-band scattering is asymmetric
with respect to density of states. This asymmetry arises because near the transition
temperature Ll 11 > Ll5• Validity of the use of perturbation theory needs to be chec
ked against the experimental result. No experimental result so far is available to
check this validity. 
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