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SUMMARY 

Surface roughness (SR) and material removal rate (MRR) are performance evaluations of the 

electrical discharge machine (EDM) Sinking process. They depend on the process variables inputted 

in the EDM Sinking. In this study, an attempt was made to improve the sinking EDM process to 

increase MRR and decrease SR in AISI P20 materials with process variables such as electrode type, 

pulse on time (Ton), pulse off time (Toff), and gap voltage (GV). The Taguchi method’s L18 orthogonal 

array is employed in the experiment. Analysis of variance (ANOVA) was performed to determine 

the influence of the process parameters on the response parameters. The experiment was 

completed with 18 triels with two replicates. The proposed method for modelling and optimization 

is the Backpropagation Neural Network (BPNN) combined with Genetic Algorithm (GA). The BPNN 

is developed based on the process variables and the responses measured during the experiments. 

The developed BPNN model is fed into the GA algorithm. Based on the modelling and optimization 

results of both methods, an error of less than 5% is obtained, which proves that the hybrid BPNN-

GA methods are acceptable. 

KEYWORDS: Electrical Discharge Machine (EDM) Sinking; Surface Roughness (SR); Material 

Removal Rate (MRR); Backpropagation Neural Network (BPNN); Optimization; 

Genetic Algorithm (GA); Analysis of Variance (ANOVA). 

1. INTRODUCTION 

The process of cutting hard materials with complex shapes requires modern machining methods 

[1]. One of these modern machining techniques is known as Electrical Discharge Machining 

(EDM). EDM is the most popular and widely used unconventional machining process because it 

can produce components with good surface quality and high dimensional accuracy. Moreover, 
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EDM is an economical, unconventional machining process that can be used to machine 

conductive metals with a high hardness level [2]. 

In the aerospace, automotive, and stamping industries, metal alloys and cement carbides are 

usually machined using EDM. During machining, the material is eroded by melting and 

vaporization caused by the release of energy at the sputtering point, which raises the 

temperatures at the workpiece surface to a very high level [3]. The most widely used EDM 

process is EDM sinking, which is used as a tool for mold making and industry [4]. 

AISI P20 is a material used in mould making industry, and commonly utilized for die casting, 

moulding of plastics, frames for plastic pressure dies, and hydro-forming tools [5]. Several 

researchers have used EDM to cut AISI P20 steel [6 and 7]. 

In the EDM process, several characteristics must be met to create products that meet 

specifications, among which the most frequently discussed are MRR and SR [8]. MRR is the 

amount of metal removed in a given time [9]. Reduced machining time further increases 

production costs. In addition, the SR value becomes a quality that must be achieved. The lower 

the SR value, the better the product quality. However, the high SR value achieved by EDM 

machining has a negative effect on fatigue strength [10]. 

In order to produce high quality, reliable components that meet customer needs, the 

manufacturing process is expected to implement a more cost-efficient strategy without 

compromising the quality of the manufactured products. Improving product quality while 

reducing manufacturing costs requires a decision on the process variables. A precise 

determination of the process variables is able to achieve optimal machining performance. The 

most influential process variables in EDM include GV, current, Ton, Toff, and duty factor [11]. 

Numerous studies have been conducted to determine the most appropriate process variables 

for optimal MRR and SR. The process variables affecting MRR and SR were current, Ton, and Toff 

[12]. Singh et al. investigated MRR and roughness in the Die Sinker EDM process using the 

current, GV, Ton, and Toff process variables [13]. The study by Kumar et al. also found that Ton and 

Toff affect SR in the Die Sinker EDM process [14]. 

The common method for determining the level of machining variables is to refer to work 

experience or machining instructions, although this approach provides unsatisfactory values. 

Another method of selecting the processing variables is to conduct non-technical trials and 

experiments [15]. Effendi et al. also found that determining machining variables through 

experiments is difficult, time-consuming and unaffordable [16]. Therefore, to create models and 

improve machining performance, researchers have used metaheuristic or soft computing 

techniques. Artificial neural networks (ANN) have attracted much interest due to interest due 

to their ability to predict the response of complicated nonlinear systems. 

One of the ANNs commonly used to predict the response of the machining process is the 

Backpropagation Neural Network (BPNN). Models of BPNN that have few inaccuracies can 

accurately estimate the results [17]. Numerous research works on the application of BPNN have 

been conducted in various disciplines, especially in the manufacturing process. Models for 

estimating response variables are frequently generated using BPNN. Chalisgaonkar et al. used 

BPNN to predict the final characteristics of EDM machining process [18]. Shakeri et al. developed 

feedforward backpropagation neural networks to predict MRR and SR in wire-EDM processes. 

There was an error of 0.773 between the experiment results and the prediction. These results 

indicate that neural networks have a high degree of accuracy [19]. 
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BPNN is often combined with metaheuristic methods to optimize response variables in 

machining processes. In the WEDM process, Zhang et al. integrated BPNN and GA to optimize 

process variables for surface integrity [20]. Soepangkat et al. also used the BPNN-GA 

combination for response optimization in the WEDM process [21]. Saffaran et al. applied hybrid 

BPNN and PSO methods to achieve optimal performance of die-sinking EDM processby 

maximizing MRR and minimizing tool wear rate (TWR) and Mohanty et al. applied the same 

method to increase MRR and reduce TWR, SR and radial overcut [11 and 8]. 

According to the above-mentioned literature review, there are no studies on multiresponse 

optimization in the sinking EDM process performed using the two hybrid BPNN-GA methods. 

Therefore, this study aims to investigate the level of variables of the sinking EDM process on 

AISI P20 that produces an optimal response, including minimizing SR and maximizing MRR. The 

backpropagation neural network method is used for modelling, while multi-objective 

optimization is performed using genetic algorithm (GA). 

2. EXPERIMENTAL PROCEDURE 

2.1 MATERIAL AND MACHINING CONDITION  

The machining process was utilized on the EDM Sinking Aristech ZNC EDM LS 550. The material 

was AISI P20 with dimensions of 25mm × 25 mm × 20 mm. The depth of the cut was 0.5 mm. 

The EDM process variables were electrode type, gap voltage (GV), pulse on time (Ton), and pulse 

off time (Toff). The values and their levels are summarized in Table I. The variables consisted of 

two levels for the electrode type and three levels for GV, Ton, and Toff. The responses investigated 

were SR and MRR. The SR value was measured with the Mitutoyo SJ-310. The MRR was 

expressed as a ratio between the weight loss of the workpiece and the duration of the machining 

operation, as shown in Formula 1 [22]. The difference between the workpiece's pre and post-

experiment was the amount of weight loss. 

 ��� = ��� ��
	  (1) 

where Wf and Wi are the final and initial weights of the workpiece, respectively, and t is the 

period of the machining process. 

Table 1  EDM Cutting Variable 

Process Variables Symbol Unit 
Level 

1 2 3 

Electrode Type A - Copper Graphite - 

Gap Voltage (GV) B Volt 30 40 50 

Pulse On Time (Ton) C μs 150 180 250 

Pulse Off Time (Toff) D μs 20 40 60 

2.2 EXPERIMENTAL DESIGN 

The Taguchi method-based L18 orthogonal array was applied in the experimental design. Table 

2 shows the L18 orthogonal array with 18 experimental combinations. experiments on EDM were 

randomized with two replications. The experimental data were subjected to an ANOVA test to 



Mazwan, S.D. Utama, R.A. Fajardini: Multi-objective Optimization in EDM Process Using Backpropagation Neural Network-Genetic 

Algorithm (BPNN-GA) 

84 ENGINEERING MODELLING 37 (2024) 2, 81-97 

see the influence of process parameters on response parameters. Next, the experimental data 

were used for modelling using BPNN. The BPNN results in the form of an objective function were 

then used as a fitness function in optimization. The steps for using the BPNN-ABC method are 

shown in Figure 1. 

Table 2  Orthogonal Array L18 

No. Electrode 
Gap Voltage 

(GV) 
Pulse On Time 

(Ton) 
Pulse Off Time 

(Toff) 

1 1 1 1 1 

2 1 1 2 2 

3 1 1 3 3 

4 1 2 1 1 

5 1 2 2 2 

6 1 2 3 3 

7 1 3 1 2 

8 1 3 2 3 

9 1 3 3 1 

10 2 1 1 3 

11 2 1 2 1 

12 2 1 3 2 

13 2 2 1 2 

14 2 2 2 3 

15 2 2 3 1 

16 2 3 1 3 

17 2 3 2 1 

18 2 3 3 2 

3. MODELLING AND OPTIMIZATION 

3.1 BACKPROPAGATION NEURAL NETWORK 

Rumelhart et al. (1985) initially introduced BPNN in 1985. The BPNN model is considered the 

most efficient method for modelling different cases. Before modelling, data on process variables 

and response measurements are first normalized with a constraint of -1 and 1. The normalizing 

calculation is included in Formula 2 [23]. 

 
 = �2 × (������������)
(�����������������)� − 1 (2) 

where the normalized process parameter and response parameter data results are represented 

by the variable N, and Exp is the data level of the process variables, and the response used from 

the measurement results. 

The input layer, hidden layer, and output layer constitute the BPNN. Neurons in each layer 

connect within layers. The network architecture with the smallest mean square error (MSE) is 

found through the approach of trial and error. This process begins with determining the BPNN 

parameters, such as the total amount of hidden layers and neurons. 
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Fig. 1  Flowchart 

Training, testing, and validation data usage proportions are 70%, 15%, and 15%, respectively 

[16]. Due to its rapid convergence rate when compared to other training techniques, the 

Levenberg-Marquardt (LM) algorithm is chosen for training [24]. Formula 3 is used to obtain 

the error value, which is then used to compare the BPNN prediction results with the 

experimental values [25]. The resulting BPNN model and objective function are stored and 

applied to optimize the response variables. 

 ����� =  !"���#$%%
!"��

× 100%  (3) 

where DExp indicates the experimental value and BPNN the predicted value. 
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3.2 GENETIC ALGORITHM (GA) 

GA is an optimization technique that refers to the concept of natural evolution. GA techniques 

are mainly applied to solve problems related to optimization, which can determine the optimal 

global solution. The GA process begins with an initial solution set consisting of several 

components or genes known as chromosomes. According to some principle or by randomness, 

the initial population of chromosomes is created. After the initial population is evaluated based 

on the fitness function, new solutions are applied for a new population. Several GA procedures 

are performed to generate new populations, including selection, crossover, and mutation [26]. 

Previous population solutions are chosen based on suitability, suitability, and probability of 

being selected. The selected solution creates a group of parents who are used to produce 

offspring. Through mutations and crossovers, the offspring produced new populations [27]. 

The procedures required in the GA optimization process include randomly initializing the 

population, evaluating objective functions, determining fitness functions, and applying genetic 

parameters such as selection, crossover, and mutation until the process meets the termination 

criteria. 

4. RESULTS AND DISCUSSION 

4.1. EFFECT OF PROCESS VARIABLES 

The goal of the ANOVA test was to identify the process variables that significantly affected the 

response. The ANOVA test was carried out using experimental data. ANOVA was carried out on 

each response with a significance value (α) of 0.05. A process variable is significant to the 

response when it has a P-value less than 0.05 at the 95% confidence level. The percentage of 

contribution was used to determine the contribution of various process variables to the 

responses towards the total variance. 

According to Table 3 from the implementation of the ANOVA to variations in MRR, all of the 

variables analysed, including the type of electrode, GV, Ton, and Toff, have a P-value less than 0.05 

at the 95% confidence level. As a result, it could be said that these variables were significant for 

the MRR. Among the variables employed in the present study, Ton had the largest percentage 

contribution of 22.32%. Additionally, other variables including type of electrode, GV, and Toff had 

less contribution with respective contributions of 18.39%, 12.61%, and 11.68%. For SR based 

on Table 3, Remark, the type of electrode was the most important variable, contributing 53.16% 

of the total variance. Ton and Toff took second and third place, contributing 35.01% and 3.73% of 

the total variance, respectively. At the same time, GV did not significantly contribute to SR. 

Table 3 confirms that Ton and Toff significantly affect the MRR and SR values. The same findings 

that Ton and Toff were the main variables affecting the MRR and SR values in the EDM sinking 

process were reported by Dikshit et al. [2] and Bédard et al. [28]. In addition to Ton and Toff, the 

electrode type was also found to affect significantly MRR and SR [29]. 

The EDM sinking process produces surface contours in the form of craters and ridged surfaces. 

The craters on the surface were formed as molten material that was blasted out of the surface 

due to the discharge pressure. Then the molten material was submitted tocooling by the 

dielectric fluid. Large crater sizes produced higher surface roughness. Also, deep craters 

indicated a high metal removal rate and poor surface roughness [30]. 
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Table 3  ANOVA for Material Removal Rate (MRR) and Surface Roughness (SR) 

 
Degrees 

of 
Freedom 

Sum of 
Square 

Mean Square F-Value P-Value 
percent 

contribution 
(%) 

For Material Removal 
Rate (MRR) 

    
 

 

Electrode Type 1 0.001308 0.001308 14.71 0.001 18.39 

Gap Voltage (GV) 2 0.000897 0.000448 5.04 0.013 12.61 

Pulse On Time (Ton) 2 0.001588 0.000794 8.93 0.001 22.32 

Pulse Off Time (Toff) 2 0.000831 0.000416 4.67 0.018 11.68 

Error 28 0.002490 0.000089   35.00 

Total 35 0.007114    100.00 

For Surface Roughness 
(SR) 

      

Electrode Type 1 13.0189 13.0189 205.95 0.000 53.16 

Gap Voltage (GV) 2 0.2149 0.1075 1.70 0.201 0.88 

Pulse On Time (Ton) 2 85743 4.2871 67.82 0.000 35.01 

Pulse Off Time (Toff) 2 0.9136 0.4568 7.23 0.003 3.73 

Error 28 1.7700 0.0632   7.23 

Total 35 24.4916    100.00 

 

Figures 2 and 3, respectively, show graphs that demonstrate the effect of the process variables 

for MRR and SR. Figure 2 indicates how the use of copper electrodes increased MRR. Kuppan et 

al. came to same conclusion [31]. The greatest MRR value was reached by GV at the intermediate 

level, whereas the increase of Ton and Toff caused the decrease of MRR. More energy was released 

at a longer Ton, which led to a more powerful discharge and resulted in a high metal removal rate 

with deep craters on the surface of the workpiece. However, Figure 3 shows that as Ton increases, 

the MRR decreases. This may be caused by excessive melting of the material, which causes build-

up between the tool and the workpiece, and the MRR to decrease [2]. The high level of Ton 

delivered less energy to the surface during machining due to material build-up, resulting in low 

MRR. On the other hand, a spark disappeared during the Toff period, so the cutting process did 

not occur. A low Toff value would increase the machining speed, which might raise the MRR. 

In addition, Figure 3 demonstrated that employing graphite electrodes reduced the SR [32]. The 

SR value was lowered as GV and Ton were enhanced [33]. Furthermore, a high Toff caused the 

increase of SR. This possibly happened because some of the molten metal did not wash with the 

dielectric fluid but re-deposited on the surface and later produces a higher surface roughness. 
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Fig. 2  Response Graphs for the Mean Values of Material Removal Rate (MRR) 

 

 

Fig. 3  Response Graphs for the Mean Values of Surface Roughness (SR) 

4.2. BPNN RESULT 

The values of the response variables including MRR and SR were predicted using BPNN. For 

training, testing, and validation, the data collected for each output response were divided 

randomly. A trial-and-error technique was used to obtain a BPNN architecture with the smallest 

MSE value. The following BPNN parameters were implemented in the trial-and-error method: 
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• Four input layers 

• Two output layers 

• 1 to 5 hidden layers 

• 1 to 10 neurons in hidden layers 

• Logsig and tansig as activation functions 

• Training function using trainlm. 

• Leaning rate 0.01. 

• Maximum epochs 1000. 

Based on the trial-and-error results, the minimum MSE value was obtained for an architecture 

with five hidden layers with five neurons in each hidden layer, as shown in Figure 4. 

Electrode TYpe

Gap Voltage (GV)

Pulse On Time (Ton)

Pulse Off Time (Toff)

Input Layer Hidden Layer

Material Removal Rate 

(MRR) 

Surface Roughness (SR)

Output Layer

tansig purelin
 

Fig. 4  BPNN Network Architecture 

The activation function used for each hidden layer was tansig and for the output layer purelin. 

The value of MSE for MRR and SR was 9.837e-05 and 1.042e-04, successively. Figures 5 and 6 

represent a comparison graph between BPNN prediction results and experiment data, whereas 

Table 4 displays the distributed data for training, testing, and validation, including the error 

values between predictions and experiments. MRR and SR achieved an average BPNN prediction 

error value of 0.303% and 0.43%, successively. Each response's average error value was less 

than 5%, proving that BPNN had accurately predicted all of the output responses [34]. 
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Fig. 5  Comparison Graph Between BPNN and Target Predictive Results for Surface Roughness 

 

 

Fig. 6  Comparison Graph Between BPNN and Target Predictive Results Material Removal Rate 
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Table 4  Comparison of Experimental Results with BPNN Predictions 

No 
Material Removal Rate (MRR) (g/min) Surface Roughness (SR) (μm) 

Bp Er Error % Data Bp Er Error % Data 

1 0.0445 0.0444 0.225 Tr 4.961 4.975 0.281 Tr 

2 0.0587 0.0584 0.513 Tr 4.825 4.827 0.041 Ts 

3 0.0387 0.0388 0.257 Tr 3.976 3.973 0.075 Tr 

4 0.067 0.0676 0.887 Tr 4.678 4.655 0.494 Tr 

5 0.0552 0.0553 0.18 Tr 4.426 4.395 0.705 Tr 

6 0.0416 0.0421 1.187 Tr 4.330 4.330 0 Tr 

7 0.0613 0.0612 0.163 Tr 4.495 4.496 0.022 Tr 

8 0.0374 0.0376 0.531 Tr 4.779 4.779 0 Tr 

9 0.0596 0.0594 0.336 Ts 3.764 3.761 0.079 Tr 

10 0.0248 0.0249 0.401 Tr 3.984 3.988 0.1 Tr 

11 0.0516 0.0517 0.193 Tr 3.768 3.789 0.554 Tr 

12 0.0206 0.0206 0 Tr 2.336 2.335 0.042 Tr 

13 0.0695 0.0692 0.433 Tr 3.884 3.876 0.206 Tr 

14 0.0433 0.0431 0.464 Tr 3.674 3.678 0.108 Val 

15 0.0344 0.0341 0.879 Tr 1.939 1.914 1.306 Ts 

16 0.0469 0.047 0.212 Ts 3.808 3.806 0.052 Tr 

17 0.0404 0.0403 0.248 Tr 3.235 3.237 0.061 Ts 

18 0.0256 0.0257 0.389 Val 2.758 2.725 1.211 Tr 

19 0.0445 0.0448 0.669 Ts 4.961 4.962 0.02 Val 

20 0.0587 0.0588 0.17 Tr 4.825 4.823 0.041 Val 

21 0.0387 0.0389 0.514 Val 3.976 3.981 0.125 Tr 

22 0.067 0.067 0 Tr 4.678 4.702 0.51 Val 

23 0.0552 0.0551 0.181 Tr 4.426 4.427 0.022 Tr 

24 0.0416 0.041 1.463 Tr 4.33 4.329 0.023 Tr 

25 0.0613 0.0615 0.325 Tr 4.495 4.496 0.022 Tr 

26 0.0374 0.0372 0.537 Tr 4.779 4.761 0.378 Tr 

27 0.0596 0.0596 0 Val 3.764 3.769 0.132 Val 

28 0.0248 0.0248 0 Tr 3.984 3.981 0.075 Tr 

29 0.0516 0.0517 0.193 Ts 3.768 3.748 0.533 Tr 

30 0.0206 0.0203 1.477 Val 2.336 2.336 0 Tr 

31 0.0695 0.0696 0.143 Tr 3.884 3.884 0 Tr 

32 0.0433 0.0437 0.915 Tr 3.674 3.672 0.054 Tr 

33 0.0344 0.0348 1.149 Val 1.939 1.987 2.415 Tr 

34 0.0469 0.0469 0 Tr 3.808 3.808 0 Tr 

35 0.0404 0.0405 0.246 Ts 3.235 3.236 0.03 Ts 

36 0.0256 0.0256 0 Tr 2.758 2.792 1.217 Ts 

Average 0.43  Average 0.303  

Note: Bp = BPNN prediction result, Er = Experiment Result, Tr = Training, Ts = Testing, Val = 

Validation 

Figures 7 and 8 show that the BPNN output or prediction results are in very good agreement 

with the experimental values, namely the correlation coefficient achieved for training, testing, 

validation, and all data for each response is close to 1. The results revealed a perfect correlation 

between the predicted and target values [35]. The selected architecture was then utilized as an 

optimization's objective function employing the GA techniques. 
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Fig. 7  Correlation Coefficient Graph for Training, Testing, Validation, and All Data for Material Removal 

Rate 

 

 

Fig. 8  Correlation Coefficient Graph for Training, Testing, Validation, and All Data for Surface Roughness 
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4.3. FITNESS FUNCTION 

The fitness function was used to achieve optimum value. Fitness functions are determined based 

on their objective or modified functions. This research provided the fitness function based on 

the objective function generated by BPNN. The objective function produced from BPNN 

significantly affects the optimization results in the optimization process using the metaheuristic 

method. The smaller the MSE of the BPNN architecture used, the better the optimization results. 

The fitness function used for GA optimization is according to Formula 4. The equation was used 

to get the maximum fitness function. 

 max +(,) = -./0 − -./1 (4) 

where the objective function of MRR and SR are denoted by Obj1 and Obj2, respectively. 

4.4. GENETIC ALGORITHM RESULT 

The GA parameters employed during the optimization are as follows: 

• Size of population: 200 

• Rate of crossover: 0.7 

• Rate of mutation rate: 0.1 

• Type of selection: Roulette wheel method 

• Stopping criteria: 200 iterations 

Table 5 contains the GA optimization values for corresponding EDM process variables. The 

BPNN prediction results based on these EDM process variables achieved successive results for 

MRR and SR at 0.0750 g/min and 1.914 μm, respectively. Figure 9 illustrates the GA iteration 

graph, which shows that the iteration began to converge on the 140th iteration with an 

optimization time of 1788.84 seconds. Furthermore, it can be seen from Table 5 that the SR 

reduced and the MRR improved with the optimized variables. Implementing the GA resulted in 

a 7.65% increase in MRR and a 50.72% reduction in SR. The optimized variable increased 

productivity with high MRR and workpiece surface quality in terms of low SR values compared 

to experimental process variables. Consequently, it can be confirmed that the proposed 

technique provides the most effective method to increase the performance of the EDM process. 

 

Table 5  Genetic Algorithm Optimization Result 

Method 

Process Variables Responses 

Optimization 
Time (s) Electrode 

Type 

Gap 
Voltage 
(Volt) 

Pulse On 
Time 
(μs) 

Pulse Off 
Time 
(μs) 

Material 
Removal 

Rate 
(g/min) 

Surface 
Roughness 

(μm) 

Genetic 
Algorithm 
(GA) 

1 48 207 20 0.0750 1.914 1788.84 
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Fig. 9  Iteration Graph GA 

5. CONCLUSION 

In this research, the EDM sinking variable optimization process was performed on the AISI P20 

and produced optimal responses (maximum MRR and minimum SR) using BPNN as modelling 

and GA as optimization technique. The conclusions of this study are as follows: 

• ANOVA shows that the main factors affecting MRR in the EDM sinking process are the Ton 

followed by the type of electrode, GV, and Toff. In addition, the electrode type, Ton, and Toff 

are the most dominant variables affected by SR. 

• BPNN was used to predict the response of the EDM sinking process, including MRR and 

SR. The BPNN architecture configuring five hidden layers and five neurons for each 

hidden layer was used with MSE 9.837e-05 for MRR and 1.042e-04 for SR. 

• The differences between the experimental measurements and the BPNN prediction are 

less than 5%, indicating that the BPNN modelling is advantageous as it is very close to the 

experimental results. 

• The GA optimization method result shows that the optimum response can be achieved by 

employing copper electrodes, GV at 48 volts, Ton at 207 μs, and Toff at 20 μs. 

• The hybrid method for modelling and optimization using BPNN-GA is effective, and the 

results have good accuracy with error values between predictions and confirmation 

experiments below 5%. Both methods can provide accurate process variables to generate 

an optimum response value. 
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