
doi: https://doi.org/10.5599/admet.2364   781 

ADMET & DMPK 12(5) (2024) 781-796; doi: https://doi.org/10.5599/admet.2364  

 
Open Access : ISSN : 1848-7718 

http://www.pub.iapchem.org/ojs/index.php/admet/index 
Original scientific paper 

Predicting the acute aquatic toxicity of organic UV filters used in 
cosmetic formulations 

Chrysanthos Stergiopoulos1,*, Fotios Tsopelas1, Maria Ochsenkühn-Petropoulou1 
and Klara Valko2 
1Laboratory of Inorganic and Analytical Chemistry, School of Chemical Engineering, National Technical University of 
Athens, Iroon Polytechneiou 9, Zografou 157 80, Athens, Greece 
2Business & Technology Centre, Bessemer Drive, Stevenage, Herts, SG1 2DX, United Kingdom 

*Coresponding Author: E-mail: chrisxp3@hotmail.com  

Received: May 13, 2024; Revised: August 30, 2024; Published: September 11,2024 

 

Abstract 

Background and purpose: Organic UV filters are commonly used in sunscreen and cosmetic formulations to 
protect against harmful UV radiation. However, concerns have emerged over their potential toxic effects on 
aquatic organisms. This study aims to investigate the acute aquatic toxicity of 13 organic UV filters and 
determine whether phospholipid binding, measured through biomimetic chromatographic methods, is a 
better predictor of toxicity than the traditionally used octanol-water partition coefficient (log P). 
Experimental approach: The chromatographic retention of the 13 UV filters was measured on an 
immobilized artificial membrane (IAM) stationary phase to assess phospholipid binding. These 
measurements were then applied to previously established predictive models, originally developed for 
pharmaceutical compounds, to estimate acute aquatic toxicity endpoints of 48-hour LC50 for fish and the 48-
hour EC50 (immobilization) for Daphnia magna. Key results: Phospholipid binding was found to be a more 
reliable predictor of the acute aquatic toxicity of UV filters compared to log P. The toxicity was primarily 
driven by lipophilicity and charge, with negatively charged compounds exhibiting lower toxicity. Conclusion: 
The study demonstrates that phospholipid binding is a better descriptor of UV filter toxicity than log P, 
providing a more accurate method for predicting the environmental risk of these compounds. This insight 
can guide the development of more environmentally friendly sunscreens by reducing the use of highly 
lipophilic and positively charged compounds, thus lowering their aquatic toxicity.  

©2024 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

Sun exposure is one of the primary contributors to extrinsic skin aging, profoundly impacting the skin. It 

is estimated to cause up to 90 % of visible skin aging, especially in individuals lacking the natural protection 

provided by higher levels of melanocytes [1]. Photoaged skin becomes wrinkled, lax, rough, and unevenly 

pigmented, with increased epidermal thickness and connective tissue alterations [2]. Thus, protecting the 

skin from prolonged sun exposure is crucial to reduce photoaging. Mineral sunblocks, such as titanium 

dioxide, zinc oxide, and various organic compounds, can be applied topically to shield the skin from harmful 
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UVA and UVB rays. By 2005, over 300 products marketed as sun protection were available [3], containing 

more than 25 different UV filter chemicals. Most sun protection products function by absorbing, reflecting, 

or scattering sunlight [4]. In the USA, chemical UV filters must be approved by the FDA and are utilized in 

various sunscreen and cosmetic products [5]. 

The effectiveness of many organic UV filters is based on their ability to absorb UV radiation. Their 

effectiveness is measured by the Sun Protection Factor (SPF) [6]. Most sunscreen products contain active 

ingredients that protect against UVB rays, which have wavelengths ranging from 290 to 320 nm and are the 

primary cause of sunburn. Some sunscreens also protect against UVA rays, which range from 320 to 400 nm, 

penetrate more deeply into the skin and can cause cancer [7]. In the USA, the FDA considers these 

compounds as drugs that must be approved for cosmetic formulations, while European law classifies them 

as cosmetic ingredients [8]. These compounds typically contain aromatic rings with various substituents and 

exhibit UV absorbance spectra with two maxima, one above 320 nm and the other below 300 nm [7]. In this 

study, we investigated the properties of thirteen synthetic organic compounds used in sunscreen 

formulations. Figure 1 shows typical UV spectra with the characteristic double maxima of UV absorbance for 

two UV filter compounds.  

a 

 
Wavenumber, nm 

b 

 

Wavenumber, nm 
Figure 1. UV spectra of two investigated UV filter compounds used in sunscreen products: UV spectrum of  

a) octocrylene and b) ensulizole 

Sunscreen products can enter the marine environment both directly through activities like swimming and 

bathing and indirectly through wastewater discharges. Wastewater treatment plants are often unable to 

efficiently remove high concentrations of organic UV filters [9], and the natural degradation of these 

compounds is slow, leading to their accumulation in the environment. These compounds are present in 

effluents and freshwater sources that eventually reach the sea. The first analyses of organic UV filters in 
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swimming pools and seawater samples were conducted in 2002 [9]. Since 2015, there has been an increase in 

publications investigating the effects of sunscreen products on coral reefs and various coastal areas [10,11]. The 

impact depends on exposure levels, emissions, and resulting field concentrations. 

In coastal areas, the release of UV filter compounds into natural waters is inevitable due to the large amounts 

of personal care products produced and used. These formulations are continuously introduced into the aquatic 

environment during regular use, primarily through municipal sewage treatment plants [12]. The occurrence and 

concentrations of the seven most frequently used UV filters in river and lake sediments were investigated over 

six months using gas chromatography-mass spectrometry [13]. UV filter concentrations in river sediments 

remained low and constant over time, while lake sediments showed high levels during summer, with 

concentrations dropping in autumn. Cosmetic ingredients can also be found in human wastewater, eventually 

entering the environment unless specifically removed from the wastewater system [14,15]. In this way, 

sunscreen compounds contaminate the environment similarly to pharmaceutical compounds taken orally. 

Various studies have documented the adverse effects of UV filters on marine environments and 

organisms, including mortality, growth inhibition, reproduction failure due to endocrine disruption, coral 

bleaching, and accumulation in food chains [16,17]. Tsui et al. [18] analysed UV filter occurrences, 

distribution, and potential ecological risks in various coastal areas, identifying the most contaminated regions 

as Hong Kong, Spain, Los Angeles, New York, and Oslo. A 2015 review highlighted sunscreen compounds as a 

new environmental risk associated with coastal tourism, listing common sun protection compounds, their 

concentrations in various products, and their presence in coastal waters and rivers [19]. Recent studies have 

revisited the toxic effects of UV filters from sunscreens on coral reefs, suggesting they may contribute to 

coral decline at an unprecedented pace. Regulatory measures should be thoroughly evaluated based on 

actual evidence [11]. The complexity of sunscreen products makes it challenging to replace one UV filter with 

another, as multiple compounds are usually required to achieve sufficient broad-spectrum protection.  

UV filter compounds are found in high concentrations in coastal areas frequented by tourists, posing a 

significant risk to aquatic life. Therefore, evaluating the aquatic toxicity of these compounds is crucial for the 

cosmetic industry to select chemicals that are least harmful to marine environments. In our previous 

publications, the aquatic toxicity of pharmaceuticals has been modelled using various measured and 

calculated properties of compounds [20]. It was discovered that biomimetic HPLC measurements, particularly 

phospholipid binding [21,22], can predict the aquatic toxicity of xenobiotics. Biomimetic HPLC measurements 

using an immobilized artificial membrane (IAM) stationary phase offer a fast and reliable method to measure 

the phospholipid binding of compounds, which correlates with their toxicity [23]. In this study, the 

phospholipid binding of thirteen compounds used in various sunscreen products is measured and their 

aquatic toxicity is predicted using established model equations [20]. The UV filters investigated, along with 

their structures, are shown in Figure 2. It is highlighted that the UV filter effect is not related to lipophilicity 

and, consequently, not to the aquatic toxicity of the compounds. This conclusion can assist in selecting UV 

filters that pose the least potential risk to the environment and aquatic life in natural waters. 

Experimental 

UV filters under investigation  

A total of thirteen UV filter compounds commonly used in cosmetic formulations were investigated in this 

manuscript and were obtained from Sigma-Aldrich (Merck, Gillingham, Dorset, UK). These include, in 

alphabetical order, the following compounds: 4-aminobenzoic acid, avobenzone, dioxybenzone, ensulizole, 

homosalate, meradimate, octinoxate, octisalate, octocrylene, oxybenzone, padimate O, sulisobenzone and 
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trolamine salicylate. The compounds were dissolved in dimethylsulfoxide at 10 mmol/L concentration and 10 µL 

stock solutions were diluted down with DMSO to 100 µL before injecting 5 µl into an Agilent 1100 HPLC system. 

Chromatograms were recorded using a photodiode array detector (DAD) monitoring 220, 230, 254 and 280 nm. 

 

Figure 2. Structure of investigated UV filter compounds 

Database search for experimental ecotoxicological values 

Experimental 48 h EC50 values (immobilization) to water flea (Daphnia magna) and 96 h LC50 values to fish 

species expressed in mg/L were collected from the European Chemical Agency database (ECHA) [24] and 
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converted into molar concentrations (M) before being converted to their negative logarithm p values (-log). 

All values are presented in Table 1S in the Supplementary material.  

Physicochemical properties  

ADME Boxes v.3.0 software (Advanced Chemistry Development Inc., Toronto, ON, Canada) was used to 

extract various physicochemical parameters of the investigated compounds, such as octanol-water partition 

(log P) and distribution at pH value of 7.4 (log D7.4) coefficients, hydrogen bond donor (HBD) and acceptor 

(HBA) groups, Abraham’s hydrogen bond acidity (A) and basicity (B), total polar surface area (TPSA), 

molecular weight (MW), as well as the molecular fractions of positively charged (F+), negatively charged (F-) 

and zwitterionic (F 

z) species at pH 7.4. The collected physicochemical parameters are presented in Table 1. 

Table 1. Physicochemical properties of UV-filter compounds investigated, values of F+ and F 

z are 0.00 for all compounds  

Compound log P log D7.4 MW, g/mol TPSA, Å² F- A B HBD HBA 

4-Aminobenzoic Acid 0.83 -1.60 137 63.2 1.00 0.94 0.60 3.00 3.00 

Avobenzone 4.58 4.53 310 43.4 0.10 0.00 1.08 0.00 3.00 

Dioxybenzone 2.99 2.89 244 66.8 0.18 0.41 0.70 2.00 4.00 

Ensulizole 0.31 -3.73 274 91.4 1.00 0.66 1.43 2.00 5.00 

Homosalate 4.90 4.90 262 46.5 0.00 0.13 0.49 1.00 3.00 

Meradimate 4.64 4.64 275 52.3 0.00 0.18 0.83 2.00 3.00 

Octinoxate 5.71 5.71 290 35.5 0.00 0.00 0.78 0.00 3.00 

Octisalate 5.10 5.10 250 46.5 0.00 0.13 0.45 1.00 3.00 

Octocrylene 7.27 7.27 361 50.1 0.00 0.00 0.86 0.00 3.00 

Oxybenzone 3.50 2.89 228 46.5 0.18 0.13 0.62 1.00 3.00 

Padimate O 5.31 5.31 277 29.5 0.00 0.00 0.84 0.00 3.00 

Salicylic acid (Trolamine Salicylate) 2.04 -1.89 138 57.3 1.00 0.71 0.38 2.00 3.00 

Sulisobenzone 0.28 -4.71 308 109 1.00 0.45 1.37 2.00 6.00 

Predictive ecotoxicity models 

Models based on the phospholipid binding CHIIAM of a set of pharmaceutical compounds for the prediction 

of their acute aquatic toxicity to fish species (48 h LC50) and water flea (Daphnia magna) (48 h EC50) 

established in our previous publication [20] were used in order to make new predictions regarding the acute 

aquatic toxicity of the UV filter compounds. Corresponding models constructed based on log P values were 

also used for comparison. The models, Equations (1) to (4), along with their statistical parameters 

(determination coefficients - R, R2 and adjusted R2, R2
adj, standard deviation - s and Fisher test - F) are 

presented in Table 2. In addition, Tables 2S and 3S in the Supplementary material include the training set of 

the pharmaceutical compounds used for the model construction, their CHIIAM values, and their 

physicochemical parameters, respectively. 

Table 2. Predictive models used for UV-filter ecotoxicity predictions 
Organism Equation R R2 R2

adj s F 

Fish 
pLC50 = 0.048(± 0.004) CHIIAM + 2.406 (±0.116)  (1) 0.924 0.854 0.848 0.384 157 

pLC50 = 0.417(± 0.055) log P - 0.867 (±0.228)×F- + 2.984 (±0.166) (2) 0.858 0.735 0.715 0.527 36.1 

Water flea 
(Daphnia magna) 

pEC50 = 0.038 (± 0.003) CHIIAM + 2.691 (± 0.101)  (3) 0.907 0.823 0.817 0.335 125 

pEC50 = 0.310 (± 0.049) log P - 0.693 (± 0.204) F- + 3.177 (±0.148) (4) 0.816 0.665 0.639 0.471 25.8 

Measurement of phospholipid binding using IAM chromatography 

The phospholipid binding was measured using an IAM PC.DD2 column with dimensions of 100×4.6 mm 

(Regis Technologies Inc., Morton Grove, IL, USA). The gradient retention times were measured using a 

50 mmol/L ammonium acetate mobile phase with the pH adjusted to 7.4. The mobile phase flow rate was 

1.5 mL/min. The acetonitrile gradient was applied to reach 90 % in 4.75 min. The 90 % acetonitrile concen-

tration was maintained for an additional 0.5 min (to 5.25 min) and returned to 0 % by 5.5 min. The cycle time 
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was 6 min, plus an additional 1 min equilibration time was applied while the injector prepared for the next 

injection. The standard deviation in the retention time measurements was ±0.005 min derived from 3 

repeated injections. The gradient retention times were calibrated with the acetophenone homologues for 

which the Chromatographic Hydrophobicity Index values on the IAM column (CHIIAM) have been established 

using isocratic measurement [25]. The standard error ranged from 0.1 to 0.8 CHIIAM values. CHIIAM approxi-

mates the acetonitrile concentration in the mobile phase when the compound elutes. Table 4S in the 

Supplementary material shows the calibration set of compounds and their predetermined CHIIAM values. 

CHIIAM values above 45 indicate strong phospholipid binding.  

Ecotoxicity predictions of EPI Suite software 

EPI Suite Software v.4.11 (US EPA, Washington, DC, USA) was used to obtain predicted ecotoxicological 

endpoints since this software is widely accepted in environmental sciences [26]. The ECOSAR module 

implemented in EPI Suite software was employed to predict 96 h LC50 values for fish and 48 h LC50 values for 

daphnids. They are presented in Table 5S in the Supplementary material. It should be noted that for a single 

given structure, the ECOSAR module may provide more than one result if the entered molecule contains the 

base structure from multiple classes as identified in the ECOSAR class definition sheets. In such cases, the 

value corresponding to the most suitable class of the UV filter under study was considered.  

Statistical software and methods 

JMP v.13.0 (SAS Institute Inc., Cary, NC, USA) and SPSS 23.0 (IBM SPSS Statistics, Chicago, IL, USA) were 

used for the statistical calculations and the principal component analysis (PCA).  

The predictive ability of the models was evaluated using residual values (ei), root mean square error of 

prediction (RMSEP), relative standard error of prediction (RSEP, %) and bias. Residual values were defined as: 

e = yi - ŷi (5) 

where yi is the observed (experimental) value of sample i and ŷi the predicted value of sample i. In that aspect, 

RMSEP was calculated according to Equation 6: 
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where n is the total number of test compounds. Subsequently, RSEP and bias were calculated using Equations 

(7) and (8), respectively: 
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Applicability domain of the models was defined using Williams Plot by plotting (externally) studentized 

residuals versus leverage values. Leverage hi is defined by Equation (9):  

hi = [H]ii = xi
T(XTX)-1xi (9) 

where xi is the descriptor row-vector of the query compound, and X is the n×p matrix of p model descriptor 

values for n training set compounds. The superscript T refers to the transpose of the matrix/vector. The 

warning leverage h* was fixed at (Equation (10)): 

1 1
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n n
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where n is the number of training compounds and k is the number of model parameters plus one (p + 1).  

Studentized residuals are equal to: 

( )

i
i

i-i

  
1-

e
r

h
=  (11) 

where σ(-i) is the standard error of the residuals excluding the ith observation. 

Results and discussion 

Investigating the physicochemical profile of UV filters  

Before predicting the ecotoxicity of UV filter compounds, their physicochemical profile was scrutinized by 

performing a PCA score plot based on their physicochemical properties presented in Table 1. During the PCA, 

six principal components were extracted with cumulative determination coefficient R2
cum = 0.911 and cross-

validated correlation coefficient Q2
cum = 0.539. The scores of the compounds were plotted between the first 

two components, which explains 76.1 % of the variance, as seen in Figure 3.  
 

 
Figure 3. Score plot of the investigated UV filters based on their physicochemical properties 

Based on the position of the compounds in the plane between the two components, it is evident that 

there is a considerable variance in the properties among the investigated compounds. One primary group 

can be identified with respect to the position of the compounds with the first component. More 

specifically, this group is found on the lefthand of the first component and includes the compounds avo-

benzone, homosalate, meradimate, octinoxate, octisalate, octocrylene, oxybenzone and padimate O. It is 

labelled in Figure 3 with a red circle. The main characteristics of the aforementioned compounds are their 

high lipophilicity values (log P > 4.5) and their predominantly non-ionizable character. Taking into account 

that high lipophilicity values, especially log P greater than 5, show an increased risk for promiscuity and 

toxicity [27], it is important to investigate the toxic potential of such compounds to aquatic organisms. 

All other compounds fall on the righthand side of the first component and are far away from the first 

group. These compounds include the following: aminobenzoic acid, dioxybenzone, ensulizole, sulisobenzone 

and trolamine salicylate and are labelled in Figure 3 with blue circles. Contrary to the previous group, these 
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compounds are much less lipophilic (log P < 3) and negatively charged at pH 7.4. This difference in their 

physicochemical properties in comparison to the first compound group explains their distinguished 

positioning on the plane. These compounds can be further divided into two subgroups according to the 

second component, with the compounds ensulizole and sulisobenzone lying above the second component 

and further away from the rest of the compounds, while the compounds aminobenzoic acid, dioxybenzone 

and trolamine salicylate being located below the second component. 

Biomimetic HPLC phospholipid binding 

Table 3 contains the HPLC phospholipid binding data (CHIIAM) of the thirteen UV filter molecules 

investigated. As seen from Table 3, the investigated compounds show mainly either strong or weak 

phospholipid binding.  

Table 3. Chromatographic phospholipid binding of investigated UV filters 

Compound CHIIAM 

4-Aminobenzoic Acid 3.30 

Avobenzone 53.4 

Dioxybenzone 39.9 

Ensulizole 13.2 

Homosalate 56.8 

Meradimate 56.9 

Octinoxate 54.2 

Octisalate 55.1 

Octocrylene 60.0 

Oxybenzone 40.8 

Padimate O 53.6 

Sulisobenzone 14.3 

Trolamine salicylate (Salicylic acid) 1.13 

Strong phospholipid binding (CHIIAM > 45) can be attributed to high lipophilicity, since hydrophobicity is the 

predominant force of partitioning [28]. Indeed, compounds that show such CHIIAM values, such as avobenzone, 

homosalate, meradimate, octinoxate, octisalate and octocrylene, possess at the same time higher log P values 

(> 4.5). This characteristic is further enhanced by their lack of ionization. On the other hand, compounds with 

weaker phospholipid binding (CHIIAM < 20), such as aminobenzoic acid, sulisobenzone, ensulizole and trolamine 

salicylate, are less lipophilic (log P < 2) and 100 % negatively charged at pH 7.4. It also means that they form a 

salt with the mobile phase buffer. Trolamine has no UV, and it is not detected in our measurements. Only 

salicylic acid plays a role in the sunscreen effect. Trolamine salt reduces skin irritation caused by salicylic acid in 

sunscreen products. Therefore, the trolamine salicylate salt was handled as salicylic acid. Taking into account 

that the negative charge of phosphate anions of phospholipids is located on the surface of the membrane, the 

negative charge of the compounds contributes even more to the decrease of their phospholipid binding [29]. 

An intermediate behavior is shown by dioxybenzone, which, along with a log P value of 3 and an 18 % negatively 

charged molar fraction at pH of 7.4, exhibits a CHIIAM value of 39.9. 

The immobilized artificial membrane (IAM) stationary phase has been designed to mimic a lipid 

membrane on a solid surface. This phase features phosphatidylcholine chemically bonded to a silica 

stationary phase. Chromatographic retention on the IAM phase is proportional to a compound’s distribution 

between the mobile phase (at physiological pH) and the phospholipid surface of the stationary phase. This 

retention mechanism differs from the octanol/water partitioning commonly used to assess lipophilicity and 

environmental toxicity of compounds. Research has shown that IAM lipophilicity closely matches 

octanol/water lipophilicity for nonpolar, neutral compounds, according to the Abraham solvation equation 

approach [25,30]. However, the behaviour of charged compounds differs: while octanol/water log D values 
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decrease for both positively and negatively charged compounds, IAM retention decreases for negatively 

charged compounds but increases for positively charged ones [31-34]. Additionally, steric effects influence 

IAM retention, with elongated molecules exhibiting stronger retention compared to round-shaped 

molecules. Given that compounds partitioning into phospholipid membranes may disrupt cellular 

membranes, IAM retention could be a better predictor of toxicity than octanol/water partition coefficients. 

Predicting the acute aquatic toxicity of UV filters 

Applicability domain of predictive models 

Some investigated UV filters exhibit slightly higher CHIIAM values than the pharmaceuticals on which the 

predictive models were trained. For instance, octocrylene, homosalate and meradimate possess CHIIAM values 

of 60.0, 56.8 and 56.9, respectively, when the highest CHIIAM value of the pharmaceuticals was 55.3 for the 

drug amitriptyline. Additionally, CHIIAM values of avobenzone, octinoxate, octisalate, and padimate O belong 

close to this upper limit of pharmaceutical phospholipid binding. For that reason and in order to ensure that 

the previously established models can be used for reliable predictions regarding the toxicity of UV filters, the 

applicability domain of the CHIIAM models was defined with the use of the Williams plot [35,36]. The 

aforementioned plots were constructed by plotting the leverage values of each compound (hi) vs the 

corresponding studentized residuals (ri). The plots are illustrated in Figure 4 in the case of fish and Figure 5 in 

the case of Daphnia toxicity. 

 
Figure 4. Applicability domain of fish pLC50 CHIIAM 

predictive model 

 
Figure 5. Applicability domain of daphnia pEC50 

CHIIAM predictive model 

Figures 4 and 5 show that all the UV filter compounds fall into the applicability domain of CHIIAM models 

since all compounds possess leverage values below the critical leverage (h*), as defined by Equation (10). 

Apart from that, all studentized residuals fall within the range -3 < ri < +3, indicating no outliers to CHIIAM 

models. All these lead to the conclusion that the models based on pharmaceutical ecotoxicity can be well 

used to predict the aquatic toxicity of the UV filter compounds. 

Similar conclusions can be drawn based on the log P values of the compounds. The largest log P value of 

the pharmaceutical compounds used as a training set is that of the drug amitryptiline (log P = 5.04) when five 

UV filters exhibit log P values even greater (octinoxate, octisalate, octocrylene, oxybenzone, padimate O). 

For example, octocrylene possesses a log P value equal to 7.27. However, all compounds fall again within the 
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applicability domain of the models based on log P using the same criteria, as seen in Figures 1S and 2S in the 

Supplementary material. 

Acute aquatic toxicity predictions - Comparison with log P and EPI Suite predictions 

Since it was proven that the UV filters under investigation belong to the same chemical property space as 

that of pharmaceutical compounds, the previously established models for the prediction of pharmaceutical 

acute ecotoxicity based on CHIIAM (Equations (1) and (3)) were used as well for UV filter acute ecotoxicity 

predictions. The same predictions were made based on previously established log P models (Equations (2) 

and (4)) for comparison.  

Results for fish acute toxicity are shown in Table 4, where experimental, predicted by CHIIAM (Equation (1)) 

and log P (Equation (2)) models and residual values of pLC50 are illustrated, along with corresponding 

predictions extracted from EPI Suite software. It should be noted that experimental and EPI predicted LC50 

refer to 96 h static investigations, while CHIIAM models were trained to predict 48 h LC50. However, this 

difference does not hinder the comparison of the values since fish LC50 values are not expected to vary 

considerably for short-term exposure testing [37-39]. 

Table 4. Experimental, predicted and residual values of fish pLC50 

Compound 
pLC50 fish 

Experimental Calculated CHIIAM* log P** EPI 

4-Aminobenzoic Acid 2.12 
Predicted 2.56 2.45 2.12 

Residual 0.44 0.33 0.00 

Ensulizole 2.91 
Predicted 3.04 2.24 2.05 

Residual 0.13 0.67 0.86 

Meradimate 4.48 
Predicted 5.14 4.92 6.37 

Residual 0.66 0.44 1.89 

Octisalate 4.40 
Predicted 5.05 5.11 6.19 

Residual 0.65 0.71 1.79 

Octocrylene 5.65 
Predicted 5.29 6.02 6.73 

Residual 0.72 0.37 1.08 

Oxybenzone 4.78 
Predicted 4.36 4.14 4.92 

Residual 0.42 0.64 0.14 

Padimate O 4.85 
Predicted 4.98 5.20 6.07 

Residual 0.16 0.35 1.22 

Sulisobenzone 2.69 
Predicted 3.09 2.22 1.52 

Residual 0.40 0.47 1.17 

Trolamine salicylate (Salicylic acid) 2.00 
Predicted 2.46 1.69 3.26 

Residual 0.46 0.31 1.26 
*Equation (1), **Equation (2)  

From the results of Table 4, it is evident that fish LC50 values closer to the experimental ones are predicted 

by the CHIIAM model (Equation (1)) since these predictions possess the lowest residuals overall. Inferior 

predictions to those derived from the CHIIAM model are followed by the model based on log P (Equation (2)), 

whereas the largest residuals and, consequently, the worst predictions occur using EPI Suite software. These 

differences are reflected also in the errors in the prediction. As shown in Table 5, the lowest prediction error 

parameters prioritized for the accuracy of the predictions (RMSEP and RSEP) belong to the predictions of the 

CHIIAM model. 

Table 5. Error parameters of the estimates of UV filter fish pLC50 values 

 log P CHIIAM EPI 

RMSEP 0.55 0.42 1.16 

RSEP, % 13.8 10.4 28.9 

bias 0.09 0.18 0.54 
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A graphical illustration of the prediction errors of the CHIIAM model is shown in Figure 6 by plotting the 

experimental vs. the predicted values and, that way, depicting their distances from the 1:1 line. Figure 6 

shows that uncharged compounds tend to be more toxic than negatively charged compounds since these are 

found in the upper section of the graph and the latter in the lower. The presence of a negative charge lowers 

the lipophilicity of the compounds (at physiological pH), thus rendering them less toxic. The repulsing 

electrostatic forces with the negative charge that predominates in the hydrophobic core of the phospholipids 

can explain the decreased toxic potential [20,29]. The same picture results by plotting the same graphs for 

log P model (Figure 3S) and EPI Suite (Figure 4S) predictions, which are included in the Supplemental data. 

 
 CHIIAM predicted 48 h pLC50 fish 

Figure 6. Experimental vs. CHIIAM predicted fish pLC50 values 

Similarly, Table 6 includes the experimental, predicted and residual values of daphnia pEC50 and pLC50, 

where the predicted values result from the CHIIAM model (Equation (3)), log P model (Equation (4)) and EPI 

Suite software. All values refer to 48 h static investigations; EPI Suite, however, calculates only 48 h LC50 

values and not EC50. Since experimental and model-predicted EC50 values express the sublethal effect of 

immobilization, LC50 and EC50 values are not considered far away regarding the quantitative information they 

express [40,41]. 

By comparing the residual values of the predictions from Table 6, similar conclusions can be drawn for 

daphnia as for fish acute toxicity prediction. As in the case of fish, the best predictions for water fleas result 

from the application of the CHIIAM model (Equation (3)), followed by predictions of the log P model (Equation (4)) 

and lastly by those of the EPI Suite. The prediction errors of Table 7 further support this conclusion since the 

predictions of the CHIIAM model possess the lowest uncertainty, relative standard error and bias.  

The distances of the predictions from the 1:1 line are presented in Figure 7 for the CHIIAM model, while 

the corresponding errors are illustrated in Figure 5S and Figure 6S for the log P model and EPI Suite 

predictions, respectively. As in the previous case of fish toxicity, charge plays an important role in the toxicity 

potential, with negative charge lowering the toxic impact of a compound. The same toxicity mechanism was 

scrutinized in our previous work on pharmaceutical ecotoxicity [20] and proves that UV filter compounds act 

the same way as pharmaceutical compounds regarding their acute aquatic toxicity. It should be noted that 

the compounds shown as weak acids in Figure 7 (avobenzone, dioxybenzone) have a negatively charged 

molar fraction of only 10 to 20 %. This fraction is insufficient to significantly reduce their phospholipid binding 

and, consequently, their potential toxicity. 
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Table 6. Experimental, predicted and residual values of daphnia pEC50/pLC50 

Compound 
pEC50/pLC50 water flea (Daphnia magna) 

Experimental Calculated CHIIAM* log P** EPI 

4-Aminobenzoic Acid 3.26 
Predicted 2.82 2.74 4.14 

Residual 0.44 0.52 0.88 

Avobenzone 5.20 
Predicted 4.72 4.53 5.64 

Residual 0.48 0.67 0.44 

Dioxybenzone 4.76 
Predicted 4.21 3.98 4.78 

Residual 0.55 0.78 0.02 

Ensulizole 3.44 
Predicted 3.19 2.58 3.04 

Residual 0.25 0.86 0.40 

Meradimate 5.24 
Predicted 4.86 4.62 6.25 

Residual 0.38 0.62 1.01 

Octinoxate 5.03 
Predicted 4.75 4.95 5.95 

Residual 0.28 0.08 0.92 

Octisalate 5.58 
Predicted 4.79 4.76 6.06 

Residual 0.79 0.82 0.48 

Octocrylene 5.06 
Predicted 4.97 5.43 6.63 

Residual 0.09 0.37 1.57 

Oxybenzone 4.92 
Predicted 4.24 4.23 5.15 

Residual 0.68 0.69 0.23 

Padimate O 4.69 
Predicted 4.73 4.82 5.93 

Residual 0.04 0.13 1.24 

Sulisobenzone 3.79 
Predicted 3.23 2.57 2.36 

Residual 0.56 1.22 1.43 

Trolamine Salicylate (Salicylic acid) 2.67 
Predicted 2.73 2.17 2.74 

Residual 0.06 0.50 0.07 
*Equation (1), **Equation (2)  

Table 7. Error parameters of the estimates of UV filter fish pEC50/pLC50 values 

 log P CHIIAM EPI 

RMSEP 0.65 0.45 0.88 

RSEP, % 14.5 10.1 19.8 

bias -0.46 -0.17 0.42 

 
 CHIIAM 48 h predicted pLC50 Daphnia  

Figure 7. Experimental vs. CHIIAM predicted Daphnia pEC50 values 

From all the above, it is clear that CHIIAM contains more information than log P and can predict the acute 

aquatic toxicity of UV filter compounds more accurately than octanol-water. CHIIAM incorporates electrostatic 

interactions with compounds absent in log P measurements. In addition, CHIIAM is a real-time chromato-

graphic measurement of the interaction of a compound with phospholipids, thus avoiding predictions based 
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on calculated values, such as calculated log P [42], which can lead to great over- or underestimations and 

uncertainty of the predictions. One such example is the predictions of EPI Suite that are based on calculated 

log P. EPI Suite is an in silico approach for the prediction of aquatic toxicity endpoints, and although it offers 

rapid predictions without the use of measurements, it contains limitations, as it lacks the precision that 

measured data can offer. As shown, EPI Suite led to much larger errors in the estimation of toxicity endpoints 

than CHIIAM. Regarding the experimental determination of log P, chromatographic measurements are faster, 

more user-friendly, and can be automated [43].  

Prediction of ecotoxicological endpoints for UV filters with no literature data 

Considering that phospholipid binding can successfully describe the acute toxic action of UV filters on 

aquatic organisms, the CHIIAM models were used to predict ecotoxicological endpoints of compounds for 

which toxicity data could not be found in the literature. Predicted 48 h pLC50 values to fish are presented in 

Table 8, while predicted 48 h pEC50 values to water fleas (Daphnia magna) are presented in Table 9. The 

predicted values were then converted from their molar p values to mg/L to be classified based on the 

occurring values according to Global Harmonized System (GHS) aquatic hazard classification [44]. 

Table 8. Predicted fish 48 h LC50 of UV filters with no literature data 

Compound Predicted 48 h pLC50, M* Predicted 48 h LC50, mg/L Hazard ranking 

Avobenzone 4.97 3.35 Acute toxicity II / Toxic 

Dioxybenzone 4.32 11.7 Acute toxicity III / Harmful 

Homosalate 5.13 1.93 Acute toxicity II / Toxic 

Octinoxate 5.00 2.84 Acute toxicity II / Toxic 
*Equation (1) 

Table 9. Predicted daphnid (water flea, Daphnia magna) 48 h EC50 of UV filters with no literature data 

Compound Predicted 48 h pEC50, M* Predicted 48 h EC50, mg/L Hazard ranking 

Homosalate 4.85 3.71 Acute toxicity II / Toxic 
*Equation (3) 

As seen from Tables 8 and 9, all compounds are classified as hazardous to aquatic organisms and, more 

specifically, as acutely toxic or harmful. This fact can be justified considering that these specific compounds 

belong to the more lipophilic group of compounds investigated. Taking into account that the UV filter effect 

is not related to the lipophilicity of compounds and that such compounds are actually widely used in cosmetic 

formulations and sunscreen products, ending up eventually in the aquatic environment, sun protection 

should be directed to the use of less lipophilic compounds that can absorb the harmful UV rays of light, in 

order to achieve more environmentally friendly sun protection products.  

Conclusions 

UV filter compounds share similar chemical properties with pharmaceutical compounds, allowing models 

developed for predicting the acute aquatic toxicity of pharmaceuticals to be applied to UV filters. Phospho-

lipid binding has proven to be a more successful descriptor of the acute toxic action of UV filters than the 

traditionally used octanol-water partition coefficient (log P). The CHIIAM descriptor provides more compre-

hensive information than log P, capturing electrostatic interactions through chromatographic measurements 

of real interactions between compounds and phospholipids. Using this biomimetic descriptor for ecotoxicity 

predictions can overcome problems such as discrepancies, deviations, and uncertainties that arise from the 

calculated log P values used by most software programs (e.g., EPI Suite). The acute toxic action of UV filters 

is influenced primarily by lipophilicity, with charge playing a significant role; a negative charge reduces a 

compound's toxicity. Most investigated UV filters are uncharged and highly lipophilic, leading to strong 

phospholipid binding and, consequently, greater aquatic toxicity. These characteristics make the use of these 
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compounds in cosmetic formulations hazardous for aquatic organisms, especially given the large quantities 

of sunscreen products used during the summer season. Skincare and sun protection should focus on using 

less lipophilic UV filters, preferably with a negative charge, to decrease phospholipid binding and create more 

environmentally friendly formulations and products. 

Supplementary material 

Additional data are available at https://pub.iapchem.org/ojs/index.php/admet/article/view/2364, or 

from the corresponding author on request.  
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