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Abstract: The Lorentz-invariant expansion of the scattering amplitude for par­
ticles of arbitrary spin is given explicitly. The conditions for P, T and 
CPT invariance are also given. nN and NN scatterings are considered 
as an illustration of the method. 

1. Introduction

The problem of expansion of the scattering amplitude for particles of arbitrary 
spin in covariant structures arose at the very beginning of the development of 
quantum field theory. In the usual approach 1• 2• 3>, such covariant expansions are 
derived by a procedure specially devised for any combination of spins encountered 
in practical calculations. 

On the basis of the full Lorentz invariance (including inva�iance under C, P 
and T) Hepp4> proposed a general method for constructing covariant expansions. 
Hepp's solutions, however, was not quite explicit, and the problem still attracts 
attention (see, for instance, Refs. 5• 6>). 

* This paper is an improved and short version of the Dubna Preprint E2-7461 (1973).
** On leave of absence from Joint Institute for Nuclear Research, Dubna, USSR.
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In the present paper, following the methods given in an unpublished paper of 
Oksak and Todorov, we approach the general problem of covariant expansions 
by exploiting the manifestly covariant technique given in Refs. 7• 8l. Roughly 
speaking, this technique consists in substituting spin tensors with two-component 
indices, used in Ref. 4J, by homogeneous polynomials of pairs of complex variables 
associated with each particle with spin. 

The Lorentz-invariant expansion is written as a sum of 

(2s1 + 1) (2s2 + 1) (2s3 + 1) (2s4 + 1)

terms (for binar processes). The complete Lorentz invariance leads to further 
reduction of the number of independent invariant amplitudes. 

In Sec. 2 th.e problem of the Lorentz-covariant expansion of the scattering 
amplitude is reduced to the problem of a Lorentz-invariant expansion of a homo­
geneous function of two-component complex spinors. The degree of homogeneity 
is related to the spins of the incoming and outgoing particles. Finite-dimensional 
representations of the SL (2, C) group in the space of two- component complex 
spinors were used. From the point of view of representation theory, the general 
formula for the Lorentz-invariant expansion of the scattering amplitude is a 
decomposition of the direct product of SL (2, C) finite-dimensional representations 
[2 sa, O] into irreducible representations (this fact was noticed by Hepp4l). 

Further we find identities for invariant structures, with the help of which the 
general expansion can be written as a function of structures associated with a 
single channel (s, t or u). 

Fig. 1 

In Sec. 3 the C, P and CPT invariant conditions for the amplitude are derived. 
In Sec. 4 an illustration of the developed method is given for the cases of pion­

-nucleon and nucleon-nucleon scattering. As expected, our results agree with 
the wellknown formulae for these processes. 
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In Appendix I. some useful differentiation formulae and identities are given. 
In Appendix II. we give an explicit realization of the Dirac and Bargmann­

-Wigner formalism used in the main body of the paper. 
Appendix III. contains a table of transformation laws for the Lorentz-invariant 

structures under P operation. 

2. Lorentz-invariant expansion of the scattering amplitude

Proof of the main formula. Let us consider a process shown in Fig. 1 .  Here P, e, s, C denote the four-momentum, charge, spin and spin projection of the a1h

particle (in our case a = l , 2, 3, 4). The conservation of the momentum gives 

All particles are on the mass shell 

2 I\ P; = Pi - P; = Ma2 • 

We introduce the Mandelstam variables 

S1 = S = P1 + P2,
S2 = T = P1 + P3, 

S3 = U = P1 + P4, 

with the well-known property 

S2 = S = S1 , 

T2 = t = s2 , 

U2 = U = S 3, 

L sf = s + t + u = L M�.
i = t  a 

We denote the physical scattering amplitude of the process by 

(1)  

(2) 

(3) 

Let uf(1 · · a2

,(P) be a Bargmann-Wigner spinor for a particle of four-mo­
mentum P, charge e, spin s and spin projection eC (ai, . . .  , a2 8  = 1, 2, 3, 4 are 
Dirac indices), which satisfies the equation*> 

(2s) 

(P - eM) vi:i (P) = O, 

* We omit the spinor indices in this and similar formulae.
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where 

and 

ANEVA et al. 

(�
) 

" (2s) " P = P X  . . . X P  

S2 u<•) (P) = s (s + 1) u<•) (P) - s, , s, , ' 

s 3 u;,·� (P) = e, u;:� (P). 

( 4) 

(We have used a somewhat unusual notation for the spin projection, which allows 
us to write down all four solutions of the free Dirac equation in one formula.) 

In analogy with the.case of particles with spin � we introduce a Dirac conjugated 

spinor : 

,...., -- (2s) 
u<•) (P) = u<•) (P) y0 

s, ' s, ' 

(the bar stands for complex conjugation). 

( 5) 

On the basis of the spinor space used in Appendix 2, in which y5 is diagonal, 
we also introduce the four-component complex spinors 

� = (�), 'f = � C,

where z = (
z1

) and z1, z2 are complex numbers.
, Z2 

We associate a Bargmann-Wigner spin-tensor with the physical amplitude in 
a given channel (12 -+ 34)  

where a summation i s  to be  performed over each repeated index Ca from -sa to 
sa. The minus signs of the arguments of the Bargmann-Wigner spinors are deter_ 
mined by the choice of the channel. 

Further, after multiplying from the left and right by the necessary number of 
'l and �' respectively, we obtain the scalar amplitude



LORENTZ - INVARIANT . .  

The invariance of the amplitude (6) under Lorentz transformations means 

where 

and 

A s  SL (2, C) 

A P A* = i\ (A) P. 

13 

( 6) 

The amplitude (6) is a homogeneous polynomial of degree 2sa with respect to Za, 
From the theory of finite-dimensional representations of the Lorentz group 

in the space of two-component complex spinors it follows that the amplitude 
(6) is a polynomial of invariants of the type

So we write 
(r = 1, 2, 3). 

s, +s3 s2 +s4 
:E :E 

l1 = ls1-s3I l2 = ls2-s4I 

The monomials P and the functions F satisfy the homogeneity conditions 

(7)
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The monomials P have the form 7) 

p�1h (u V '  a ) =  N� . (u I', v) h+h-j (u a )h-2+i (v a )h -it+j.
J 

' ' 
z 1112 z z 

The normalization constant N'. 
. 

can be determined from the following require-
1112 

ment : If Fi (z) and Fhh (u, v) are homogeneous polynomials of z and u, v of de-
gree 2j and 2j1 , 2j2 , respectively, and 

it+h 
�-1h (u, v) = L P'. . (u, v ;  oz) F1 (z), 

· . . 1112 1 =11 -12 

then F1 (z) can be expressed conversely in terms of Fhh (u, v) 
by the formula 

Fi (z) = P� . (ou, ov ; z) Fh ii (u, v). 1112 

So with the help of formulae (I, 1) we obtain 

(8a) 

(8b) 

. 
( 

(2j + 1) )! N}ih = Cf1 + i2 + j + 1)! Cf1 + i2 - j)! Ci1 - ;'2 + j)! Cf2 - i1 + j)! 
2 .

Further, the u and v differentiation in Equ. (7) gives after simple and lengthy 
calculations 

where 

, "' (z1 B Z2)a (z1 B Z4)/J (Z3 B Z2)Y (Z3 B Z4)d 

L; a! e! y! o! a+fJ+r+d=
=s1+s3-j 

. (s 3 - S1 + jl - Y - O)! (S4 - S2 - j2 - 0 - /J)! ,
( 10)
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The function F�e� ,  ."2• e3, e4) (z;  S, T, U) is determined from the homogeneity con-
11121 

dition and the possibilities to form Lorentz invariants from z and S, T, U 

I F�·�· _e2, e3, e4) (z . S T U) = � 1(•1: •_2, e,, e4) (s t u) ii: (z) ul-1' (z) + 
11121 > ' > ,(.., 11 12 Jk ' ' 1 2 

k=O 

j- l + u (z) L /•1, �2, e3, e4) (s t u) t1: (z) u1- 1-k (z) 3 k=O 11121k ' ' 1 2 ' ( 1 1 )  

1 - -
where u1 (z) = 2 s1k zs (�kS1 - !!_,Sk) z. Higher powers of u 3 (z) do not appear

in the right-hand side of Equ. ( 1 1 ), since they can be expressed in terms of powers 
of u1 (z) and u2 (z) from the identity 

( 12) 

The z-differentiation in Equ. (9) can be performed with the help of formulae 
(I, 2). 

Identities for invariant structures. The way we perform the transition from the 
spinor amplitude to the scalar one shows that the amplitude should be a function 
of structures associated with a given channel (s, t or u channel, respectively). 
The remaining structures can be eliminated with the help of the identities* 

u 0 ( 13) u 0 (24) - Uo ( 12) Uo (34) - Uo ( 14) Uo (23) = 0,

Uo ( 13) uj (24) - Uo (12) Uj (34) - Uj ( 14) Uo (23) = 0, 

Bkjl St Uo (13) Uk (24) - Uj (12) U1 (34) + 
+ Ui (23) U1 ( 14) = 0, 

Sr St Uo (13) Uo (24) - U1 (12) U1 (34) + 
+ UJ ( 14) UJ (23) = 0,

(k,j, l = I, 2, 3), 

* We use the abbreviations uµ (z., zb) = uµ (a, b).

(1 3a) 
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which follow from the modified identity (I, 3) 

Another necessary identity is found when the operator 

acts on Equ. ( 12) 

3 

� Sf I Uj ( 13) Uj (24) + Uj (14) Uj (23) + Uj ( 12) Uj (34) I +
j= l 

+ Uk (13) u, (24) + Uk ( 14) U1 (23) I = 0.

(13b) 

Obviously, taking different differential operators and higher powers of Equ. (12), 
one can obtain identities relating more general structures. 

3. Discrete operations

To obtain a CPT-invariant expansion, let us analyze the right-hand side of 
Equ. (6). Here we have two types of scalar products one in the spin space coming 
from the summation over C and the other in the Dirac space. So the product 

(2s) "' (2s) 
g u;:i (P) c utl (P) g)

is a scalar in the Dirac space and a spin vector in the spin space. 
So, the transformation properties of each single z under space and time reflection 

will be determined from the requirement 

or 

(2s) (2s) 

U uc•) (P) = 1 I uC•) (P) s,C s,C , 

(:!} -------., (2s) 
u u(•) (P) = I u(•) (P) l: �, �, § '

when the operator I involves time reversal. 
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Space reflection. The physical amplitude transforms under space reflection as 

where 'Y/s is the phase factor of space reflection (which is a product of four such 
factors, one for · each particle) and 

I. P = (P 0, - P).
Using the space-invariant condition 

(2s) (2s) 

I� uc•) (P) = r I uC•) (P) s �, s �, ' 

with the help of the identity for the Bargmann-Wigner spinors (II, 1 ), we derive 

(1 4) 

The amplitude will be invariant under space reflection if and only if 

(1 5) 

where the factor (- 1)2•3+2•4 results from the minus signs of the arguments in
Equ. (6). 

Time reversal. The physical amplitude transforms under time-reversal as 

= 'Y/t II ( - I) •a-Ca TS3 S4sis2 (I. p 3 > e3, -e3 C 3 ; 1. P4, e4,-e4 (4 ; 
a = I  

where 'Y/r  is the phase factor of time reversal. Using the T-invariance condition 

,..., (e) ,--� (2s) IrC u •. , (P) = Ir U,., (P) C, 
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with the help of the identity for the Bargmann-Wigner spinor (II, 2), we derive the 
time-invariant condition for the amplitude 

CPT transformation. Under CPT transformation the amplitude transforms as 

'Y/CPT II (- 1) Sa-Ca TS384S1 S2 (P3 - e3, e3 (3 ; P4, - e4, e4 ( 3 ;  
a - 1  

Using the identity (II, 3)  in the same way as in the preceding subsections, we find 
that the amplitude will be invariant under CPT transformation if and only if 

4. Application to the case of nN and NN scattering

Pion-nucleon scattering. Using formulae (9), ( 10) and (1 1 ) ,for s1 = s 3 = � , s2 = 

= s4 = 0, we find 

= f O (s, t, u) uo (13) + /1 (s, t, u) u1 ( 13) + /2 (s, t, u) u2 (13) + 
+ f 3 (s, t, u) u 3 (13). 

If we apply the space-invariant condition ( 15) we shall see that only two of the 
invariant scalar functions f (s, t, u) are linearly independent 

A 
= 4 [2 (s + u) u0 (13) + u1 (13) - u 3 (13)] + (18 ) 

MB + 2 [2 (s - u) uo ( 13) - u1 (13) - u 3 (13)],
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where 

and M is the nucleon mass.
Equ. (18) agrees exactly with the familiar result (see Refs.2• 3l) 

where 

as it is easy to verify with the help of the formula 

Of course, the amplitude (17) is also T-invariant. 

Nucleon-nucleon scattering. In the case of s 1 = s2 = s 3 = s4 = -} we find from

Equ. (5) 

1 1 
= l 11 Uo ( 13) Uo (24) +

2 VJ
l2 [Uo (12) Uo (34) - Uo (14) Uo (23)] + 

1 I 1 
+ TI 3 Uo (13) U1 (24) + 2 14 Uo ( 13) U2 (24) + T Is Uo ( 13) U3 (24) +

I 1 1 
+ 2 16 U1 ( 13) u0 (24) + 211 U2 ( 13) u0 (24) + 2 Is u3 ( 13) U0 (24) +

1
+ -----=19 [Uo (12) U1 (34) + U1 ( 12) Uo (34) - Uo (23) U1 ( 14) + U1 (23) Uo (14)] +

4 V 2
. 1 

+ �11 0 [Uo (12) U2 (34) + U2 (12) Uo (34) - Uo (23) U2 (14) + U2 (23) Uo ( 14)] +
4 V 2

1 
+ -----=lu [Uo ( 12) U3 (34) + U3 ( 12) Uo (34) - Uo (23) U3 ( 14) + U3 (23) Uo (14)] +

4 V 2
I 

+ 
v

-112 [U1 (12) U1 (34) + U1 ( 13) U1 (24) + U1 (23) U1 ( 14)] +
2 6 

I 
+ ---=Ii 3 [U2 ( 12) U2 (34) + U2 (1 3) U2 (24) + U2 (23) U2 ( 14)] +

2 V 6

1 
+ 

v
-../14 [u1 ( 12) U2 (34) + U1 ( 13) U2 (24) + U1 ( 14) u2 (23) + 

4 6 
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+ U2 (12) U1 (34) + U2 ( 13) U1 (24) + U2 ( 14) U1 (23)] +
1 + -------=f1s [u2 (12) U 3  (34) + U2 ( 13) U3 (24) + U2 (14) U3 (23) +4 V 6 
+ U3 (12) U2 (34) + U3 (13) U2 (24) + U3 (14) U2 (23)] +
I + -=f16 [U3 (12) U1 (34) + U3 (13) U1 (24) + U3 ( 14) U1 (23) +4 V 6 
+ U1 (12) U3 (34) + U1 (13) U3 (24) + U1 (14) U3 (23)] .

As can be seen, all three kinds of structures ( 13) (24), (12) (34) and (14) (23) appear. 
However, since we are dealing with the t channel, our amplitude should only be 
a function of structures (13) (24). With the help of identities ( 13) all structures in 
(33) can be expressed in terms only of sixteen linearly independent structures 
Uµ (13) u• (24)

I 
TNN = 2 /1 U0 ( 13) u0 (24) + 

I !2 + v--- [s1 U1 (13) U1 (24) + S2 U2 ( 13) U2 (24) + S3U3 ( 1 3) U 3 (24)] + 2 3 S1 S2 S3

1 1 I + 2 f 3 Uo (13) U1 (24) + 2 /4 Uo (13) U2 (24) + 2 /5 u0 ( 13) U3 (24) +
I I I

+ 2 !6 U1 (13) Uo (24) + 2 !1 U2 (13) Uo (24) + 2 fa U3 ( 13) Uo (24) +
+ V

I - fg [U2 ( 13) U3 (24) - U3 (13) U2 (24)] +2 2 S1 

I /1 0 + --= - [U3 (13) U1 (24) - U1 (13) U3 (24)] +
2 V  2 52 

1 !11 + -------= - [U1 ( 13) U2 (24) - U2 ( 13) U1 (24)] +
2 V  2 S3 

+ _!____/1
;_ [2s; U1 (13) U1 (24) + s: U2 (13) U2 (24) + s: U 3  ( 13) U 3  (24)] + 2 V 6 5
1 

+ VI _
f1; [s; u1 (13) u1 (24) + 2 s� u2 ( 1 3) ui(24) + s! u3 (13) u3 (24)] + 2 6 52 

1 + - =J14 [U1 ( 13) U2 (24) + U2 ( 13) U1 (24)] +4 V 6 
1 + v-f1s [U2 (13) U3 (24) + U3 (13) u2 (24)] +4 6 
1 + v-/16 [U3 ( 13) U1 (24) + U1 (13) U3 (24)] .4 6 
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The requirement for P invariance (1 5) leads to such relations between scalar func­
tions fk (s, t, u) (k = 1 , 2, . . .  , 16) that only eight of them (Gm (s, t, u), m = 1, 2, 
. . . 8) are linarly independent 

TNN = G1 { (s + u)2 u0 (13) Uo (24) +
1 + 2 (s + u) [u0 (13) u1 (24) + u1 (13) u0 (24)] + 

1 + 2 (s + u) [u0 (13) u3 (24) - u3 (13) (u0 24)] + 
I + 4 [U1 (13) U3 (24) - U3 (13) U1 (24) + U1 (13) U1 (24) - U3 (13) U3 (24)] } +

+ MG2 { (s2 - u2) u0 (13) Uo (24) +
1 + 2 u [Uo (13) U1 (24) + U1 (13) Uo (24)] +
1 

+ 2 s [Uo (13) U3 (24) - U3 (13) Uo (24)] +
1 - 4 [U1 (13) U1 (24) + U3 (13) U3 (24) ] } +

+ M2G3 u2 (13) u2 (24) + M2G4 {(s - u) 2 u0 (13) u0 (24) + (19)
1 - 2 (s - u) [u0 (13) u1 (24) + u1 (13) u0 (24)] + 
1 + ·y (s - u) [U0 (13) u 3 (24) - u 3 (13) u 0 (24)] +

1 + 4 [ - U1 (13) U3 (24) + U3 (13) U1 (24) + U1 (13) U1 (24) - U3 ( 13) U3 (24)] } +
+ G5 4 t2 Uo (13) Uo (24) + l t [- U0 (13) U1 (14) - U1 (13) Uo (24) -{ 

1 1 

- Uo (13) U3 (24) + U3 (13) Uo (24)] +
1 + 4 [u1 (13) U3 (24) - U3 (13) U1 (24) + U1 (24) + U1 (13) U1 (24) - U3 (13) U3 (24)]} + 

+ MG6 { � s [u0 (13) u1 (24) - u1 (13) u0 (24)] - ; u I Uo (13) U 3  (24) + 
1 + U3 (13) Uo (24)] - 4 [u1 (13) U 3  (24) + U3 (13) U1 (24)]} +

+ G1 {[- 2t Uo (13) + U1 (13) - U3 (13)] U2 (24)} + 
+ Gs {u2 (13) [- 2t Uo (24) + U1 (24) + U3 (24)]}. 
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The T-invariance condition (1 6) implies the vanishing of the functions G7 and 
G8 • Further, the structure with the coefficient G8 does not satisfy the symmetry 
property for identical particles, i. e., the coefficient changes its sign under the substi­
tutions 1 <---> 2 and 3 <---> 4. So, it follows that G6 = 0. 

Thus, the full Lorentz reflection-invariant amplitude for NN scattering has the 
form (19) with 

This expression agrees with the well-known result for NN scattering1> 

,.. ,.. 
= G 1 X 1 + G2 I K X 1 + 1 X p I +

/\ A A /\ + G3 K X P + G4 + Ys K X i y P + Gs i Ys X i Ys,

where K = P2 + P4, P = P1 + P 3 , as can be seen with the help of the formula 

5. Conclusions

Summarizing, we may draw the conclusion that a prescription for the invariant 
expansion of the scattering amplitude for particles of arbitrary spin has been found. 

Furthermore, we are able to construct the modulus of the amplitude which is
related to the cross-section of a scattering process 

where the complex conjugation concerns only the invariant scalar amplitudes. 

In order to find an explicit covariant expansion of the amplitude and hence the 
cross-section for particles of any spin, it might be useful to apply the so-called 
terminal systems of computer technique (see Ref.8>). 
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Appendix I. 
Some useful differentiation formulae and identities. Let z, a, b, c, . . .  be two-com­

ponent spinors, A, B, . . .  are 2 · 2 matrices and o z = ( !:: ) . 
We have 

and 

(a O z) (bz) = (ab), 

(a O z)" (bz)111 

_ 
(ab)H (bz)"' - 11 

n !  m l - n !  (m - n) ! '

(a Oz)a (bz)f! (cz)Y a (ba? (ca)a-k (bz)f!-k (cz)r-a-k 
� � �� �� =  t , a !  e ! Y ! Y ! k=O k ! ( a - k) ! (e - k) ! (y - a - k) ! 

(a O z)a (bz)f! (cz)Y (dz)b 
a !  e ! y !  <5 !  

(ba)' (ca)I (da)" (bz) �-s (cz)r-t (dz)�-u
= t . , s+t+u=a s !  t !  u ! (e - s ) !  (y - t) ! ( <5  - u) !  

(a Oz)" (zAz)a 
n !  a !  

[nl 
zj (zAz)a-n+k (aAz + zAa)n-2k (aAa)k 
t 

k=O (a - n + k) ! (n - 2k ) ! k !  

(a O zt (zAz)° (zBz)fJ 
n !  a !  e ! 

" [";
k
] rn) (zAz) a-n+k+z

L L L ' X 
k=O l=O m=O (a - n + k + l ) .

(aAz + zAa)11-k+21 (aAa)' (aBz + zBa)k+2m (aBa)111 

X (n - k + 21) ! l! (k + 2m ) !  m ! 

It is also useful to note the binomial equality 

(I. I ) 

(I.2) 
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and the important identity 

(u s v) (u s b) = (ua) (vb) - (ub) (va).

Appendix I I. 
The Dirac formalism and identiti'es for Bargmann-Wigner spinors. Let 

where 

For the Dirac matrices we choose the representation 

0 (0 1) 
y = I O '  

We also use the matrices 

C= - c- 1 = - 'C= - C = i y0 y2 = (� � - 1) , 

VT = - V; 1 = - ' VT = - VT = i y0 y 5 C = (� ;) , 

with the properties 

As usual, we denote 

where 

(I.3 ) 
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The two-dimensional representation of the Lorentz boost is 

where 

B (P) - M + f "' - V2M (w + M)' 

w = + (M2 + p2y2 = I p O I . 

It is seen that the boost matrix is positive definite. One readily verifies that 

or equivalently 

!:, B (P) = MB (e). 
The useful relation 

follows from 

The solution of the Dirac equation 

(P - eM) U112, c (P) = 0, 

25 

1where the charge e = ± I and the spin projection l; = ± 2 , have the form

• (B (f) l,c )Um, c (P) = eB (p) z., .
The two-component spinors ec are determined from the equations 

� -, e lc = - (- 1)2 1 -,, 
with the normalization 
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It follows that the spinors U;i1, c (P) satisfy the conditions 

-I< 
U;it c (P) U(j1,,, (P) = 2 PO c5,c-, 

uili., (P) U;it ,, (P) = 2Me c5(;(;,

and the completeness relation 

t Vi12. c (P) x ufi, (P) = P + eM.

It is not difficult to verify the following identities : 

- - A 

UC•) (P) uC•) (P) p o •1/2, (; = 1/2, C Af Y , 

,_, p uW2. , (P) = c- 1) 112- ,  vW2, -, (I. P) M i vr,

,_, p 
U\iL (P) = ( - 1112�1: V r M U\it-, (I. P) ;

Ui'/2, c (P) = ( - 1) l/'J.-C C uT;}, (P) 

UCe) (P) - ( 1)112-c tC uC-•l (P) 1/2, 1: - - 1/2 C • 

(II. l )  

(II.2) 

(II.3 )  

One can easily check that the above identities are also satisfied for the Bargmann­
-Wigner spinors if the Dirac algebra is constructed as in Equ. (4) . 

Appendix I I I 

Table of P-transformation laws for invariant structures. If

M1 = M 3 = M, M2 = M4 = M,
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we have the following transformation properties for space reflection: 

I 
ls Uo ( 13) = 4M2 [( - 2 + t - u) Uo ( 13) - U1 ( 13) + U 3 (13)] ,

1 
ls U1 ( 13) = 4M2 [- 4t (u + SU) u0 ( 13) - (s + t - u)u1 (13) - 2 (u + SU)ui13)] 

fsU2 ( 13) = U2 (13), 

I 
ls U 3 ( 13) = 4M2 [ 4t (s + SU)u0 ( 13) - 2 (s + S U) u1 ( 13) + (s - t - u) u 3 ( 13)] ;

1 
ls U0 (24) = 4m2 [(s - t - u) u 0 (24) - u (24) - u 3 (24)],

1 
ls U1 (24) = 4m2 [ - 4t (u + SU) u0 (24) - (s + t - u) u1 (24) + 2 (u + S U)ui24)],

fs U2 (24) = U2 (24), 

1 
ls u 3 (24) = -4 2 [- 4t(s + SU) u0 (24) + 2 (s + SU) u1 (24) + (s - t - u) u 3 (24)].m 
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Sadrzaj 
Razvoj amplitude rasprsenja za cestice proizvoljnog spina uz ocuvanje Lorentz 

invarijantnosti dan je eksplicitno. Uvjeti za P, T i CPT invarijantnost su pokazani. 
Kao primjeri primjene metode, razmotreni su slucajevi 1'tN i NN rasprsenja. 




